施加生物炭缓解土壤氮流失机理的研究进展

史广宇, 吴贝贝, 胡嘉源, 施维林. 施加生物炭缓解土壤氮流失机理的研究进展[J]. 环境化学. doi: 10.7524/j.issn.0254-6108.2023072502
引用本文: 史广宇, 吴贝贝, 胡嘉源, 施维林. 施加生物炭缓解土壤氮流失机理的研究进展[J]. 环境化学. doi: 10.7524/j.issn.0254-6108.2023072502
SHI Guangyu, WU Beibei, HU Jiayuan, SHI Weilin. Advances in nitrogen loss reduction mechanism study by biochar application[J]. Environmental Chemistry. doi: 10.7524/j.issn.0254-6108.2023072502
Citation: SHI Guangyu, WU Beibei, HU Jiayuan, SHI Weilin. Advances in nitrogen loss reduction mechanism study by biochar application[J]. Environmental Chemistry. doi: 10.7524/j.issn.0254-6108.2023072502

施加生物炭缓解土壤氮流失机理的研究进展

    通讯作者: Email:shigy@usts.edu.cn
  • 基金项目:
    国家自然科学基金青年基金(41807142),苏州市科技局科技计划项目(SNG2020053)和苏州市科技局科技计划项目(SNG2022072)资助.

Advances in nitrogen loss reduction mechanism study by biochar application

    Corresponding author: SHI Guangyu, shigy@usts.edu.cn
  • Fund Project: the the National Natural Science Foundation of China (41807142), Suzhou Technology Office Program (SNG2020053) and the Suzhou Technology Office Program (SNG2022072).
  • 摘要: 施加生物炭不仅可以抑制农田土壤氮素流失,还可以实现农业废弃物资源化利用. 因此,本文分析了现有研究结果,重点剖析生物炭的NH4+-N和NO3-N吸附容量的差异和施加生物炭对土壤理化性质、微生物群落结构和植物氮吸收能力的影响,综述生物炭抑制土壤氮素流失的机理,并对今后深入研究施加生物炭缓解土壤氮素流失的有关方向进行展望. 施加生物炭缓解土壤氮素流失的机理主要为:缓解NH4+-N和NO3-N的流失、抑制N2O的逸散、提高植物吸收氮素的能力. 生物炭不仅拥有较强的NH4+-N吸附能力,还具有提高土壤碳含量、pH值和土壤含水量等能力,从而降低因地表径流和水分入渗导致的NH4+-N和NO3-N流失量. 施加生物炭抑制土壤中N2O的逸散的主要原因是生物炭可以促进土壤中氨氧化古菌、氨氧化细菌、完全氨氧化菌等微生物的富集、提高nxrA、napAB和nrfA等基因的丰度和亚硝酸氧化还原酶活性,以此降低反硝化反应速率. 此外,施加生物炭有助于降低根系生长阻力,促进植物根系生长发育,并提高植物吸收氮素的能力,进一步降低土壤溶液中NO3-N的浓度. 未来关于施加生物炭缓解农田土壤氮流失领域的研究建议从以下几个方向展开:探究生物炭热解方式、理化性质和施加方法等因素对农田土壤氮流失的影响;关注生物炭促进土壤中异化硝酸盐还原成铵反应和完全氨氧化反应对减少N2O逸散量的贡献;重视生物炭材料中金属离子对土壤中铁氨氧化反应、厌氧氨氧化反应等氮循环途径的影响.
  • 加载中
  • 图 1  生物炭NH4+-N和NO3-N吸附容量箱形图

    Figure 1.  Box plot of NH4+-N and NO3-N adsorption capacity of biochar

    图 2  生物炭理化性质与NH4+-N吸附容量皮尔逊相关性分析

    Figure 2.  Pearson correlation analysis of physicochemical properties of biochar and NH4+-N adsorption capacity of biochar

    图 3  土壤中NH4+-N、NO3-N、NO2-N、N2O和NH3参与的主要反应过程

    Figure 3.  Main reaction processes involved in NH4+-N, NO3-N, NO2-N, N2O and NH3 in soil

    图 4  施加生物炭对植物株高、生物量、作物产量的影响

    Figure 4.  Effects of biochar returning on plant height, biomass and crop yield

    表 1  施加生物炭对土壤理化性质的影响

    Table 1.  Effects of biochar returning on soil physicochemical properties

    材料
    Materials
    pH 含水量
    Water content
    容重
    Bulk density
    SOC 总氮
    Total nitrogen
    碱解氮
    Akaline nitrogen decomposition
    参考文献
    References
    牛粪生物炭
    Cow dung biochar
    42.5% 148.6% 72.0% [54]
    棉花秸秆生物炭
    Cotton straw biochar
    54.2% —7.6% 6.4% 2.5% [55]
    玉米秸秆生物炭
    Corn stover biochar
    15.0% 45.9% 19.0% [56]
    5.3% 145.0% 12.2% [57]
    6.9% 17.4% —9.87% 6.73% [58]
    1.2% 13.9% —14.3% 54.1% 26.2% 23.5% [59]
    小麦秸秆生物炭
    Wheat straw biochar
    7.9% 344.8% 155.1% [60]
    5.3% 36.7% 50.0% [61]
    水稻秸秆生物炭
    Rice straw biochar
    5.2% 29.3% 4.5% [62]
    苹果枝生物炭
    Apple branch biochar
    7.8% 24.6% −12.9% [63]
    11.2% 207.4% 67.5% [64]
    稻壳生物炭
    Rice husk biochar
    5.4% 47.9% −30.4% 29.8% [65]
    秸秆生物炭
    Straw biochar
    5.2% −8.0% −5.6% 112.8% [65]
    42.2% −19.6% 179.6% 30.5% [66]
    2.4% 44.7% −32.5% 297.2% [67]
      表中所有数值均为与CK组对比换算后的各指标变化的百分比,“负数”表示该指标的数值因生物炭添加而降低.
      All values in the table are converted percentage changes in each indicator compared to the CK group. “—” indicates that the value of this indicator decreases due to the biochar application.
    材料
    Materials
    pH 含水量
    Water content
    容重
    Bulk density
    SOC 总氮
    Total nitrogen
    碱解氮
    Akaline nitrogen decomposition
    参考文献
    References
    牛粪生物炭
    Cow dung biochar
    42.5% 148.6% 72.0% [54]
    棉花秸秆生物炭
    Cotton straw biochar
    54.2% —7.6% 6.4% 2.5% [55]
    玉米秸秆生物炭
    Corn stover biochar
    15.0% 45.9% 19.0% [56]
    5.3% 145.0% 12.2% [57]
    6.9% 17.4% —9.87% 6.73% [58]
    1.2% 13.9% —14.3% 54.1% 26.2% 23.5% [59]
    小麦秸秆生物炭
    Wheat straw biochar
    7.9% 344.8% 155.1% [60]
    5.3% 36.7% 50.0% [61]
    水稻秸秆生物炭
    Rice straw biochar
    5.2% 29.3% 4.5% [62]
    苹果枝生物炭
    Apple branch biochar
    7.8% 24.6% −12.9% [63]
    11.2% 207.4% 67.5% [64]
    稻壳生物炭
    Rice husk biochar
    5.4% 47.9% −30.4% 29.8% [65]
    秸秆生物炭
    Straw biochar
    5.2% −8.0% −5.6% 112.8% [65]
    42.2% −19.6% 179.6% 30.5% [66]
    2.4% 44.7% −32.5% 297.2% [67]
      表中所有数值均为与CK组对比换算后的各指标变化的百分比,“负数”表示该指标的数值因生物炭添加而降低.
      All values in the table are converted percentage changes in each indicator compared to the CK group. “—” indicates that the value of this indicator decreases due to the biochar application.
    下载: 导出CSV
  • [1] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743
    [2] CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696): 363-366. doi: 10.1038/nature25785
    [3] COSKUN D, BRITTO D T, SHI W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants, 2017, 3: 17074. doi: 10.1038/nplants.2017.74
    [4] XIN J, LIU Y, CHEN F, et al. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system[J]. Water Research, 2019, 165: 114977. doi: 10.1016/j.watres.2019.114977
    [5] 曹瑞霞, 刘京, 邓开开, 等. 三峡库区典型紫色土小流域径流及氮磷流失特征[J]. 环境科学, 2019, 40(12): 5330-5339.

    CAO R X, LIU J, DENG K K, et al. Characteristics of nitrogen and phosphorus losses and runoff in a typical purple soil watershed in the Three Gorges Reservoir area[J]. Environmental Science, 2019, 40(12): 5330-5339 (in Chinese).

    [6] 于佳正. 丛枝菌根真菌(Arbuscular mycorrhizal fungi)在不同氮水平稻田中的侵染及其对氮流失影响的试验研究[D]. 南京: 东南大学, 2018: 47-48.

    YU J Z. Experimental study on the infection of Arbuscular mycorrhizal fungi in rice fields with different nitrogen levels and its influence on nitrogen loss[D]. Nanjing: Southeast University, 2018: 47-48 (in Chinese) .

