-
多溴联苯醚(poly brominated diphenyl ethers, PBDEs)是一种广泛应用的添加型溴系阻燃剂,可经产品的生产、使用和处置回收等途径释放到环境中[1],世界范围的水体、土壤、沉积物、大气、动植物甚至人体中均可检出[2 − 4]. PBDEs脂溶性较强,容易在脂肪组织蓄积,并通过食物链放大,具有神经毒性[5]、肝毒性[6]、免疫毒性[7]、遗传毒性和内分泌干扰效应等[8],也是潜在的致癌物[9]. 2009年,斯德哥尔摩公约将含有4—7个溴原子的4种PBDEs列入持久性有机污染物名单. BDE-47是商用PBDEs的主要成分,海洋环境中,BDE-47是生物利用度最高的低溴代PBDEs之一,约占PBDEs总量的70%,在水体和沉积物中浓度高(ND—pg·L−1/ND-ng·g−1),生物毒性比其它高溴代PBDEs强,很容易在贝类和鱼体等海洋生物中累积[10 − 11]. 贻贝对多数污染物有高蓄积性和耐受性,常作为海洋污染的指示生物,以鉴别污染物的时空分布特征和毒性作用[12]. 研究表明,BDE-47可在多种海洋贝类中蓄积转化并引发毒性效应[11,13]. 由BDE-47引发的生态和健康风险受到广泛关注[14 − 15].
2-羟丙基-β-环糊精(2-hydroxypropy-β-cyclodextrin, HPCD)是一种β-环糊精(β-CD)衍生物,具有疏水性空腔和亲水外围表面,被广泛应用于食品保鲜、药物传递和环境污染治理等领域[16]. HPCD可以通过包合、吸附等方式,将污染物包裹在空腔内部,可以促进有机污染物在环境介质中的传递,促进生物降解;减少污染物与生物的直接作用或将生物体中结合态污染物解吸出来,降低蓄积和毒性作用[17]. 近年来,环糊精及其衍生物也被添加到阻燃剂中,以增强其性能同时减少阻燃剂组分向环境中释放,在污染物的减毒和消除方面发挥重要作用,BDE-47作为多种PBDEs代谢物,在实际环境中极有可能与HPCD共存[18 − 22].
基于以上研究背景,本实验以BDE-47污染风险严峻的紫贻贝为研究对象,比较HPCD加入后BDE-47在贻贝各组织中的蓄积和分布变化,并计算BDE-47在贻贝各组织中蓄积和消除的动力学参数,测定氧化胁迫指标和组织损伤情况,结合分子对接模拟,以揭示HPCD对BDE-47生物蓄积、消除和毒性的影响.
2-羟丙基-β-环糊精降低BDE-47在紫贻贝中的蓄积并减缓其毒性作用
2-Hydroxypropy-β-cyclodextrin reduced the accumulation and toxicity of BDE-47 in Mytilus galloprovincialis
-
摘要: 四溴联苯醚(BDE-47)因其高蓄积性和多毒性特点,引发严重的生态和健康风险,是国际上重点关注和管控的新污染物. 研究通过比较BDE-47单独暴露和BDE-47+2-羟丙基-β-环糊精(HPCD)联合暴露处理的紫贻贝消化盲囊、性腺和鳃等组织中BDE-47蓄积和消除动态差异,测定氧化应激指标和组织损伤,结合分子对接模拟,探讨HPCD对BDE-47蓄积、分布和毒性效应的影响. 结果表明,BDE-47在紫贻贝中的蓄积具有组织特异性;HPCD可显著降低BDE-47在紫贻贝各组织中的蓄积浓度,同时加快BDE-47的消除. HPCD降低了BDE-47在贻贝中的残留风险. GST、SOD、CAT活性和GSH、MDA含量变化分析表明,HPCD减轻了BDE-47对紫贻贝消化盲囊和性腺的氧化胁迫. BDE-47+HPCD处理组的综合生物标志物响应值(IBR)低于BDE-47处理组,组织病理损伤也较轻. 分子对接显示HPCD减轻BDE-47对紫贻贝的毒性,可能是基于HPCD对BDE-47的屏蔽作用. 研究结果为HPCD在减少海洋生物污染物积累和消除方面的应用提供数据支持.
-
关键词:
- 四溴联苯醚(BDE-47) /
- 羟丙基-β-环糊精(HPCD) /
- 紫贻贝 /
- 蓄积 /
- 毒性.
