-
海洋浮游植物的生物量仅占生物圈初级生产者生物量的0.2%,但贡献的初级生产量约占全球初级净产量的50%[1 − 3]. 浮游植物广泛分布于海洋上层和河口环境中[4],在调节海洋生物泵和全球生物化学地球循环方面发挥着重要作用[5],是浮游动物和海洋渔业的重要食物来源[6 − 7]. 通过利用光作为主要能源,海洋浮游植物的生长通过食物链满足了较高营养级生物的能源需求,并支持了海洋生态系统的正常运行[8]. 同时,海洋浮游植物具有繁殖周期短和对环境变化敏感的特点[9 − 10]. 通常来说,环境条件的变化会直接影响到浮游植物的群落结构和多样性[11 − 12]. 例如,海洋暖化可增加浮游植物的多样性[13],营养物质的有效性、温度和辐照度可能影响浮游植物群落的粒径大小[14];此外,气候变化的间接影响,例如营养负荷的增加,可能比温度对浮游植物产生的直接影响更深远[15]. 同时,浮游植物群落的动态变化是反映海洋生态系统和环境变化的最佳指标,这在很大程度上是由于浮游植物群落动态与环境变化之间的紧密联系[16 − 17]. 因此,研究浮游植物群落结构及其影响因素对于理解海洋环境的变化以及海洋生态系统的结构和功能具有重要意义[18 − 19].
靖海湾是面积为140 km2的半封闭海湾,位于山东半岛东部,于2007年设立了松江鲈鱼水产种质资源保护区[20],是青龙河和蔡官庄河的入海口所在地,接收了大量来自威海市的工业、农业和城市废水排放[21]. 靖海湾作为典型的河口和海湾区域,能够为人类生活、经济贸易和交通运输等提供资源,是沿海生态系统中能为人类可持续发展做出贡献的代表性区域[22]. 海湾和河口区域因受到人类活动的影响和与外界水交换的局限,生态系统的健康和完整性可能会受到损害[23]. 先前的研究对沿海区域水质进行分析,发现城市污水、农业和工业废水排放等人为污染输入,是造成沿海区域海水富营养化、有机污染和病原体、除草剂等有害物质积累严重的重要原因[24]. 随着时间的推移,沿海区域富营养化等环境问题将随着城市化、工业化进程的发展日趋严重,可能造成有害藻华的发生、低氧区的扩大和酸化的加剧等问题[25 − 26],而这将不可避免地影响甚至改变沿海生态系统浮游植物群落的结构功能和多样性[12],进而导致沿海生态系统受到生物资源枯竭和生物多样性减少的威胁. 此前对于此区域的研究多局限于重金属污染、海洋地质等方面[27 − 28],如徐林波等揭示了靖海湾悬浮颗粒物和沉积物中铅污染主要来源于人类生产生活活动[27];张先锋等发现靖海湾表层沉积物搬运方式受水动力条件影响而变化[28],而目前对靖海湾浮游植物群落的研究较少,且富营养化及其对浮游植物群落结构的影响研究尚未见报道. 因此,了解富营养化等环境问题对浮游植物群落的影响,有助于加强后续对靖海湾环境生态的管理和研究,对改善靖海湾沿海生态系统的稳定性、健康性和可持续性提供理论支持.