    [7] SONG X W, GAO Y, GREEN S M, et al. Nitrogen loss from Karst area in China in recent 50years: Anin-situ simulated rainfall experiment’s assessment[J]. Ecology and Evolution, 2017, 7(23): 10131-10142. doi: 10.1002/ece3.3502
    [8] 陈裴裴, 吴家森, 郑小龙, 等. 不同施肥对雷竹林渗漏水中可溶性有机碳、氮流失的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1303-1310.

    CHEN P P, WU J S, ZHENG X L, et al. Effects of different fertilization treatments on loss of dissolved organic carbon and nitrogen in seepage water under phyllostachy pracox stand[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1303-1310 (in Chinese).

    [9] JIA Y M, HU Z Y, BA Y X, et al. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency[J]. Chemical and Biological Technologies in Agriculture, 2021, 8: 1-11. doi: 10.1186/s40538-020-00199-z
    [10] 张雷, 张峥, 柴宁, 等. 稻田种植对地表径流污染状况调查研究[J]. 中国环境监测, 2022, 38(2): 123-128.

    ZHANG L, ZHANG Z, CHAI N, et al. Investigation on surface runoff pollution caused by rice planting[J]. Environmental Monitoring in China, 2022, 38(2): 123-128 (in Chinese).

    [11] 成杰民, 宋涛, 李彦. 基于GIS的南四湖沿岸农业面源氮磷负荷估算研究[J]. 水土保持研究, 2012, 19(3): 284-288.

    CHENG J M, SONG T, LI Y. Estimation of nitrogen and phosphorus loading of agricultural non-point sources along nansi lake based on GIS[J]. Research of Soil and Water Conservation, 2012, 19(3): 284-288 (in Chinese).

    [12] 喻朝庆. 水-氮耦合机制下的中国粮食与环境安全[J]. 中国科学:地球科学, 2019, 49(12): 2018-2036. doi: 10.1360/SSTe-2019-0041

    YU (C /Z)Q. Food and environmental security in China under water-nitrogen coupling mechanism[J]. Scientia Sinica (Terrae), 2019, 49(12): 2018-2036 (in Chinese). doi: 10.1360/SSTe-2019-0041

    [13] 孙铖, 周华真, 陈磊, 等. 农田化肥氮磷地表径流污染风险评估[J]. 农业环境科学学报, 2017, 36(7): 1266-1273.

    SUN C, ZHOU H Z, CHEN L, et al. The pollution risk assessment of nitrogen and phosphorus loss in surface runoff from farmland fertilizer[J]. Journal of Agro-Environment Science, 2017, 36(7): 1266-1273 (in Chinese).

    [14] 黄洁钰, 南哲, 商学棽, 等. 东北三省种植业氮流失风险评价[J]. 生态与农村环境学报, 2022, 38(5): 660-669.

    HUANG J Y, NAN Z, SHANG X C, et al. Risk assessment on nitrogen loss from crop farming in the three northeastern provinces of China[J]. Journal of Ecology and Rural Environment, 2022, 38(5): 660-669 (in Chinese).

    [15] 杜康. 栽培措施对秸秆还田条件下水稻幼苗生长的影响[D]. 南京: 南京农业大学, 2015: 2-4.

    DU K. Effect of cultivation measures on rice seedling growth under the condition of straw returning to field[D]. Nanjing: Nanjing Agricultural University, 2015: 2-4. (in Chinese)

    [16] GU Z, QI Z M, BURGHATE R, et al. Irrigation scheduling approaches and applications: A review[J]. Journal of Irrigation and Drainage Engineering, 2020, 146(6): 1464.
    [17] ZHOU Y Z, ZHANG Y Y, TIAN D, et al. The influence of straw returning on N2O emissions from a maize-wheat field in the North China Plain[J]. Science of the Total Environment, 2017, 584/585: 935-941. doi: 10.1016/j.scitotenv.2017.01.141
    [18] XU S S, HOU P F, XUE L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10. doi: 10.1016/j.atmosenv.2017.09.009
    [19] 刘丽君, 朱启林, 何秋香, 等. 添加秸秆和生物炭土壤N2O排放对温度的响应[J]. 生态学杂志, 2022, 41(8): 1501-1508.

    LIU L J, ZHU Q L, HE Q X, et al. Responses of soil N2O emission to temperature under straw and biochar addition[J]. Chinese Journal of Ecology, 2022, 41(8): 1501-1508 (in Chinese).

    [20] 杨海洋, 袁远, 王江彦, 等. 降雨强度和秸秆还田对淮河流域褐土非点源氮输出影响研究[J]. 灌溉排水学报, 2022, 41(3): 75-82.

    YANG H Y, YUAN Y, WANG J Y, et al. The efficacy of amending soil with straw to reduce nitrogen loss from watersheds under different rainfalls in Huaihe River Basin[J]. Journal of Irrigation and Drainage, 2022, 41(3): 75-82 (in Chinese).

    [21] LIU Y, LI J A, JIAO X Y, et al. Effects of straw returning combine with biochar on water quality under flooded condition[J]. Water, 2020, 12(6): 1633. doi: 10.3390/w12061633
    [22] YADAV V, KARAK T, SINGH S, et al. Benefits of biochar over other organic amendments: Responses for plant productivity ( Pelargonium graveolens L. ) and nitrogen and phosphorus losses[J]. Industrial Crops and Products, 2019, 131: 96-105. doi: 10.1016/j.indcrop.2019.01.045
    [23] WEI X C, LIU D F, LI W J, et al. Biochar addition for accelerating bioleaching of heavy metals from swine manure and reserving the nutrients[J]. Science of the Total Environment, 2018, 631/632: 1553-1559. doi: 10.1016/j.scitotenv.2018.03.140
    [24] PAN S Y, DONG C D, SU J F, et al. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems[J]. Sustainability, 2021, 13(10): 5612. doi: 10.3390/su13105612
    [25] LI J S, SHAO X Q, HUANG D, et al. Short-term biochar effect on soil physicochemical and microbiological properties of a degraded alpine grassland[J]. Pedosphere, 2022, 32(3): 426-437. doi: 10.1016/S1002-0160(21)60084-X
    [26] RIZHIYA E Y, MUKHINA I M, BALASHOV E V, et al. Effect of biochar on N2O emission, crop yield and properties of Stagnic Luvisol in a field experiment[J]. Zemdirbyste-Agriculture, 2019, 106(4): 297-306. doi: 10.13080/z-a.2019.106.038
    [27] DING Y, LIU Y G, LIU S B, et al. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development, 2016, 36(2): 36. doi: 10.1007/s13593-016-0372-z
    [28] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998-6011.

    WANG H Y, GAI X P, ZHAI L M, et al. Effect of biochar on soil nitrogen cycling: A review[J]. Acta Ecologica Sinica, 2016, 36(19): 5998-6011 (in Chinese).

    [29] THOMPSON R B, MARTÍNEZ-GAITAN C, GALLARDO M, et al. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey[J]. Agricultural Water Management, 2007, 89(3): 261-274. doi: 10.1016/j.agwat.2007.01.013
    [30] 胡锦昇, 樊军, 付威, 等. 保护性耕作措施对旱地春玉米土壤水分和硝态氮淋溶累积的影响[J]. 应用生态学报, 2019, 30(4): 1188-1198.

    HU J S, FAN J, FU W, et al. Effects of conservation tillage measures on soil water and NO3-N leaching in dryland maize cropland[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1188-1198 (in Chinese).

    [31] 陈灿, 潘亚男, 王欣, 等. 凤眼莲生物炭对稻田土壤肥力的影响[J]. 环境化学, 2017, 36(4): 907-914. doi: 10.7524/j.issn.0254-6108.2017.04.2016071201

    CHEN C, PAN Y N, WANG X, et al. Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. Environmental Chemistry, 2017, 36(4): 907-914 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016071201

    [32] 刘伯顺, 黄立华, 黄金鑫, 等. 我国农田氨挥发研究进展与减排对策[J]. 中国生态农业学报(中英文), 2022, 30(6): 875-888. doi: 10.12357/cjea.20210820

    LIU B S, HUANG L H, HUANG J X, et al. Research progress and emission reduction countermeasures of ammonia volatilization in farmland in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 875-888 (in Chinese). doi: 10.12357/cjea.20210820

    [33] 张星, 张晴雯, 刘杏认, 等. 施用生物炭对农田土壤氮素转化关键过程的影响[J]. 中国农业气象, 2015, 36(6): 709-716. doi: 10.3969/j.issn.1000-6362.2015.06.007

    ZHANG X, ZHANG Q W, LIU X R, et al. Effects of biochar on the key soil nitrogen transformation processes in agricultural soil[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 709-716 (in Chinese). doi: 10.3969/j.issn.1000-6362.2015.06.007

    [34] 刘玮晶, 刘烨, 高晓荔, 等. 外源生物质炭对土壤中铵态氮素滞留效应的影响[J]. 农业环境科学学报, 2012, 31(5): 962-968.

    LIU W J, LIU Y, GAO X L, et al. Effects of biomass charcoals on retention of ammonium nitrogen in soils[J]. Journal of Agro-Environment Science, 2012, 31(5): 962-968 (in Chinese).

    [35] MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127. doi: 10.1016/j.chemosphere.2015.04.086
    [36] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149-162.

    LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162 (in Chinese).