Abstract: Tetrabromodiphenyl ether (BDE-47) is a typical emerging pollutants of international concern and control due to its high accumulative and multi-toxic characteristics, which poses serious ecological and health risks. To investigate the effects of 2-hydroxypropy-β-cyclodextrin (HPCD) on the accumulation, distribution and toxicity of BDE-47, the dynamic differences in the accumulation and elimination of BDE-47 in digestive gland, gonad, gill and other tissues of blue mussel Mytilus galloprovincialis exposed to BDE-47 and BDE-47+HPCD, as well as the oxidative stress indicators and tissue damages, were studied. Molecular docking simulation was used to simulate intermolecular interactions. Results showed that the accumulation of BDE-47 in M.galloprovincialis was tissue-specific; HPCD significantly reduced the accumulation, and accelerated the clearance of BDE-47 in mussel tissues. HPCD reduced the risk of BDE-47 residues in mussels. Changes in GST, SOD, and CAT activity, GSH and MDA content indicated that HPCD alleviated the oxidative stress of BDE-47 on digestive gland and gonad. The integrated biomarker response (IBR) index was lower in the BDE-47+HPCD treatment groups than that of BDE-47, and histopathological damage was also less severe. HPCD reduced the toxicity of BDE-47 to M.galloprovincialis, which may be due to the shielding effect of HPCD on BDE-47, based on molecular docking results. Results of this study could provide data to support the application of HPCD in reducing the accumulation and elimination of pollutants from marine organisms. -
图 2 紫贻贝消化盲囊和性腺中谷胱甘肽-S-转移酶活性(GST,A),还原型谷胱甘肽含量(GSH,B),超氧化物歧化酶(SOD,C)和过氧化氢酶活性(CAT,D),丙二醛含量变化(MDA,E),综合生物标志物星图(F-消化盲囊,G-性腺)
Figure 2. Glutathione S-transferase activity (GST, A), glutathione content (GSH, B), superoxide dismutase (SOD, C) and catalase activity (CAT, D), malondialdehyde content change (MDA, E), integrated biomarker star chart (F-digestive gland, G-gonad) in digestive gland and gonad of blue mussel(28 d, n=3, mean ± SD, P=0.05)
表 1 BDE-47处理组和BDE-47+HPCD处理组的紫贻贝组织中BDE-47的蓄积和消除动力学参数
Table 1. The accumulation and elimination kinetic parameters of BDE-47 in the tissues of blue mussels treated with BDE-47 and BDE-47+HPCD
组别
Group组织
TissueKe/d−1 Ka/(mL·g−1·d−1) t1/2/d BCFk/(mL·g−1) BCFo/(mL·g−1) BDE-47 消化盲囊(digestive gland) 0.2447 720.6 2.83 2944.8 5725.5 性腺(gonad) 0.2595 580.1 2.67 2235.5 5032.2 鳃(gill) 0.5322 913.2 1.30 1715.9 3587.8 外套膜(mantle) 0.1932 257.9 3.59 1334.9 2898.5 闭壳肌(adductor muscle) 0.2363 284.0 2.93 1201.9 2365.2 整贝(whole mussel) 0.2152 428.9 3.22 1993.0 3983.4 BDE-47
+HPCD消化盲囊(digestive gland) 0.2875 579.4 2.41 2015.3 4214.8 性腺(gonad) 0.2521 384.0 2.75 1523.2 3693.9 鳃(gill) 0.6622 840.5 1.05 1269.3 2646.8 外套膜(mantle) 0.3718 423.3 1.86 1138.5 2329.7 闭壳肌(adductor muscle) 0.2171 203.4 3.19 936.9 2194.7 整贝(whole mussel) 0.4892 702.2 1.42 1435.4 3092.7 -
[1] ABBASI G, LI L, BREIVIK K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11): 6330-6340. [2] CHUPEAU Z, MERCIER F, ROUXEL E, et al. Pre- and post-natal exposure of children to organophosphate flame retardants: A nationwide survey in France[J]. Environment International, 2022, 168: 107435. doi: 10.1016/j.envint.2022.107435 [3] PEI J, YAO H, WANG H, et al. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution[J]. Marine Pollution Bulletin, 2018, 129(1): 106-113. doi: 10.1016/j.marpolbul.2018.02.017 [4] QI J, WANG X L, FAN L, et al. Levels, distribution, childhood exposure assessment, and influencing factors of polybrominated diphenyl ethers (PBDEs) in household dust from nine cities in China[J]. Science of the Total Environment, 2023, 874: 162612. doi: 10.1016/j.scitotenv.2023.162612 [5] ZHUANG J, PAN Z J, QIN Y, et al. Evaluation of BDE-47-induced neurodevelopmental toxicity in zebrafish embryos[J]. Environmental Science and Pollution Research, 2023, 30(18): 54022-54034. doi: 10.1007/s11356-023-26170-7 [6] CHEN F, FENG L, ZHENG Y L, et al. