苯醚甲环唑和手性苯醚甲环唑醇对近头状尖孢藻的胁迫效应
The Stress Effects of Difenoconazole and Chiral Difenoconazole-alcohol on Selenastrum capricornutum
-
摘要: 本研究以近头状尖孢藻为受试对象,通过测定半数有效浓度(EC50)、光合色素水平、丙二醛(MDA)含量及抗氧化酶活性,评估了苯醚甲环唑及其降解产物苯醚甲环唑醇对藻的生物毒性,重点分析了手性苯醚甲环唑醇对藻生物毒性的立体选择性差异。本文所测苯醚甲环唑和苯醚甲环唑醇96 h的EC50值分别为0.67 mg·L-1和1.74 mg·L-1,R-(+)-苯醚甲环唑醇和S-(-)-苯醚甲环唑醇96 h的EC50值分别为2.74 mg·L-1和1.68 mg·L-1。同时基于藻受苯醚甲环唑、苯醚甲环唑醇和苯醚甲环唑醇对映体胁迫后,氧化损伤相关参数的变化趋势以及光合作用载体叶绿素含量的程度变化趋势,得出苯醚甲环唑对近头状尖孢藻的毒性强于苯醚甲环唑醇,手性苯醚甲环唑醇对藻的胁迫表现为S-(-)-对映体>消旋体>R-(+)-对映体。Abstract: This study evaluated the biological toxicity of difenoconazole and its degradation product difenoconazole-alcohol to Selenastrum capricornutum by measuring median effective concentration (EC50), photosynthetic pigment levels, malondialdehyde (MDA) content, and antioxidant enzyme activity, with a focus on analyzing the stereoselective differences in chiral difenoconazole-alcohol’s biological toxicity to algae. The EC50 values of difenoconazole and difenoconazole-alcohol after 96 hours exposure were 0.67 mg·L-1 and 1.74 mg·L-1, respectively. The EC50 values of R-(+)- difenoconazole-alcohol and S-(-)-difenoconazole-alcohol after 96 hours exposure were 2.74 mg·L-1 and 1.68 mg·L-1, respectively. At the same time, based on the evaluation of changing the trend of oxidative damage-related parameters the levels of chlorophyll content of photosynthesis carriers as the algae was subjected to exposure stress by difenoconazole, difenoconazole-alcohol, and difenoconazole-alcohol enantiomer, it was concluded that difenoconazole was more toxic to Selenastrum capricornutum than difenoconazole-alcohol, and the toxicity of chiral difenoconazole-alcohol was regarded as S-(-)-enantiomer> racemate> R-(+)-enantiomer.
-
Key words:
- difenoconazole-alcohol /
- enantiomers /
- Selenastrum capricornutum /
- acute toxicity /
- oxidative damage
-
-
Ji C Y, Song Z D, Tian Z L, et al. Enantioselectivity in the toxicological effects of chiral pesticides: A review[J]. Science of the Total Environment, 2023, 857(Pt 3): 159656 Cui J N, Wei Y M, Jiang J G, et al. Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio)[J]. Chemosphere, 2023, 318: 137898 Aboul-Enein H Y, Kannappan V, Kanthiah S. Polysaccharide and cyclodextrin-based monolithic chiral stationary phases and its application to chiral separation[J]. Combinatorial Chemistry & High Throughput Screening, 2023, 26(15): 2583-2597 Mohamed Ahmed Talab K, Yang Z H, Li J H, et al. The influence of microbial communities for triadimefon enantiomerization in soils with different pH values[J]. Chirality, 2018, 30(3): 293-301 华乃震. 杀菌剂苯醚甲环唑的进展和应用[J]. 世界农药, 2013, 35(6): 7-12 , 43 Hua N Z. Development and application of difenoconazole fungicide[J]. World Pesticide, 2013, 35(6): 7-12, 43(in Chinese)
何永新. 10%苯醚甲环唑等4种药剂防治西瓜炭疽病药效试验[J]. 南方园艺, 2016, 27(2): 44-45 He Y X. Efficacy test of four pesticides, such as 10% difenoconazole, against watermelon anthracnose[J]. Southern Horticulture, 2016, 27(2): 44-45(in Chinese)