    [37] MANDAL S, DONNER E, VASILEIADIS S, et al. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil[J]. Science of the Total Environment, 2018, 627: 942-950. doi: 10.1016/j.scitotenv.2018.01.312
    [38] CHU L, DARSHIKA HENNAYAKE H M K, SUN H J. Biochar effectively reduces ammonia volatilization from nitrogen-applied soils in tea and bamboo plantations[J]. Phyton, 2019, 88(3): 261-267. doi: 10.32604/phyton.2019.07791
    [39] 白金泽, 刘镇远, 宋佳杰, 等. 秸秆还田配施生物炭对关中平原夏玉米产量和土壤 N2O排放的影响[J]. 环境科学, 2022, 43(8): 4379-4386.

    BAI J Z, LIU Z Y, SONG J J, et al. Effects of straw returning with biochar application on summer maize yield and soil N2O emission in Guanzhong Plain[J]. Environmental Science, 2022, 43(8): 4379-4386 (in Chinese).

    [40] YADAV V, JAIN S, MISHRA P, et al. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar[J]. Applied Soil Ecology, 2019, 138: 144-155. doi: 10.1016/j.apsoil.2019.01.012
    [41] 陈梅, 王芳, 张德俐, 等. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 2019, 40(12): 5421-5429.

    CHEN M, WANG F, ZHANG D L, et al. Effect of biochar structure on adsorption characteristics of ammonia nitrogen[J]. Environmental Science, 2019, 40(12): 5421-5429 (in Chinese).

    [42] ESFANDBOD M, PHILLIPS I R, MILLER B, et al. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand[J]. Ecological Engineering, 2017, 98: 157-165. doi: 10.1016/j.ecoleng.2016.10.077
    [43] KIZITO S, WU S B, KIPKEMOI KIRUI W, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry[J]. Science of the Total Environment, 2015, 505: 102-112. doi: 10.1016/j.scitotenv.2014.09.096
    [44] NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40(8): 846-853. doi: 10.1016/j.orggeochem.2009.05.004
    [45] HOLLISTER C C, BISOGNI J J, LEHMANN J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover ( Zea mays L. ) and oak wood ( Quercus spp. )[J]. Journal of Environmental Quality, 2013, 42(1): 137-144. doi: 10.2134/jeq2012.0033
    [46] 王荣荣, 赖欣, 李洁, 等. 花生壳生物炭对硝态氮的吸附机制研究[J]. 农业环境科学学报, 2016, 35(9): 1727-1734.

    WANG R R, LAI X, LI J, et al. Adsorption of nitrate nitrogen by peanut shell biochar[J]. Journal of Agro-Environment Science, 2016, 35(9): 1727-1734 (in Chinese).

    [47] 宋新山, 宋锦, 曹新, 等. 改性稻秆阴离子吸附剂的制备及对硝酸根吸附研究[J]. 安全与环境学报, 2019, 19(2): 658-665.

    SONG X S, SONG J, CAO X, et al. Preparation for modified rice straw anionic adsorbent and its adsorption on nitrate[J]. Journal of Safety and Environment, 2019, 19(2): 658-665 (in Chinese).

    [48] 李三姗, 王楚楚, 何晓云, 等. 改性水生植物生物炭对低浓度硝态氮的吸附特性[J]. 生态与农村环境学报, 2018, 34(4): 356-362. doi: 10.11934/j.issn.1673-4831.2018.04.009

    LI S S, WANG C C, HE X Y, et al. Adsorption characteristics of low concentration nitrate-nitrogen onto modified macrophytes biochar[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 356-362 (in Chinese). doi: 10.11934/j.issn.1673-4831.2018.04.009

    [49] 周咏春, 郭思伯, 李丹阳, 等. 新鲜和老化生物炭对土壤氮淋失及油菜氮吸收的影响[J]. 环境科学研究, 2023, 36(3): 581-589.

    ZHOU Y C, GUO S B, LI D Y, et al. Effects of fresh and aged biochar on soil nitrogen leaching and nitrogen uptake of rapeseed[J]. Research of Environmental Sciences, 2023, 36(3): 581-589 (in Chinese).

    [50] 王朝旭, 陈绍荣, 张峰, 等. 玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响[J]. 农业环境科学学报, 2018, 37(10): 2350-2358.

    WANG C X, CHEN S R, ZHANG F, et al. Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil[J]. Journal of Agro-Environment Science, 2018, 37(10): 2350-2358 (in Chinese). able soil[J]. Journal of Agro-Environment Science, 2018, 37(10): 2350-2358(in Chinese).

    [51] AHMAD Z, MOSA A, ZHAN L, et al. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review[J]. Chemosphere, 2021, 278: 130378. doi: 10.1016/j.chemosphere.2021.130378
    [52] SINGH H, NORTHUP B K, RICE C W, et al. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis[J]. Biochar, 2022, 4(1): 8. doi: 10.1007/s42773-022-00138-1
    [53] ZHENG H, WANG Z Y, DENG X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil[J]. Geoderma, 2013, 206: 32-39. doi: 10.1016/j.geoderma.2013.04.018
    [54] 耿娜, 康锡瑞, 颜晓晓, 等. 酸化棕壤施用生物炭对油菜生长及土壤性状的影响[J]. 土壤通报, 2022, 53(3): 648-658.

    GENG N, KANG X R, YAN X X, et al. Effects of biochar improvement on rape growth and soil properties in acidified brown earth[J]. Chinese Journal of Soil Science, 2022, 53(3): 648-658 (in Chinese).

    [55] 杜思垚, 郭晓雯, 王芳霞, 等. 施用生物炭对咸水滴灌棉田土壤理化性质及酶活性的影响[J]. 西南农业学报, 2022, 35(3): 571-580.

    DU S Y, GUO X W, WANG F X, et al. Effects of biochar application on soil physicochemical properties and enzyme activities in saline drip irrigation cotton field[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 571-580 (in Chinese).

    [56] 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661.

    YUAN F, LI K Y, YANG H, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661 (in Chinese).

    [57] 郭丽欣, 王越, 杜雨婷, 等. 生物炭与秸秆配施对设施土壤有机碳矿化及理化性质的影响[J]. 北京农学院学报, 2022, 37(1): 43-50.

    GUO L X, WANG Y, DU Y T, et al. Effects of proportioning fertilization combined between biochar and straw on soil organic carbon mineralization and physicochemical properties of greenhouse soil[J]. Journal of Beijing University of Agriculture, 2022, 37(1): 43-50 (in Chinese).

    [58] 韩晓日, 葛银凤, 李娜, 等. 连续施用生物炭对土壤理化性质及氮肥利用率的影响[J]. 沈阳农业大学学报, 2017, 48(4): 392-398.

    HAN X R, GE Y F, LI N, et al. Effects of continuous application of biochar on soil physic-chemical properties and nitrogen use efficiency[J]. Journal of Shenyang Agricultural University, 2017, 48(4): 392-398 (in Chinese).

    [59] 郑瑞伦, 王宁宁, 孙国新, 等. 生物炭对京郊沙化地土壤性质和苜蓿生长、养分吸收的影响[J]. 农业环境科学学报, 2015, 34(5): 904-912.

    ZHENG R L, WANG N N, SUN G X, et al. Effects of biochar on soil properties and alfalfa growth and nutrient uptake in desertified land in Beijing suburb[J]. Journal of Agro-Environment Science, 2015, 34(5): 904-912 (in Chinese).

    [60] 涂坤, 胡斐南, 许晨阳, 等. 小麦秸秆及其生物炭添加对黄绵土表面电化学性质的影响[J]. 水土保持学报, 2022, 36(1): 360-367.

    TU K, HU F N, XU C Y, et al. Effect of wheat straw and its biochar addition on surface electrochemical characteristics of loessal soil[J]. Journal of Soil and Water Conservation, 2022, 36(1): 360-367 (in Chinese).

    [61] 纪立东, 司海丽, 李磊, 等. 生物炭输入对砾石土水肥保蓄及酿酒葡萄产量、品质的影响[J]. 中国土壤与肥料, 2021(2): 78-86.

    JI L D, SI H L, LI L, et al. Effects of biochar input on the yield and quality of wine grape and the preservation of water and fertilizer on gravel soil[J]. Soil and Fertilizer Sciences in China, 2021(2): 78-86 (in Chinese).

    [62] 汪勇, 吕茹洁, 黎星, 等. 生物炭对双季稻生长与土壤理化性质的影响及其后效[J]. 中国土壤与肥料, 2021(4): 96-103. doi: 10.11838/sfsc.1673-6257.20258

    WANG Y, LÜ R J, LI X, et al. Effects of biochar on double-season rice growth and soil physical and chemical properties and its aftereffects[J]. Soil and Fertilizer Sciences in China, 2021(4): 96-103 (in Chinese). doi: 10.11838/sfsc.1673-6257.20258

    [63] 王璐, 朱占玲, 刘照霞, 等. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响[J]. 水土保持学报, 2021, 35(5): 362-368.

    WANG L, ZHU Z L, LIU Z X, et al. Effects of mixtures of different organic materials on apple seedling growth, nitrogen utilization and soil properties[J]. Journal of Soil and Water Conservation, 2021, 35(5): 362-368 (in Chinese).