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment[J]. Environmental Pollution, 2020, 258: 113693. doi: 10.1016/j.envpol.2019.113693 [7] GAO Q, ZHOU Z Y, HE Y N, et al. BDE-47 induces immunotoxicity in RAW264.7 macrophages through the reactive oxygen species-mediated mitochondrial apoptotic pathway[J]. Molecules, 2023, 28(5): 2036. doi: 10.3390/molecules28052036 [8] LEE H J, KIM G B, LEE R F. Genotoxicity and development effects of brominated flame retardant PBDEs and UV-exposed PBDEs on grass shrimp ( Palaemonetes pugio) embryo[J]. Marine Pollution Bulletin, 2012, 64(12): 2892-2895. doi: 10.1016/j.marpolbul.2012.08.010 [9] XIE B M, LIN X Q, WU K S, et al. Adipose tissue levels of polybrominated diphenyl ethers in relation to prognostic biomarkers and progression-free survival time of breast cancer patients in eastern area of Southern China: A hospital-based study[J]. Environmental Research, 2023, 216(Pt 4): 114779. [10] BELTRÁN E M, GONZÁLEZ-DONCEL M, GARCÍA-MAURIÑO J E, et al. Effects of life cycle exposure to dietary 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on medaka fish ( Oryzias latipes)[J]. Aquatic Toxicology, 2022, 245: 106133. doi: 10.1016/j.aquatox.2022.106133 [11] 耿倩倩, 郭萌萌, 李风铃, 等. BDE-47在紫贻贝中的分布、蓄积、消除和毒性效应[J]. 中国环境科学, 2022, 42(3): 1385-1393. GENG Q Q, GUO M M, LI F L, et al. Tissue distribution, accumulation, elimination characteristics and toxicity of 2, 2’, 4, 4’-tetrabromodiphenyl ether in blue mussel[J]. China Environmental Science, 2022, 42(3): 1385-1393 (in Chinese).
[12] PROVENZA F, RAMPIH D, PIGNATTELLI S, et al. Mussel watch program for microplastics in the Mediterranean Sea: Identification of biomarkers of exposure using Mytilus galloprovincialis[J]. Ecological Indicators, 2022, 142: 109212. doi: 10.1016/j.ecolind.2022.109212 [13] ESPINOSA RUIZ C, MORGHESE M, RENDA G, et al. Effects of BDE-47 exposure on immune-related parameters of Mytilus galloprovincialis[J]. Aquatic Toxicology, 2019, 215: 105266. doi: 10.1016/j.aquatox.2019.105266 [14] 董梦洁, 李兴红. 我国典型电子垃圾循环地区人体血清中多溴联苯醚浓度与特征的时间变化趋势[J]. 环境化学, 2020, 39(6): 1504-1512. DONG M J, LI X H. Temporal changes in the profiles and concentrations of polybrominated diphenyl ethers in human serum collected from a typical e-waste recycling area in China[J]. Environmental Chemistry, 2020, 39(6): 1504-1512 (in Chinese).
[15] GENG Q Q, GUO M M, WU H Y, et al. Effects of single and combined exposure to BDE-47 and PFOA on distribution, bioaccumulation, and toxicity in blue mussel ( Mytilus galloprovincialis)[J]. Ecotoxicology and Environmental Safety, 2021, 228: 113014. doi: 10.1016/j.ecoenv.2021.113014 [16] WACŁAWEK S, KRAWCZYK K, SILVESTRI D, et al. Cyclodextrin-based strategies for removal of persistent organic pollutants[J]. Advances in Colloid and Interface Science, 2022, 310: 102807. doi: 10.1016/j.cis.2022.102807 [17] 任佰萍. 环糊精与典型持久性有机污染物的相互作用及对其生物降解的影响[D]. 大连: 大连理工大学, 2020: 56-60. REN B P. Interactions of cyclodextrins with typical persistent organic pollutants and effects of their conjugates on the biodegration of organic pollutants[D]. Dalian: Dalian University of Technology, 2020: 56-60 (in Chinese).
[18] de FÁTIMA ABREU VENCESLAU A, dos SANTOS F E, de FÁTIMA SILVA A, et al. Cyclodextrins as effective tools to reduce the toxicity of atrazine[J]. Energy, Ecology and Environment, 2018, 3(2): 81-86. doi: 10.1007/s40974-017-0073-8 [19] GENG Q Q, XIE J C, WANG X, et al. Preparation and characterization of butachlor/(2-hydroxypropyl)-β-cyclodextrin inclusion complex: Improve soil mobility and herbicidal activity and decrease fish toxicity[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12198-12205. doi: 10.1021/acs.jafc.8b04812 [20] FLISZÁR-NYÚL E, BOCK I, CSEPREGI R, et al. Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos[J]. Environmental Toxicology and Pharmacology, 2022, 95: 103965. doi: 10.1016/j.etap.2022.103965 [21] LUDA M P, ZANETTI M. Cyclodextrins and cyclodextrin derivatives as green char promoters in flame retardants formulations for polymeric materials. A review[J]. Polymers, 2019, 11(4): 664. doi: 10.3390/polym11040664 [22] 王银, 罗姣, 王光辉. 甘氨酸-β-环糊精对西玛津和镉的毒性影响研究[J]. 环境污染与防治, 2014, 36(2): 19-22. WANG Y, LUO J, WANG G H. Study on the effect of glycine- β-cyclodextrin on toxicity of simazine and Cd[J]. Environmental Pollution & Control, 2014, 36(2): 19-22 (in Chinese).