富营养化对靖海湾浮游植物群落的影响
Effects of eutrophication on phytoplankton community in Jinghai Bay
-
摘要: 海洋浮游植物在维持海洋生物泵的运转中起着至关重要的作用,对全球生物地球化学循环产生巨大影响. 海湾和河口区域因受到人类活动的影响较大且与外界水交换的局限,容易出现富营养化等威胁生态系统稳定性的问题,因此研究沿海生态系统中富营养化与浮游植物群落之间的关系有助于维持生态系统的健康和可持续性发展. 本研究于2021年和2022年的5月和8月对靖海湾进行了4个航次的调查,研究了春夏两季浮游植物群落和环境因素之间的关系. 结果表明,2021年和2022年春夏两季在靖海湾共观察到150个浮游植物物种,浮游植物群落主要由硅藻和甲藻组成,且在2022年夏季出现了蓝藻的大量增长;两年的生物多样性均为春季高于夏季,富营养化指数(Ei)出现了明显的上升,由2021年的中度富营养化变为2022年的重度富营养化. 通过冗余分析和Pearson相关性分析发现,富营养化可能是影响靖海湾浮游植物群落的关键因素. 本研究的结果有助于后续为改善靖海湾沿海生态系统的稳定性、健康性和可持续性提供理论支持.Abstract: Marine phytoplankton play a vital role in maintaining the operation of the marine biological pump and have a huge impact on the global biogeochemical cycle. Due to the great influence of human activities and the limited water exchange with the outside sea, the bay and estuary regions are prone to problems such as eutrophication that threaten ecosystem stability. Therefore, studying the relationship between eutrophication and phytoplankton communities incoastal ecosystems is helpful to maintain the health and sustainable development of the ecosystems. In this study, four cruises were carried out in May and August of 2021 and 2022 in Jing Bay to investigate the relationship between phytoplankton communities and environmental factors in spring and summer. The results showed that a total of 150 phytoplankton species were observed in the spring and summer of 2021 and 2022 in Jinghai Bay, and the phytoplankton community was mainly composed of diatoms and dinoflagellate, and a large number of cyanobacteria increased in the summer of 2022. Biodiversity in spring was higher than that in summer in both years, and the eutrophication index (Ei) showed a significant increase, from moderate eutrophication in 2021 to severe eutrophication in 2022. The redundancy analysis and Pearson correlation analysis results indicated that eutrophication may be the key factor affecting the phytoplankton community in Jinghai Bay. The results of this study are helpful to provide theoretical support for improving the stability, health and sustainability of the coastal ecosystem in Jinghai Bay.
-
Key words:
- phytoplankton /
- Bacillariophyta and Dinophyta /
- community composition /
- eutrophication /
- Jinghai Bay
-
表 1 2021和2022年春季和夏季靖海湾环境参数的范围和平均值
Table 1. Range and mean values of environmental parameters in the spring and summer of Jinghai Bay in 2021 and 2022
环境参数
Environmental parameters2021年春季
2021 Spring2021年夏季
2021 Summer2022年春季
2022 Spring2022年夏季
2022 Summer温度/℃ 范围 22.1—23.70 26.90—27.00 17.50—17.80 24.70—25.10 平均值 23.00 ±0.61 26.92±0.04 17.68±0.10 24.91±0.13 盐度 范围 34.18—34.68 21.94—25.02 30.07—30.81 9.30—17.90 平均值 34.37±0.21 23.18±1.40 30.41±0.27 12.06±3.18 DO/(mg L−1) 范围 5.11—5.26 5.59—6.99 5.45—6.61 4.64—6.85 平均值 5.16±0.05 6.52±0.38 5.76±0.37 4.73±0.08 pH 范围 7.81—7.89 7.80—7.90 7.73—7.79 7.74—7.83 平均值 7.84±0.03 7.82±0.03 7.76±0.02 7.79±0.03 COD/(mg L−1) 范围 1.38—1.79 0.42—0.99 1.40—1.90 4.28—5.10 平均值 1.58±0.12 0.72±0.20 1.66±0.16 4.72±0.28 Chla/(µg L−1) 范围 21.36—23.09 23.33—24.42 22.82—23.30 1.83—5.26 平均值 22.01±0.54 23.77±0.40 23.08±0.18 3.66±0.97 DIN/(µg L−1) 范围 152.75—173.87 168.57—204.15 562.18—762.46 783.13—1007.12 平均值 162.93±7.28 185.08±11.79 673.10±72.40 909.25±84.94 DIP/(µg L−1) 范围 69.59—85.49 93.51—135.63 70.23—93.26 140.31—271.80 平均值 76.82±5.16 117.05±13.61 80.62±7.66 224.72±43.15 N/P 范围 2.03—2.33 1.30—1.96 6.30—10.01 3.54—5.58 平均值 2.13±0.10 1.60±0.20 8.41±1.11 4.14±0.63 表 2 靖海湾浮游植物群落的多样性指数(H′)和均匀度指数(J)的年际和季节变化