    [64] 刘帅, 赵西宁, 李钊, 等. 不同改良剂对旱地苹果园壤土团聚体和水分的影响[J]. 水土保持学报, 2021, 35(2): 193-199.

    LIU S, ZHAO X N, LI Z, et al. Effects of different amendments on aggregate and water content of loam soil in dryland apple orchard[J]. Journal of Soil and Water Conservation, 2021, 35(2): 193-199 (in Chinese).

    [65] 孙宁婷, 王小燕, 周豪, 等. 生物质炭种类与混施深度对紫色土水分运移和氮磷流失的影响[J]. 土壤学报, 2022, 59(3): 722-732.

    SUN N T, WANG X Y, ZHOU H, et al. Effects of kind and incorporation depth of biochars on water movement and nitrogen and phosphorus loss in purple soil[J]. Acta Pedologica Sinica, 2022, 59(3): 722-732 (in Chinese).

    [66] 刘宇娟, 谢迎新, 董成, 等. 秸秆生物炭对潮土区小麦产量及土壤理化性质的影响[J]. 华北农学报, 2018, 33(3): 232-238.

    LIU Y J, XIE Y X, DONG C, et al. Effects of straw biochar application on grain yield of wheat and physicochemical properties in fluvio-aquatic soil[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 232-238 (in Chinese).

    [67] 房彬, 李心清, 赵斌, 等. 生物炭对旱作农田土壤理化性质及作物产量的影响[J]. 生态环境学报, 2014, 23(8): 1292-1297.

    FANG B, LI X Q, ZHAO B, et al. Influence of biochar on soil physical and chemical properties and crop yields in rainfed field[J]. Ecology and Environmental Sciences, 2014, 23(8): 1292-1297 (in Chinese).

    [68] ZHANG Y P, ZHAO H, HU W, et al. Understanding how reed-biochar application mitigates nitrogen losses in paddy soil: Insight into microbially-driven nitrogen dynamics[J]. Chemosphere, 2022, 295: 133904. doi: 10.1016/j.chemosphere.2022.133904
    [69] GAO S, DeLUCA T H, CLEVELAND C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis[J]. Science of the Total Environment, 2019, 654: 463-472. doi: 10.1016/j.scitotenv.2018.11.124
    [70] SINGH G, MAVI M S. Impact of addition of different rates of rice-residue biochar on C and N dynamics in texturally diverse soils[J]. Archives of Agronomy and Soil Science, 2018, 64(10): 1419-1431. doi: 10.1080/03650340.2018.1439161
    [71] XIE Y X, DONG C, CHEN Z Y, et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland[J]. Environmental Research, 2021, 194: 110671. doi: 10.1016/j.envres.2020.110671
    [72] NOVAK J M, BUSSCHER W J, WATTS D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a typic kandiudult[J]. Geoderma, 2010, 154(3/4): 281-288.
    [73] ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study[J]. Applied Soil Ecology, 2011, 50: 45-51. doi: 10.1016/j.apsoil.2011.07.012
    [74] PHILLIPS C L, MEYER K M, GARCIA-JARAMILLO M, et al. Towards predicting biochar impacts on plant-available soil nitrogen content[J]. Biochar, 2022, 4(1): 9. doi: 10.1007/s42773-022-00137-2
    [75] MANIRAKIZA E, ZIADI N, ST LUCE M, et al. Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids[J]. Applied Soil Ecology, 2019, 142: 90-98. doi: 10.1016/j.apsoil.2019.04.025
    [76] TAMMEORG P, SIMOJOKI A, MÄKELÄ P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems & Environment, 2014, 191: 108-116.
    [77] 赵光昕, 张晴雯, 刘杏认, 等. 农田土壤硝化反硝化作用及其对生物炭添加响应的研究进展[J]. 中国农业气象, 2018, 39(7): 442-452.

    ZHAO G X, ZHANG Q W, LIU X R, et al. Nitrification and denitrification and its response to biochar addition in agricultural soil: A review[J]. Chinese Journal of Agrometeorology, 2018, 39(7): 442-452 (in Chinese).

    [78] WANG W G, WANG T, LIU Q H, et al. Biochar-mediated DNRA pathway of anammox bacteria under varying COD/N ratios[J]. Water Research, 2022, 212: 118100. doi: 10.1016/j.watres.2022.118100
    [79] 曹明, 潘凤娥, 伍延正, 等. 施用生物炭对分次施氮砖红壤N2O排放的影响[J]. 云南农业大学学报(自然科学), 2021, 36(2): 338-344.

    CAO M, PAN F E, WU Y Z, et al. Effect of biochar amendment on N2O emission from latosol soil[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 338-344 (in Chinese).

    [80] BALL P N, MacKENZIE M D, DeLUCA T H, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils[J]. Journal of Environmental Quality, 2010, 39(4): 1243-1253. doi: 10.2134/jeq2009.0082
    [81] 张星, 刘杏认, 林国林, 等. 生物炭和秸秆对华北农田表层土壤矿质氮和pH值的影响[J]. 中国农业气象, 2016, 37(2): 131-142.

    ZHANG X, LIU X R, LIN G L, et al. Effects of biochar and straw return on mineral nitrogen and pH of the surface soil in farmland of the North China plain[J]. Chinese Journal of Agrometeorology, 2016, 37(2): 131-142 (in Chinese).

    [82] MØRKVED P T, DÖRSCH P, BAKKEN L R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J]. Soil Biology and Biochemistry, 2007, 39(8): 2048-2057. doi: 10.1016/j.soilbio.2007.03.006
    [83] 张勇, 陈效民, 林洁, 等. 太湖地区典型农田小麦生长季土壤氮、磷的动态变化研究[J]. 土壤通报, 2013, 44(2): 380-384.

    ZHANG Y, CHEN X M, LIN J, et al. Dynamic changes of nitrogen and phosphorus in typical farmland soil from Tai Lake region during wheat growth[J]. Chinese Journal of Soil Science, 2013, 44(2): 380-384 (in Chinese).

    [84] 张皓钰, 刘竞, 易军, 等. 生物质炭短期添加对不同类型土壤水力性质的影响[J]. 土壤, 2022, 54(2): 396-405.

    ZHANG H Y, LIU J, YI J, et al. Effects of short-termed biochar application on hydraulic properties of different types of soils[J]. Soils, 2022, 54(2): 396-405 (in Chinese).

    [85] 崔思远, 尹小刚, 陈阜, 等. 耕作措施和秸秆还田对双季稻田土壤氮渗漏的影响[J]. 农业工程学报, 2011, 27(10): 174-179.

    CUI S Y, YIN X G, CHEN F, et al. Effects of tillage and straw returning on nitrogen leakage in double rice cropping field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 174-179 (in Chinese).

    [86] 张雅馥, 王金满, 王敬朋, 等. 生物炭添加对矿区压实土壤水力特性的影响[J]. 农业工程学报, 2021, 37(22): 58-65.

    ZHANG Y F, WANG J M, WANG J P, et al. Effects of biochar addition on the hydraulic properties of compacted soils in mining areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 58-65 (in Chinese).

    [87] 王燕, 庞卓, 贾月, 等. 生物炭对北京郊区砂土持水力和氮淋溶特性影响的土柱模拟研究[J]. 农业环境科学学报, 2017, 36(9): 1820-1828.

    WANG Y, PANG Z, JIA Y, et al. Effects of biochar on water holding capacity and nitrogen leaching of sandy soil column from a Beijing suburb[J]. Journal of Agro-Environment Science, 2017, 36(9): 1820-1828 (in Chinese).

    [88] 杨涵博, 罗艳丽, 赵迪, 等. 养殖肥液不同灌溉强度下硝化-脲酶抑制剂-生物炭联合阻控氮淋溶的研究[J]. 农业环境科学学报, 2020, 39(10): 2363-2370.

    YANG H B, LUO Y L, ZHAO D, et al. Nitrification-urease inhibitor-biochar-controlled nitrogen leaching with different biogas slurry irrigation intensities[J]. Journal of Agro-Environment Science, 2020, 39(10): 2363-2370 (in Chinese).

    [89] 朱启林, 刘丽君, 何秋香, 等. 不同水分条件下海南红壤N2O排放对不同碳源添加的响应[J]. 农业环境科学学报, 2022, 41(4): 898-908.

    ZHU Q L, LIU L J, HE Q X, et al. Response of N2O emissions from Hainan red soil to different carbon sources under different moisture conditions[J]. Journal of Agro-Environment Science, 2022, 41(4): 898-908 (in Chinese).

    [90] 许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320.

    XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320 (in Chinese).

    [91] 高尚志, 刘日月, 窦森, 等. 不同施量生物炭对土壤团聚体及其有机碳含量的影响[J]. 吉林农业大学学报, 2022, 44(4): 421-430.

    GAO S Z, LIU R Y, DOU S, et al. Effects of different application rates of biochar on soil aggregates and their organic carbon content[J]. Journal of Jilin Agricultural University, 2022, 44(4): 421-430 (in Chinese).

    [92] 胡宁, 马志敏, 蓝家程, 等. 石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J]. 环境科学, 2015, 36(9): 3411-3421.