Chen S Y, Cai L, Zhang H P, et al. Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem[J]. Agriculture, Ecosystems & Environment, 2021, 313: 107370 Dong F S, Li J, Chankvetadze B, et al. Chiral triazole fungicide difenoconazole: Absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil[J]. Environmental Science & Technology, 2013, 47(7): 3386-3394 Chapman R L. Algae: The world’s most important “plants”: An introduction[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1): 5-12 Wang H D, Chen C C, Huynh P, et al. Exploring the potential of using algae in cosmetics[J]. Bioresource Technology, 2015, 184: 355-362 张爱华, 谭仁祥. 电子圆二色谱技术在天然产物绝对构型确定中的应用[J]. 国际药学研究杂志, 2015, 42(6): 734-737 Zhang A H, Tan R X. Theoretical calculation of electronic circular dichroism: A promising tool for the determination of absolute configuration of natural products[J]. Journal of International Pharmaceutical Research, 2015, 42(6): 734-737(in Chinese)
Ding S, Jia L, Durandin A, et al. Absolute configurations of spiroiminodihydantoin and allantoin stereoisomers: Comparison of computed and measured electronic circular dichroism spectra[J]. Chemical Research in Toxicology, 2009, 22(6): 1189-1193 Organization for Economic Co-operation and Development (OECD). Test No.201: Freshwater Alga and Cyanobacteria [S]. Paris: OECD, 2011 Ritchie R J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents[J]. Photosynthetica, 2008, 46(1): 115-126 Xiong L, Xie P, Sheng X M, et al. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2005, 60(2): 188-192 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254 温宏伟, 张召贤, 薛佳莹, 等. 氟唑菌苯胺对蛋白核小球藻的立体选择性毒性效应[J]. 安徽农业大学学报, 2023, 50(2): 283-288 Wen H W, Zhang Z X, Xue J Y, et al. Stereoselective toxic effects of penflufen against Chlorella pyrenoidosa[J]. Journal of Anhui Agricultural University, 2023, 50(2): 283-288(in Chinese)
Zhang W J, Cheng C, Chen L, et al. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa[J]. Chemosphere, 2016, 159: 50-57 Pałecz D, Komuński R, Gabryelak T. Na+K+-ATPase activity as a biomarker of toxaphene toxicity in Unio tumidus[J]. Toxicology in Vitro, 2005, 19(5): 707-712 Liu C X, Liu S Z, Diao J L. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers[J]. Environmental Pollution, 2019, 250: 610-617 Kahle M, Buerge I J, Hauser A, et al. Azole fungicides: Occurrence and fate in wastewater and surface waters[J]. Environmental Science & Technology, 2008, 42(19): 7193-7200 Pan L X, Feng X X, Cao M, et al. Determination and distribution of pesticides and antibiotics in agricultural soils from Northern China[J]. RSC Advances, 2019, 9(28): 15686-15693 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学农药环境安全评价试验准则第14部分:藻类生长抑制试验: GB/T 31270.14—2014[S]. 北京: 中国标准出版社, 2015 Geoffroy L, Dewez D, Vernet G, et al. Oxyfluorfen toxic effect on S. obliquus evaluated by different photosynthetic and enzymatic biomarkers[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(4): 445-452 张钰昆, 巩宁, 车程, 等. 纳米氧化镍颗粒对长牡蛎(Crassostrea gigas)抗氧化防御体系的影响[J]. 生态毒理学报, 2019, 14(2): 268-279 Zhang Y K, Gong N, Che C, et al. Effects of nickel oxide nanoparticles on antioxidant defense system of Crassostrea gigas[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 268-279(in Chinese)
Liu H J, Xiong M Y. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2009, 93(2/3): 100-106 Liu R, Deng Y, Zhang W J, et al. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109691 Chang W X, Nie J Y, Yan Z. Enantioselective behavior of chiral difenoconazole in apple and field soil[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(3): 501-505 -

计量
- 文章访问数: 268
- HTML全文浏览数: 268
- PDF下载数: 58
- 施引文献: 0