Table 2. Inter-annualand seasonal variations of the H' and J indices inJinghai Bay
时间
Time多样性指数
Shannon-Wiener diversity index H'均匀度指数
Pielou’s evenness index J最大值
Maximum最小值
Minimum平均值
Average最大值
Maximum最小值
Minimum平均值
Average2021 Spring 2.92 2.03 2.49 0.91 0.61 0.77 2021 Summer 2.07 1.05 1.53 0.51 0.27 0.39 2022 Spring 2.86 1.27 2.32 0.80 0.35 0.63 2022 Summer 3.72 0.95 2.00 0.84 0.21 0.45 表 3 靖海湾浮游植物分类情况
Table 3. Classification of phytoplankton taxa inJinghai Bay
2021春季
2021 Spring2021夏季
2021 Summer2022春季
2022 Spring2022夏季
2022 Summer物种数目
Species number占比/%
Proportion物种数目
Species number占比/%
Proportion物种数目
Species number占比/%
Proportion物种数目
Species number占比/%
Proportion硅藻
Bacillariophyta21 87.50 32 86.49 32 91.43 38 70.37 甲藻
Pyrrophyta2 8.33 5 13.51 2 5.71 4 7.41 金藻
Chrysophyta1 4.17 — — 1 2.86 — — 蓝藻
Cyanophyta— — — — — — 5 9.26 绿藻
Chlorophyta— — — — — — 6 11.11 裸藻
Euglenophyta— — — — — — 1 1.85 表 4 浮游植物群落中优势种的丰度、出现频率和优势度指数
Table 4. The abundance, frequency of occurrence, and dominance index of dominant species among the phytoplankton community
时间
Time优势种
Dominant species丰度(×105)/( cells· L−1)
Abundance出现频率/%
Frequency优势度指数
Dominance index2021春
2021 Spring菱形藻a Nitzschia sp. 0.156 100 0.3238 羽纹藻a Pinnularia sp. 0.108 87.50 0.1949 中肋骨条藻a Skeletonema costatum 0.071 62.50 0.0923 海链藻a Thalassiosira sp. 0.029 87.50 0.0521 圆筛藻a Coscinodiscus sp. 0.018 100 0.0363 小环藻a Cylotella sp. 0.018 87.50 0.0329 长菱形藻a Nitzschia longissma 0.016 75.00 0.0253 2021夏
2021 Summer大洋角管藻a Cerataulina pelagica 2.393 100 0.6610 中肋骨条藻a Skeletonema costatum 0.879 100 0.2290 劳氏角毛藻a Chaetoceros lorenzianus 0.085 87.50 0.0239 2022春
2022 Spring中肋骨条藻a Skeletonema costatum 0.403 100 0.5543 派格棍形藻a Bacillaria paxillifera 0.080 88.89 0.0979 菱形藻a Nitzschia sp. 0.045 88.89 0.0550 羽纹藻a Pinnularia sp. 0.022 77.78 0.0232 夜光藻b Noctiluca scintillans 0.018 88.89 0.0224 2022夏
2022 Summer颤藻c Oscillatoria sp. 6.785 77.78 0.2884 铜绿微囊藻c Microcystis aeruginosa 5.333 22.22 0.0580 微囊藻c Microcystis sp. 2.463 22.22 0.0402 菱形藻a Nitzschia sp. 0.461 100 0.0249 平裂藻c Merismopedia sp. 0.751 55.56 0.0207 注:物种名称右上角标注a代表硅藻,b代表甲藻,c代表蓝藻.
Note: The top right corner of the species name is marked with a for Bacillariophyta, b for Dinophyta, and c for Cyanophyta. -
[1] LONGHURST A, SATHYENDRANATH S, PLATT T, et al. An estimate of global primary production in the ocean from satellite radiometer data[J]. Journal of Plankton Research, 1995, 17(6): 1245-1271. doi: 10.1093/plankt/17.6.1245 [2] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240. doi: 10.1126/science.281.5374.237 [3] AGAWIN N S R, DUARTE C M, AGUSTÍ S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production[J]. Limnology and Oceanography, 2000, 45(8): 1891. [4] SAIFULLAH A S M, KAMAL A H M, IDRIS M H, et al. Community composition and diversity of phytoplankton in relation to environmental variables and seasonality in a tropical mangrove estuary[J]. Regional Studies in Marine Science, 2019, 32: 100826. doi: 10.1016/j.rsma.2019.100826 [5] 张占飞, 刘定莹, 张英豪. 东平湖秋季浮游生物群落特征及其与环境因子的关系[J]. 环境化学, 2024, 43(1): 264-274. ZHANG Z, LIU D Y, ZHANG Y H. Plankton community characteristics and its relationship with environmental factors in the autumn of Dongping Lake, China[J]. Environmental Chemistry, 2024, 43(1): 264-274(in Chinese).