    HU N, MA Z M, LAN J C, et al. Nitrogen fraction distributions and impacts on soil nitrogen mineralization in different vegetation restorations of Karst rocky desertification[J]. Environmental Science, 2015, 36(9): 3411-3421 (in Chinese).

    [93] CAYUELA M L, van ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5-16.
    [94] 郑洁, 程梦华, 栾璐, 等. 秸秆还田对玉米根际氨氧化微生物群落及红壤硝化潜势的影响[J]. 生态学报, 2022, 42(12): 5022-5033.

    ZHENG J, CHENG M H, LUAN L, et al. Effects of straw returning on the ammonia-oxidizers and nitrification in the rhizosphere of maize in a red soil[J]. Acta Ecologica Sinica, 2022, 42(12): 5022-5033 (in Chinese).

    [95] 岳鹏鹏, 付灿, 江晓雨, 等. 生物炭对岩溶区黄龙病脐橙园土壤N2O排放的影响[J]. 地球学报, 2022, 43(4): 502-508.

    YUE P P, FU C, JIANG X Y, et al. Effects of biochar on N2O emissions from soil of huanglongbing navel orange orchard in Karst area[J]. Acta Geoscientica Sinica, 2022, 43(4): 502-508 (in Chinese).

    [96] VENTEREA R T, CLOUGH T J, COULTER J A, et al. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production[J]. Scientific Reports, 2015, 5: 12153. doi: 10.1038/srep12153
    [97] MUNERA-ECHEVERRI J L, MARTINSEN V, DÖRSCH P, et al. Pigeon pea biochar addition in tropical Arenosol under maize increases gross nitrification rate without an effect on nitrous oxide emission[J]. Plant and Soil, 2022, 474(1/2): 195-212.
    [98] BREUILLIN-SESSOMS F, VENTEREA R T, SADOWSKY M J, et al. Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils[J]. Soil Biology and Biochemistry, 2017, 111: 143-153. doi: 10.1016/j.soilbio.2017.04.007
    [99] SHU D T, HE Y L, YUE H, et al. Effects of Fe(ii) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis[J]. RSC Advances, 2016, 6(72): 68005-68016. doi: 10.1039/C6RA09209H
    [100] CHEN Y, JIA F X, LIU Y J, et al. The effects of Fe(III) and Fe(II) on anammox process and the Fe-N metabolism[J]. Chemosphere, 2021, 285: 131322. doi: 10.1016/j.chemosphere.2021.131322
    [101] ZHU G B, WANG X M, WANG S Y, et al. Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox)[J]. Science of the Total Environment, 2022, 829: 154590. doi: 10.1016/j.scitotenv.2022.154590
    [102] HU H W, HE J Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12): 2709-2717. doi: 10.1007/s11368-017-1851-9
    [103] SUN P, ZHAO Z T, FAN P S, et al. Ammonia- and nitrite-oxidizing bacteria are dominant in nitrification of maize rhizosphere soil following combined application of biochar and chemical fertilizer[J]. Frontiers in Microbiology, 2021, 12: 715070. doi: 10.3389/fmicb.2021.715070
    [104] CAYUELA M L, JEFFERY S, van ZWIETEN L. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J]. Agriculture, Ecosystems & Environment, 2015, 202: 135-138.
    [105] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals[J]. Environmental Science & Technology Letters, 2014, 1(08): 339-344.
    [106] CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3: 1732. doi: 10.1038/srep01732
    [107] AAMER M, BILAL CHATTHA M, MAHMOOD A, et al. Rice residue-based biochar mitigates N2O emission from acid red soil[J]. Agronomy, 2021, 11(12): 2462. doi: 10.3390/agronomy11122462
    [108] JI C, LI S Q, GENG Y J, et al. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations[J]. Geoderma, 2020, 365: 114223. doi: 10.1016/j.geoderma.2020.114223
    [109] DUAN P P, ZHANG Q Q, ZHANG X, et al. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors[J]. Agricultural and Forest Meteorology, 2019, 278: 107672. doi: 10.1016/j.agrformet.2019.107672
    [110] LIU X R, TANG Z M, ZHANG Q W, et al. The contrasting effects of biochar and straw on N2O emissions in the maize season in intensively farmed soil[J]. Environmental Science and Pollution Research, 2021, 28(23): 29806-29819. doi: 10.1007/s11356-021-12722-2
    [111] ZHANG Q Q, WU Z, ZHANG X, et al. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season[J]. Environmental Pollution, 2021, 281: 117026. doi: 10.1016/j.envpol.2021.117026
    [112] 陈晨, 许欣, 毕智超, 等. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报, 2017, 37(5): 1912-1920.

    CHEN C, XU X, BI Z C, et al. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920 (in Chinese).

    [113] 王妙莹, 许旭萍, 王维奇, 等. 炉渣与生物炭施加对稻田温室气体排放及其相关微生物影响[J]. 环境科学学报, 2017, 37(3): 1046-1056.

    WANG M Y, XU X P, WANG W Q, et al. Effect of slag and biochar amendment on greenhouse gases emissions and related microorganisms in paddy fields[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 1046-1056 (in Chinese).

    [114] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792-800.

    ZHU Y G, WANG X H, YANG X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science, 2014, 35(2): 792-800 (in Chinese).

    [115] CHEN Z M, DING W X, XU Y H, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology and Biochemistry, 2015, 91: 65-75. doi: 10.1016/j.soilbio.2015.08.026
    [116] ASILOGLU R, SEVILIR B, SAMUEL S O, et al. Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil[J]. Biology and Fertility of Soils, 2021, 57(2): 293-304. doi: 10.1007/s00374-020-01525-1
    [117] SILVER W L, HERMAN D J, FIRESTONE M K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils[J]. Ecology, 2001, 82(9): 2410-2416. doi: 10.1890/0012-9658(2001)082[2410:DNRTAI]2.0.CO;2
    [118] YIN S X, CHEN D, CHEN L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology and Biochemistry, 2002, 34(8): 1131-1137. doi: 10.1016/S0038-0717(02)00049-4
    [119] 杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232.

    YANG S, WU S J, CAI Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232 (in Chinese).

    [120] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461
    [121] HU J J, ZHAO Y X, YAO X W, et al. Dominance of comammox Nitrospira in soil nitrification[J]. Science of the Total Environment, 2021, 780: 146558. doi: 10.1016/j.scitotenv.2021.146558
    [122] CHENG Y, ELRYS A S, MERWAD A R M, et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 2022, 56(6): 3791-3800.
    [123] 石玉龙, 刘杏认, 高佩玲, 等. 生物炭和有机肥对华北农田盐碱土N2O排放的影响[J]. 环境科学, 2017, 38(12): 5333-5343.

    SHI Y L, LIU X R, GAO P L, et al. Effects of biochar and organic fertilizer on saline-alkali soil N2O emission in the North China plain[J]. Environmental Science, 2017, 38(12): 5333-5343 (in Chinese).

    [124] HODGE A, ROBINSON D, GRIFFITHS B S, et al. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete[J]. Plant, Cell & Environment, 1999, 22(7): 811-820.
    [125] BACKER R G M, SAEED W, SEGUIN P, et al. Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions[J]. Plant and Soil, 2017, 415(1): 465-477.
    [126] XIANG Y Z, DENG Q, DUAN H L, et al. Effects of biochar application on root traits: A meta-analysis[J]. GCB Bioenergy, 2017, 9(10): 1563-1572. doi: 10.1111/gcbb.12449
    [127] 李婷, 张丽, 刘大会, 等. 菌根与间作对紫色土-水界面氮流失的削减效应[J]. 土壤学报, 2021, 58(1): 191-201.

    LI T, ZHANG L, LIU D H, et al. Effects of native AMF and intercropping reducing nitrogen loss from soil-water interface in purple soil[J]. Acta Pedologica Sinica, 2021, 58(1): 191-201 (in Chinese).

    [128] ZHAO Y, ZHAI P, LI B, et al. Banana, pineapple, cassava and sugarcane residue biochars cannot mitigate ammonia volatilization from latosols in tropical farmland.[J]. The Science of the total environment, 2022, 821: 153427. doi: 10.1016/j.scitotenv.2022.153427
    [129] CALAMAI A, CHIARAMONTI D, CASINI D, et al. Short-term effects of organic amendments on soil properties and maize ( Zea maize L. ) growth[J]. Agriculture, 2020, 10(5): 158. doi: 10.3390/agriculture10050158
    [130] AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH[J]. Journal of Environmental Management, 2020, 255: 109891. doi: 10.1016/j.jenvman.2019.109891
    [131] SHA Z P, LI Q Q, LV T T, et al. Response of ammonia volatilization to biochar addition: A meta-analysis[J]. Science of the Total Environment, 2019, 655: 1387-1396. doi: 10.1016/j.scitotenv.2018.11.316
    [132] ZHANG Y F, WANG J M, FENG Y. The effects of biochar addition on soil physicochemical properties: A review[J]. CATENA, 2021, 202: 105284. doi: 10.1016/j.catena.2021.105284
    [133] TAN X F, ZHU S S, WANG R P, et al. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups[J]. Chinese Chemical Letters, 2021, 32(10): 2939-2946. doi: 10.1016/j.cclet.2021.04.059
    [134] ZHOU S Z, WEN X, CAO Z, et al. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity[J]. Bioresource Technology, 2021, 319: 124120. doi: 10.1016/j.biortech.2020.124120
    [135] DEENIK J L, McCLELLAN T, UEHARA G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Science Society of America Journal, 2010, 74(4): 1259-1270. doi: 10.2136/sssaj2009.0115
    [136] 高镜清, 黄五星, 黄宇, 等. 铵态氮胁迫下金鱼藻的过氧化损伤和抗氧化能力[J]. 武汉大学学报(理学版), 2010, 56(5): 590-596.