[23] KOMOLAFE O, BOWLER B, DOLFING J, et al. Quantification of polybrominated diphenyl ether (PBDE) congeners in wastewater by gas chromatography with electron capture detector (GC-ECD)[J]. Analytical Methods, 2019, 11(27): 3474-3482. doi: 10.1039/C9AY00266A [24] 迟潇, 陈碧鹃, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202. doi: 10.7524/AJE.1673-5897.20190726001 CHI X, CHEN B J, SUN X M, et al. Toxic effects of BDE-47 and BDE-153 on Cynoglossus semilaevis Gunther based on IBR model[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 192-202 (in Chinese). doi: 10.7524/AJE.1673-5897.20190726001
[25] LIU C C, WANG B Y, ZHOU B, et al. The responses of Oncorhynchus mykiss coping with BDE-47 stress via PXR-mediated detoxification and Nrf2-mediated antioxidation system[J]. Aquatic Toxicology, 2019, 207: 63-71. doi: 10.1016/j.aquatox.2018.11.026 [26] LARSSON J, SMOLARZ K, ŚWIEŻAK J, et al. Multi biomarker analysis of pollution effect on resident populations of blue mussels from the Baltic Sea[J]. Aquatic Toxicology, 2018, 198: 240-256. doi: 10.1016/j.aquatox.2018.02.024 [27] WEI X J, WANG Q, LIU C. Nanopore sensing of γ-cyclodextrin induced host-guest interaction to reverse the binding of perfluorooctanoic acid to human serum albumin[J]. Proteomics, 2022, 22(5/6): e2100058. [28] PERERA N L D, MIKSOVSKA J, O'SHEA K E. Elucidation of specific binding sites and extraction of toxic Gen X from HSA employing cyclodextrin[J]. Journal of Hazardous Materials, 2022, 425: 127765. doi: 10.1016/j.jhazmat.2021.127765 [29] 邹德菲. 环糊精对有机物的模拟生物膜吸收性能的影响[D]. 大连: 大连理工大学, 2014: 32-33. ZOU D F. Effect of cyclodextrins on mimic bio-membrane absorption of organic chemicals[D]. Dalian: Dalian University of Technology, 2014: 32-33 (in Chinese).
[30] LIU Y M, YANG M, ZHENG L, et al. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress[J]. Science of the Total Environment, 2020, 743: 140754. doi: 10.1016/j.scitotenv.2020.140754 [31] VIDAL-LIÑÁN L, BELLAS J, FUMEGA J, et al. Bioaccumulation of BDE-47 and effects on molecular biomarkers acetylcholinesterase, glutathione- S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels[J]. Ecotoxicology, 2015, 24(2): 292-300. doi: 10.1007/s10646-014-1377-5 [32] 蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应[J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505 JIANG A Q, LIU H, WANG W M. Oxidative stress of nano ZnO on Cipangopaludina cahayensis[J]. Environmental Chemistry, 2017, 36(4): 892-897 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
[33] CANLI E G, BAYKOSE A, USLU L H, et al. Changes in energy reserves and responses of some biomarkers in freshwater mussels exposed to metal-oxide nanoparticles[J]. Environmental Toxicology and Pharmacology, 2023, 98: 104077. doi: 10.1016/j.etap.2023.104077 [34] ZHENG Q, FENG M B, DAI Y. Comparative antioxidant responses in liver of Carassius auratus exposed to phthalates: An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2013, 36(3): 741-749. doi: 10.1016/j.etap.2013.07.008 [35] MESSINA C M, ESPINOSA RUIZ C, REGOLI F, et al. BDE-47 exposure modulates cellular responses, oxidative stress and biotransformation related-genes in Mytilus galloprovincialis[J]. Fish & Shellfish Immunology, 2020, 107(Pt B): 537-546. [36] SONG M Q, WANG Y J, CHEN Z H, et al. Human CYP enzyme-activated genotoxicity of 2, 2’, 4, 4’-tetrabromobiphenyl ether in mammalian cells[J]. Chemosphere, 2022, 291: 132784. doi: 10.1016/j.chemosphere.2021.132784