[6] SCHLOSS I R, ABELE D, MOREAU S, et al. Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove ( Antarctica)[J]. Journal of Marine Systems, 2012, 92(1): 53-66. doi: 10.1016/j.jmarsys.2011.10.006 [7] BARTON A D, FINKEL Z V, WARD B A, et al. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities[J]. Limnology and Oceanography, 2013, 58(1): 254-266. doi: 10.4319/lo.2013.58.1.0254 [8] TIWARI A, CHAUHAN S V S. Seasonal phytoplanktonic diversity of Kitham lake, Agra[J]. Journal of Environmental Biology, 2006, 27(1): 35-38. [9] NIEHOFF B, MADSEN S, HANSEN B, et al. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland[J]. Marine Biology, 2002, 140(3): 567-576. doi: 10.1007/s00227-001-0731-3 [10] RIEBESELL U. Effects of CO2 enrichment on marine phytoplankton[J]. Journal of Oceanography, 2004, 60(4): 719-729. doi: 10.1007/s10872-004-5764-z [11] THOMAS M K, ARANGUREN-GASSIS M, KREMER C T, et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton[J]. Global Change Biology, 2017, 23(8): 3269-3280. doi: 10.1111/gcb.13641 [12] XIAO W P, LIU X, IRWIN A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206-216. doi: 10.1016/j.watres.2017.10.051 [13] IBARBALZ F M, HENRY N, BRANDÃO M C, et al. Global trends in marine plankton diversity across Kingdoms of life[J]. Cell, 2019, 179(5): 1084-1097. e21. [14] FU T T, CHEN B H, JI W D, et al. Size structure of phytoplankton community and its response to environmental factors in Xiamen Bay, China[J]. Environmental Earth Sciences, 2016, 75(9): 734. doi: 10.1007/s12665-016-5552-2 [15] de SENERPONT DOMIS L N, ELSER J J, GSELL A S, et al. Plankton dynamics under different climatic conditions in space and time[J]. Freshwater Biology, 2013, 58(3): 463-482. doi: 10.1111/fwb.12053 [16] HAYS G C, RICHARDSON A J, ROBINSON C. Climate change and marine plankton[J]. Trends in Ecology & Evolution, 2005, 20(6): 337-344. [17] PTACNIK R, SOLIMINI A G, ANDERSEN T, et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 5134-5138. [18] GUO S J, FENG Y Y, WANG L, et al. Seasonal variation in the phytoplankton community of a continental-shelf sea: The East China Sea[J]. Marine Ecology Progress Series, 2014, 516: 103-126. doi: 10.3354/meps10952 [19] WEI Y Q, SUN J, ZHANG G C, et al. Environmental factors controlling the dynamics of phytoplankton communities during spring and fall seasons in the southern Sunda Shelf[J]. Environmental Science and Pollution Research International, 2020, 27(18): 23222-23233. doi: 10.1007/s11356-020-08927-6 [20] 崔毅, 马菲菲, 夏斌, 等. 靖海湾松江鲈鱼种质资源保护区海水环境质量年际变化趋势及综合评价[J]. 渔业科学进展, 2013, 34(6): 1-8. doi: 10.3969/j.issn.1000-7075.2013.06.001 CUI Y, MA F F, XIA B, et al. Annual variation and comprehensive evaluation of seawater quality in Trachidermus fasciatus Heckel germ plasm resource protection area in Jinghai Bay[J]. Progress in Fishery Sciences, 2013, 34(6): 1-8 (in Chinese). doi: 10.3969/j.issn.1000-7075.2013.06.001
[21] SUN X M, WANG T, CHEN B J, et al. Factors influencing the occurrence and distribution of microplastics in coastal sediments: From source to sink[J]. Journal of Hazardous Materials, 2021, 410: 124982. doi: 10.1016/j.jhazmat.2020.124982 [22] ZHU G H, ABU NOMAN M, NARALE D D, et al. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches[J]. Environmental Pollution, 2020, 264: 114791. doi: 10.1016/j.envpol.2020.114791 [23] WEI Y Q, DING D S, GU T, et al. Ocean acidification and warming significantly affect coastal eutrophication and organic pollution: A case study in the Bohai Sea[J]. Marine Pollution Bulletin, 2023, 186: 114380. doi: 10.1016/j.marpolbul.2022.114380 [24] KENNISH M J. Environmental threats and environmental future of estuaries[J]. Environmental Conservation, 2002, 29(1): 78-107. doi: 10.1017/S0376892902000061 [25] ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726. doi: 10.1007/BF02804901 [26] WALLACE R B, BAUMANN H, GREAR J S, et al. Coastal ocean acidification: The other eutrophication problem[J]. Estuarine, Coastal and Shelf Science, 2014, 148: 1-13. doi: 10.1016/j.ecss.2014.05.027 [27] 徐林波, 高勤峰, 董双林, 等. 靖海湾重金属污染及铅稳定同位素溯源研究[J]. 环境科学, 2013, 34(2): 476-483. XU L B, GAO Q F, DONG S L, et al. Study on heavy metal contaminations and the sources of Pb pollution in Jinghai Bay using the stable isotope technique[J]. Environmental Science, 2013, 34(2): 476-483 (in Chinese).
[28] 张先锋, 吴建政, 胡日军, 等. 靖海湾表层沉积物粒度特征及沉积动力环境分区[J]. 海洋地质前沿, 2013, 29(10): 47-51. ZHANG X F, WU J Z, HU R J, et al. Grain size distribution pattern of surface sediment in Jinghai Bay and dynamic envieronment division[J]. Marine Geology Frontiers, 2013, 29(10): 47-51 (in Chinese).
[29] WEI Y Q, CUI H W, HU Q J, et al. Eutrophication status assessment in the Laizhou Bay, Bohai Sea: Further evidence for the ecosystem degradation[J]. Marine Pollution Bulletin, 2022, 181: 113867. doi: 10.1016/j.marpolbul.2022.113867 [30] CROUCH S R, MALMSTADT H V. Mechanistic investigation of molybdenum blue method for determination of phosphate[J]. Analytical Chemistry, 1967, 39(10): 1084-1089. doi: 10.1021/ac60254a027 [31] VERDOUW H, van ECHTELD C J A, DEKKERS E M J. Ammonia determination based on indophenol formation with sodium salicylate[J]. Water Research, 1978, 12(6): 399-402. doi: 10.1016/0043-1354(78)90107-0 [32] WEI Y Q, LIU H J, ZHANG X D, et al. Physicochemical conditions in affecting the distribution of spring phytoplankton community[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(6): 1342-1361. doi: 10.1007/s00343-017-6190-6 [33] UTERMÖHL H. Neue wege in der quantitativen erfassung des plankton. (mit besonderer berücksichtigung des ultraplanktons. )[J]. SIL Proceedings, 1922, -2010,1931,5(2): 567-596. [34] WELSCHMEYER N A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments[J]. Limnology and Oceanography, 1994, 39(8): 1985-1992. doi: 10.4319/lo.1994.39.8.1985 [35] 姜登岭, 赵昊, 邬喜红, 等. 嘉兴城市河网区高、低水位期浮游植物群落及其与环境因子的典范对应分析[J]. 环境化学, 2020, 39(9): 2540-2550. doi: 10.7524/j.issn.0254-6108.2020040804 JIANG D L, ZHAO H, WU X H, et al. Model correspondence analysis of phytoplankton community and its environmental factors at high and low water levels in urban river network area of Jiaxing City[J]. Environmental Chemistry, 2020, 39(9): 2540-2550 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020040804
[36] LIU S G, LOU S, KUANG C P, et al. Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China[J]. Marine Pollution Bulletin, 2011, 62(10): 2220-2229. doi: 10.1016/j.marpolbul.2011.06.021 [37] ZHONG Q, XUE B, ABU NOMAN M, et al. Effect of river plume on phytoplankton community structure in Zhujiang River Estuary[J]. Journal of Oceanology and Limnology, 2021, 39(2): 550-565. doi: 10.1007/s00343-020-9213-7 [38] 游剑涛. 三沙湾及邻近开放海域夏季浮游植物群落结构比较[J]. 渔业研究, 2022, 44(6): 581-587. YOU J T. Comparative study on the ecological characteristics of phytoplankton community in summer in Sansha Bay and adjacent open waters, Fujian Province[J]. Journal of Fisheries Research, 2022, 44(6): 581-587 (in Chinese).