    GAO J Q, HUANG W X, HUANG Y, et al. NH4+-N stress on peroxidation damage and antioxidative capability of Ceratophyllum demersum[J]. Journal of Wuhan University (Natural Science Edition), 2010, 56(5): 590-596 (in Chinese).

    [137] 马剑敏, 靳同霞, 贺锋, 等. 菹草对铵氮和硝氮急性胁迫的响应[J]. 环境科学与技术, 2009, 32(5): 26-30,87.

    MA J M, JIN T X, HE F, et al. Response of Potamogeton crispus to acute stress of NH4+-N or NO3-N[J]. Environmental Science & Technology, 2009, 32(5): 26-30,87 (in Chinese).

    [138] DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568. doi: 10.1016/j.fcr.2019.107568
    [139] 唐司尘, 杨肖松, 张万通, 等. 鸟粪石及生物炭包膜缓释肥在石灰性土壤中的氮磷释放特性[J]. 中国科学院大学学报, 2021, 38(1): 83-93.

    TANG S C, YANG X S, ZHANG W T, et al. Characteristics of nitrogen and phosphorus release from struvite coated urea and struvite combined with biochar coated urea in calcareous soil[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(1): 83-93 (in Chinese).

    [140] 马晓刚, 何建桥, 陈玉蓝, 等. 负载NH4+-N生物炭对土壤N2O-N排放和NH3-N挥发的影响[J]. 环境科学, 2021, 42(9): 4548-4557.

    MA X G, HE J Q, CHEN Y L, et al. Gaseous nitrogen emission from soil after application of NH4+-N loaded biochar[J]. Environmental Science, 2021, 42(9): 4548-4557 (in Chinese).

    [141] 王思源, 宁建凤, 王荣辉, 等. 黏土矿物混合生物炭包膜尿素的制备及其氮素污染减排潜力[J]. 水土保持研究, 2019, 26(5): 151-157.

    WANG S Y, NING J F, WANG R H, et al. Clay mineral and biochar mixture coated urea preparation and its nitrogen pollution reduction potential[J]. Research of Soil and Water Conservation, 2019, 26(5): 151-157 (in Chinese).

    [142] RASSE D P, WELDON S, JONER E J, et al. Enhancing plant N uptake with biochar-based fertilizers: Limitation of sorption and prospects[J]. Plant and Soil, 2022, 475(1): 213-236.
    [143] 魏存, 吕豪豪, 汪玉瑛, 等. 铁改性稻壳生物炭对铵态氮的吸附效果研究[J]. 植物营养与肥料学报, 2021, 27(4): 595-609.

    WEI C, LÜ H H, WANG Y Y, et al. Adsorption effectiveness of ammonium nitrogen by iron-modified rice husk biochars[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 595-609 (in Chinese).

    [144] 智燕彩, 赖欣, 谭炳昌, 等. 铁锰镁离子改性生物炭对溶液硝态氮的吸附性能研究[J]. 核农学报, 2020, 34(7): 1588-1597.

    ZHI Y C, LAI X, TAN B C, et al. Adsorption of nitrate by iron, manganese and magnesium ion modified biochars[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1588-1597 (in Chinese).

  • 加载中
图( 4) 表( 1)
计量
  • 文章访问数:  1162
  • HTML全文浏览数:  1162
  • PDF下载数:  5
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-07-25
  • 录用日期:  2023-09-27

施加生物炭缓解土壤氮流失机理的研究进展

    通讯作者: Email:shigy@usts.edu.cn
  • 1. 苏州科技大学环境科学与工程学院,苏州,215009
  • 2. 苏州科技大学天平学院,苏州,215009
基金项目:
国家自然科学基金青年基金(41807142),苏州市科技局科技计划项目(SNG2020053)和苏州市科技局科技计划项目(SNG2022072)资助.

摘要: 施加生物炭不仅可以抑制农田土壤氮素流失,还可以实现农业废弃物资源化利用. 因此,本文分析了现有研究结果,重点剖析生物炭的NH4+-N和NO3-N吸附容量的差异和施加生物炭对土壤理化性质、微生物群落结构和植物氮吸收能力的影响,综述生物炭抑制土壤氮素流失的机理,并对今后深入研究施加生物炭缓解土壤氮素流失的有关方向进行展望. 施加生物炭缓解土壤氮素流失的机理主要为:缓解NH4+-N和NO3-N的流失、抑制N2O的逸散、提高植物吸收氮素的能力. 生物炭不仅拥有较强的NH4+-N吸附能力,还具有提高土壤碳含量、pH值和土壤含水量等能力,从而降低因地表径流和水分入渗导致的NH4+-N和NO3-N流失量. 施加生物炭抑制土壤中N2O的逸散的主要原因是生物炭可以促进土壤中氨氧化古菌、氨氧化细菌、完全氨氧化菌等微生物的富集、提高nxrA、napAB和nrfA等基因的丰度和亚硝酸氧化还原酶活性,以此降低反硝化反应速率. 此外,施加生物炭有助于降低根系生长阻力,促进植物根系生长发育,并提高植物吸收氮素的能力,进一步降低土壤溶液中NO3-N的浓度. 未来关于施加生物炭缓解农田土壤氮流失领域的研究建议从以下几个方向展开:探究生物炭热解方式、理化性质和施加方法等因素对农田土壤氮流失的影响;关注生物炭促进土壤中异化硝酸盐还原成铵反应和完全氨氧化反应对减少N2O逸散量的贡献;重视生物炭材料中金属离子对土壤中铁氨氧化反应、厌氧氨氧化反应等氮循环途径的影响.

English Abstract

  • 大量施用氮肥满足了我国日益增长的粮食需求,但也造成极大的环境风险. 研究表明,我国平均施氮量和氮利用率分别为全球平均水平的412%和60%[1- 2],约50%氮肥通过径流、淋溶和挥发等途径流失[3]. 氮肥进入土壤后,聚合物形式的有机氮先降解为可溶性有机氮,再矿化为极易流失的可溶性无机氮(主要为铵态氮(NH4+-N)和硝态氮(NO3-N))[4]. 降雨和灌溉引起的地表径流和水分入渗极易造成可溶性无机氮流失. 径流初期NH4+-N易随表层土壤颗粒迁移,随后NO3-N流失量显著上升约占氮流失量的70%-90%[56]. NO3-N不仅是径流氮素流失的主要形态,还易随水分入渗向深层土壤迁移并污染地下水. Song等[7]指出,土壤年氮损失中约90%的氮素通过淋溶途径流失,NO3-N流失占溶解氮损失的65%-90%. 除土壤含水量、降水量等自然因素外,施加化肥将导致土壤氮流失量提高约105%-123%[89]、农业生产成本显著上升和面源污染加重[10]. 研究表明,造成水体污染的氮素约77%来自农业,远高于畜牧养殖和生活排污[11],农田氮素流失对水质恶化和水体富营养化的贡献逐年上升. 当前,我国农田氮流失情况严重[12],氮流失高风险和极高风险区约占总调查面积的20%以上[1314],我国将面对农业土壤总氮流失显著增加的巨大挑战.

    国内外学者常将秸秆还田以缓解农田土壤氮流失,但秸秆还田可能会抑制播种期作物生长、加重作物病虫害、促进一氧化二氮(N2O)、甲烷(CH4)、二氧化碳(CO2)等温室气体的排放[1518],其中N2O累计排放量最高可增加1421%[19]. 此外秸秆还田减少NO3-N淋溶流失的能力有限,秸秆内的氮素溶于径流还会导致土壤氮流失总量上升[20]. 但将秸秆制成生物炭,可以降低秸秆还田引发农田周边水体富营养化的风险[21]. 近年,大量研究证实,施加生物炭在减少氮素流失[2224]、提升土壤肥力[2527]等方面具有很高的工程应用价值和广阔的发展前景. 我国每年产生超过40多亿吨的农业废弃物,以农业废弃物为原料热解制成的生物炭既解决了废弃物随意处理造成的环境问题,又实现了农业废弃物资源化利用[28].

    因此,本文将从生物炭吸附NH4+-N和NO3-N的能力和施加生物炭对土壤理化性质、微生物群落结构、氮循环相关基因表达、植物氮摄取能力的影响等方面阐述施加生物炭缓解土壤氮素流失的机理,以期为今后的研究提供理论基础.

    • 农田土壤中的氮素主要通过径流、淋溶和气体逸散等途径流失. 研究表明,农业生产过程中约5%-42%的氮肥通过淋溶途径流失,流失的氮肥中约19%为NO3-N[29]. 施加生物炭可以有效阻止NO3-N随水分入渗向深层土壤迁移,淋溶实验结果表明施加生物炭的土壤中NO3-N主要分布由0-300 cm缩短为0-40 cm[30]. 陈灿等[31]实验结果指出,施加生物炭显著减少土壤NO3-N淋溶损失约14%-76%. 土壤中氨气(NH3)和N2O的逸散不仅影响氮肥利用率还会造成雾霾、温室效应等环境问题[32],抑制农田土壤NH3和N2O的逸散是减少农田土壤氮素流失的另一有效手段[33]. 土壤中施加生物炭不仅能显著降低NH3的挥发损失,还对N2O的逸散具有优秀的“削峰”能力[3436],例如家禽粪便生物炭减少土壤NH3挥发量约53%[37],竹炭减少茶园土壤约79%的NH3逸出[38],秸秆生物炭降低N2O峰值排放通量约70%[39].

      对Web of Science核心合集和CNKI数据库中关于生物炭的NH4+-N、NO3-N吸附容量研究的数据进行提取和分析. 英文文献数据的检索条件为“TS=(biochar AND ammonium nitrogen AND adsorption)”和“TS=(biochar AND nitrate nitrogen AND adsorption)”;中文文献数据的检索条件为主题=“生物炭”并且“铵态氮”并且“吸附”和“生物炭”并且“硝态氮”并且“吸附”. 筛选后共得到NH4+-N吸附容量有效数据131个,NO3-N吸附容量有效数据89个. 利用Origin 2022软件对筛选所得数据进行分析,结果如图1所示. 生物炭NH4+-N吸附容量大多分布在2.2-40.0 mg·g−1范围内,生物炭NO3-N吸附容量分布范围较小,约为0.1-1.3 mg·g−1,生物炭NH4+-N和NO3-N吸附容量的中位数分别为8.2 mg·g−1和0.2 mg·g−1,生物炭NH4+-N和NO3-N吸附容量的均值分别约为26.1 mg·g−1和2.4 mg·g−1. 结果表明,生物炭对NH4+-N具有较强的吸附能力.

      Yadav等[40]实验结果指出,土壤中NH4+-N、NO3-N的浓度与生物炭表面官能团数量具有良好的正相关性,生物炭吸附NH4+-N和NO3-N的能力可能是缓解土壤氮素流失的关键. 现有研究证实,生物炭的NH4+-N吸附量分别与比表面积和表面官能团具有相关性[41]. 对筛选所得文献中生物炭理化性质和吸附容量的数据进行皮尔逊相关性分析,结果如图2所示. 生物炭的NH4+-N吸附容量与比表面积显著正相关(P<0.05). 生物炭巨大的比表面积和发达的孔隙结构为NH4+-N提供了充足的吸附位点,生物炭比表面积增加16%-32%,NH4+-N吸附容量提高103%-214%[42],因此比表面积更大的生物炭NH4+N吸附容量可能更高[43]. 酸性官能团亦显著影响生物炭NH4+N吸附容量,其赋予生物炭阳离子交换能力[4445],因此生物炭吸附NH4+-N的能力与酸性官能团数量呈正比[43]. 生物炭对NO3-N的吸附能力较弱,其可能通过羟基(—OH)、芳香环羰基(—C═O)、脂肪族醚类(—O—)等基团形成氢键或π键[46]以及叔胺基(-NH2)、Fe—O等带正电荷的基团静电吸附等途径吸附NO3N [4748]. 并且有研究显示,施加老化生物炭的促进效果优于新鲜生物炭[49],证明生物炭减少土壤氮淋失的效应具有长期性,且冻融循环老化生物炭>高温老化生物炭>自然老化生物炭>新鲜生物炭[50]. 综上,生物炭对NH4+-N的吸附容量更大、吸附强度更高,因此生物炭对NH4+-N的吸附能力在缓解土壤NH4+-N和N2O流失方面发挥重要作用,而生物炭缓解土壤NO3-N流失则更依赖于生物炭对土壤理化性质和微生物活动的影响.

    • 生物炭缓解土壤氮素流失的机理十分复杂,现有研究认为生物炭减少土壤氮素流失主要通过吸附无机氮(NH4+-N和NO3-N)、改变土壤理化性质、提高植物的氮素吸收能力等途径抑制NH4+-N和NO3-N的流失;通过影响土壤微生物群落结构、调控土壤氮循环等途径减少N2O的逸散,以此达到抑制土壤氮素流失、提升土壤肥力的目的[33,51].

    • 施加生物炭能显著改变土壤理化性质,Singh等[52]meta分析结果证实,施加生物炭使土壤pH值、阳离子交换量、总有机碳(SOC)含量和孔隙率分别提高46%、20%、27%和59%. 改变土壤理化性质是生物炭减少土壤氮流失、提高土壤总氮含量的关键[53]. 如表1所示,施加生物炭有效提高土壤SOC含量、pH值和含水量,降低土壤容重.

      土壤碳含量被认为是土壤总氮和无机氮含量的主要预测因子[68]. Gao等[69]的meta分析结果证实,施加生物炭可以提高土壤中SOC含量,土壤中无机氮含量受SOC含量影响最大. 并与生物炭添加量呈正比[70]. 土壤SOC含量还对amoA、nirK、nirS和nosZ等基因的丰度有显著影响,这些基因的表达参与调控氨氧化、硝化、反硝化等过程[71],因此生物炭提高土壤SOC含量是生物炭减少土壤中氮流失的重要途径之一[7273]. Phillips等[74]实验结果指出,施加生物炭显著降低土壤中无机氮的生成量约36%. 这是由于生物炭提高土壤C/N比,降低土壤中氮肥矿化速率[75],减少土壤中NH4+-N的含量[76],抑制土壤中氨化作用从而降低硝化速率[77]. 土壤中有机碳的分解还可以为异化硝酸盐还原成铵(DNRA)过程提供电子受体和易被微生物所利用的碳源[78]. 土壤硝化速率下降和DNRA反应速率上升导致土壤中NO2-N和NO3-N的生成量下降,N2O和N2的逸散量减少,以此缓解土壤氮素流失、提高土壤总氮含量.

      土壤在连续施加氮肥后会出现明显的酸化现象,土壤pH值下降10%-24%,酸化产生的H+会影响NH4+-N的吸附[79],施加生物炭提高土壤pH值不仅可以提高土壤对NH4+-N的吸附能力,还可以刺激酸性土壤中氨氧化基因的表达和硝化细菌的富集[71, 80]. 氨氧化和硝化速率的提升促进土壤中NO2-N氧化为NO3-N,研究表明,施加生物炭后土壤中NO3-N含量提高36%-89%[81],而NO2-N浓度降低导致反硝化反应速率降低和N2O的生成量减少[82]. 因此,土壤pH值在控制土壤 N2O 排放方面发挥着核心作用.

      施加生物炭影响土壤容重和孔隙特征,进而影响土壤的持水能力和导水性能. 研究指出,土壤饱和导水率与土壤中NH4+-N和NO3-N含量线性相关[83],生物炭添加可以减少风砂土、黄绵土和砂质潮土等土壤的饱和导水率42%-89%[84],从而减少NH4+-N和NO3-N因水分入渗造成的淋溶流失[85]. 生物炭添加还可以改变土壤孔隙分布,提高土壤含水率[86],以此达到降低NO3-N淋溶损失[8788],减少N2O逸散[89],促进NH3的溶解[90]的目的. 此外,土壤中氮素主要被大团聚体吸附和贮存,生物炭能促进土壤中大型团聚体形成(粒径>2 mm),减少土壤中黏粒所占百分比25%-40%[91],提升土壤有机氮贮存和供给的能力[92].

      综上,施加生物炭通过改变土壤理化特性可以有效抑制NH4+-N和NO3-N淋溶流失,影响土壤微生物生理活动,调控土壤中氨氧化反应、硝化反应、反硝化反应和DNRA反应速率,降低土壤中NO2-N浓度和N2O的生成量.

    • 土壤中的硝化反应和反硝化反应是N2O产生的主要来源,N2O逸散受温度、降雨量、土壤pH值、土壤有机碳含量、微生物活动等因素影响,因此减少施肥土壤中N2O的逸散十分具有挑战性. 生物炭通过改变土壤微生物群落结构、影响酶活性、调控基因表达等途径减少土壤中N2O的逸散量约54%[93]. 研究表明,施加生物炭对土壤中氨氧化古菌(AOA)、氨氧化细菌(AOB)和硝化细菌等微生物丰度有显著影响,土壤中总氮、NO3-N、NH4+-N的含量和反硝化基因丰度与生物炭施加量显著正相关[9495]. 土壤中NH4+-N、NO3-N、NO2-N、N2O和NH3参与的主要反应过程如图3所示,NO2-N在多个氮循环过程中都发挥中间底物的作用,且NO2-N浓度与N2O产量的相关性最强,因此NO2-N浓度的下降和N2O消耗量的上升是N2O减排的关键.

      土壤中NO2-N的浓度受硝化反应、反硝化反应和DNRA反应共同调控. Venterea等[96]的实验结果指出,土壤硝化反应速率的提高促进NO2-N转化为NO3-N,导致N2O产量减少200%以上. 生物炭可能通过提高土壤pH值促进AOA和AOB的生长繁殖、吸附硝化抑制剂等途径提高土壤硝化反应速率[97]. AOA、AOB丰度的提高促进NH4+-N转化为NO2-N,为NO2-N转化为NO3-N提供充足底物. 研究表明,土壤中NO2-N浓度和N2O产量均与nxrA/amoA呈极强的负相关关系(皮尔逊相关系数分别为—0.79和—0.68)[98],生物炭作为潜在碳源能提高土壤中nxrA基因的丰度,提高亚硝酸氧化还原酶活性,推动硝化反应的进程,促进NO2-N转化为NO3-N [99100]. 近年来有学者发现一条NH4+-N转化为NO3-N的硝化反应新途径,完全氨氧化(Comammox)微生物可以将NH4+-N直接氧化为NO3-N[101]其在酸性土壤的硝化反应中发挥重要作用[102]. 该微生物的发现打破了硝化反应由NH4+-N氧化为NO2-N再转化为NO3-N的传统认知,间接减少了土壤中NO2-N和N2O的产量. 现有研究指出,生物炭显著改变了土壤中硝化细菌的群落结构,提高了Comammox微生物丰度,Comammox微生物的丰度与土壤硝化速率呈正相关关系[103].

      生物炭可以直接参与电子转移过程,生物炭较高的芳香性会增加微生物与生物炭表面离域π电子系统相互作用的可能性,从而促进电子交换[104105]. 因此Cayuela等[106]指出,生物炭提高土壤pH值不是减少N2O逸散量的唯一途径,其还可以促进电子向反硝化微生物转移,提高土壤反硝化速率. nirK、norB和nirS基因是主导NO2-N转化为N2O的重要功能基因,nosZ基因是抑制N2O产生的关键基因. 现有研究指出,施加生物炭可以提高土壤中narG和nirK基因的丰度,推动反硝化反应的进程,促进N2O的产生[107],而nosZ基因丰度的提高能加速N2O还原为N2 [108110]. 因此,生物炭对土壤N2O逸散量的影响是动态的. 大量研究结果证实,施加生物炭的土壤中nosZ基因丰度的增幅显著高于nirK和nirS基因15.8%-182.9%,综合效应表现为土壤N2O逸散量降低14%-96%[111113].

      DNRA是一种以NO2-N作为中间产物,将NO3-N还原为NH4+-N的生物过程,其在水体和土壤氮循环中发挥重要作用[114],经由DNRA过程还原的NO3-N总量约占总NO3-N还原量的93%[115]. 生物炭能为土壤中DNRA过程提供电子受体和易被微生物所利用的碳源[78],提高napAB、nrfA等DNRA反应相关基因的丰度约5%-89%[68, 116],提升土壤DNRA反应速率约418%[116]. 推动DNRA反应进程不仅可以与反硝化过程竞争反应底物以减少N2O逸散量[117118],还可以将NO3-N还原为植物更易吸收利用的NH4+-N[119].

      综上,降低土壤中NO2-N的浓度和促进N2O转化为N2是生物炭减少土壤中N2O逸散的两个主要机理. 施加生物炭通过促进土壤中AOA、AOB、Comammox菌等微生物的富集、提高nxrA、napAB和nrfA等基因的丰度、提升亚硝酸氧化还原酶活性等途径降低土壤中NO2-N浓度,抑制N2O的逸散. 当前关于生物炭施加对土壤中Comammox微生物和DNRA反应影响的研究较少,但其是硝化过程和反硝化过程外特殊的氮循环途径. Comammox微生物主导的氨氧化过程,会减少NO2-N和N2O的产生[120],降低环境污染风险和土壤氮流失量. Hu等[121]的研究显示在70%的土壤样品中,Comammox微生物占优势,其含有的amoA基因转录水平中位数超过了AOA和AOB,在原位土壤中,Comammox微生物的丰度与硝化潜力呈显著正相关. DNRA是陆地氮循环中几乎被遗忘的过程,它可以通过将易流失的NO3-N转化为NH4+-N来保存氮,减少硝酸盐通过反硝化、淋溶和径流等途径的流失[122]. 未来应重视施加生物炭促进土壤Comammox和DNRA反应的机理研究,深入探讨生物炭对土壤氮循环的影响. 施加生物炭引起的反硝化速率提升极易造成土壤中氮素以N2O的形式流失,但生物炭能显著提高土壤中nosZ基因的丰度,促进反硝化反应产生的N2O转化为N2,调控农田土壤温室气体排放并降低农田土壤氮流失带来的危害. 但也有部分研究指出生物炭施加量过多导致土壤N2O逸散量增加17.3%-37.4% [123],因此农田土壤生物炭施加量和生物炭对土壤N2O减排机制的影响值得进一步探究.

    • 根是植物吸收养分和水分的主要器官,当植物根系发育良好时,施加生物炭的土壤中丰富的NH4+-N和NO3-N将显著提高植物摄取氮素的能力[124]. 研究表明,生物炭改善土壤理化性质不仅可以抑制土壤氮素流失,还可以降低根系生长阻力,促进植物根系生长发育[125]. Xiang等[126]的meta分析结果表明,施加生物炭显著提高植物根生物量、根体积、根表面积、根长和根尖数量约32%、29%、39%、52%和17%. 为探究施加生物炭对植物生长的影响,以主题=“生物炭”并且“株高或生物量”为检索条件,对CNKI数据库中相关文献进行筛选、数据提取,共得到有效数据90个,分析结果如图4所示.

      向土壤中施加生物炭分别提高植物株高、生物量和作物产量约12%、24%和21%. 李婷等[127]研究证实,提高植物氮吸收能力可以降低土壤总氮流失量约30%-51%. 但部分研究指出,施加生物炭可能会导致土壤NH3逸散量激增和作物产量下降,例如Zhao等[128]实验结果证实,施加生物炭导致土壤中NH3的挥发量提高约292%;Calamai等[129]研究表明,生物炭施加可能会导致玉米生物量和产量分别降低约2%-6%和16%-20%. 高pH[130]、生物炭表面积和孔隙体积、孔结构分别通过增加NH4+-N向NH3转化,加快NH3扩散[131132],生物炭吸附酶反应底物,提高脲酶活性增加了土壤NH3的挥发 [133],从而导致土壤中氮素流失. 另有研究表明由于土壤pH值和生物炭吸附位点的增加,生物炭施加量的增加也会增加NH3的产生[134]. 以高挥发性物质含量为特征的生物炭可能通过减少氮的吸收来影响土壤系统中的氮生化循环,从而对植物生长产生负面影响[135]. 生物炭可以通过抑制NO3-N随水分入渗、促进土壤中硝化反应过程等途径提高植物根尖区土壤NO3-N的浓度. 大多数植物更易吸收和利用土壤中的NO3-N,植物氮吸收能力的提高不仅促进植物摄取更多NO3-N,还可以进一步降低土壤溶液中NO3-N的浓度并抑制反硝化反应. 此外,生物炭还在农业生产施肥过程中发挥“削峰填谷”的作用,其吸附土壤溶液中游离NH4+-N的能力有助于缓解作物生长受土壤中快速上升的NH4+-N浓度的抑制[136-137]. 因此施加生物炭显著提升植物的氮吸收能力不仅可以提高作物产量,还可以抑制NO3-N的流失和N2O的逸散[138].

    • 生物炭通过改良土壤理化性质、减少NH4+-N径流流失量和NO3-N淋溶流失量、提高narG、nirK、nxrA、napAB、nrfA和nosZ等基因丰度、提升硝化反应、DNRA反应和N2O还原反应速率、促进植物摄取土壤中氮素等途径,达到抑制农田土壤氮素流失、提高作物产量和调控农田土壤温室气体排放的目的.

      近年,新型生物炭材料层出不穷,负载NH4+-N生物炭、改性生物炭、生物炭基肥等材料陆续用于减少农田土壤氮素流失. 相较于传统生物炭材料,负载NH4+-N生物炭和生物炭基肥抑制NH4+-N流失和NH3挥发、提升土壤氮素利用率的能力更强[139142];改性生物炭拥有更大的NH4+-N和NO3-N吸附容量并能有效减少NO3-N淋溶流失[143144]. 因此,未来关于施加生物炭缓解农田土壤氮流失领域的研究建议从以下两个方向展开:(1)根据我国常见农业废弃物种类和主要土壤类型开展大田实验,因地制宜选择生物炭热解的原材料,进一步探讨生物炭热解条件、粒径、pH值、含碳量、施加量及施加方式等因素对农田土壤氮流失的影响;(2)减少温室气体N2O排放的Comammox反应、将NO3-N转化为不易流失的NH4+-N的DNRA反应的发现改变了对传统氮素循环的认知,但目前关于生物炭对此过程研究较少,未来应深入研究生物炭材料调控土壤氮循环的机理,探究施加生物炭对土壤微生物群落结构和氮循环相关基因表达的影响,关注生物炭促进土壤中DNRA反应和Comammox反应对减少N2O逸散量的贡献,重视改性生物炭材料中金属离子对土壤中铁氨氧化反应(Feammox)、厌氧氨氧化反应(Anammox)等氮循环途径的促进作用.

    参考文献 (144)

目录

/

返回文章
返回