[39] WEI Y Q, DING D S, GU T, et al. Different responses of phytoplankton and zooplankton communities to current changing coastal environments[J]. Environmental Research, 2022, 215: 114426. doi: 10.1016/j.envres.2022.114426 [40] CHEN C S, ZHU J R, BEARDSLEY R C, et al. Physical-biological sources for dense algal blooms near the Changjiang River[J]. Geophysical Research Letters, 2003, 30(10) :1515. [41] SHIBANO R, YAMANAKA Y, OKADA N, et al. Responses of marine ecosystem to typhoon passages in the western subtropical North Pacific[J]. Geophysical Research Letters, 2011, 38(18) :18608. [42] GUAN S D, ZHAO W, SUN L, et al. Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season[J]. Journal of Marine Systems, 2021, 217: 103509. doi: 10.1016/j.jmarsys.2021.103509 [43] ZHAO H, TANG D L, WANG D X. Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri[J]. Journal of Geophysical Research, 2009, 114(C12): C12027. [44] PAERL H W, HALL N S, HOUNSHELL A G, et al. Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): Implications for organic matter and nutrient cycling in coastal watersheds[J]. Biogeochemistry, 2020, 150(2): 197-216. doi: 10.1007/s10533-020-00693-4 [45] CHUNG C C, GONG G C, HUNG C C. Effect of Typhoon Morakot on microphytoplankton population dynamics in the subtropical NorthwestPacific[J]. Marine Ecology Progress Series, 2012, 448: 39-49. doi: 10.3354/meps09490 [46] SARMIENTO J L, SLATER R, BARBER R, et al. Response of ocean ecosystems to climate warming[J]. Global Biogeochemical Cycles, 2004, 18(3) :002143. [47] HALPERN B S, WALBRIDGE S, SELKOE K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948-952. doi: 10.1126/science.1149345 [48] ZHOU Y, WANG L L, ZHOU Y Y, et al. Eutrophication control strategies for highly anthropogenic influenced coastal waters[J]. Science of the Total Environment, 2020, 705: 135760. doi: 10.1016/j.scitotenv.2019.135760 [49] RADACH G, PÄTSCH J. Variability of continental riverine freshwater and nutrient inputs into the North Sea for the years 1977-2000 and its consequences for the assessment of eutrophication[J]. Estuaries and Coasts, 2007, 30(1): 66-81. doi: 10.1007/BF02782968 [50] 孔凡洲, 姜鹏, 魏传杰, 等. 2017年春、夏季黄海35°N共发的绿潮、金潮和赤潮[J]. 海洋与湖沼, 2018, 49(5): 1021-1030. KONG F Z, JIANG P, WEI C J, et al. Co-occurence of green tide, golden tide and red tides along the 35?n transect in the Yellow Sea during spring and summer in 2017[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1021-1030 (in Chinese).
[51] LI C L, YANG D Z, ZHAI W D. Effects of warming, eutrophication and climate variability on acidification of the seasonally stratified North Yellow Sea over the past 40 years[J]. The Science of the Total Environment, 2022, 815: 152935. doi: 10.1016/j.scitotenv.2022.152935 [52] LEE K H, JEONG H J, LEE K, et al. Effects of warming and eutrophication on coastal phytoplankton production[J]. Harmful Algae, 2019, 81: 106-118. doi: 10.1016/j.hal.2018.11.017 [53] 李丽, 吕颂辉. 近30年广东沿海赤潮灾害的特征及成因分析[J]. 安全与环境学报, 2009, 9(3): 83-86. doi: 10.3969/j.issn.1009-6094.2009.03.021 LI L, LU S H. A 30-year retrospective analysis over the detrimental algal blooms in Guangdong coastal areas[J]. Journal of Safety and Environment, 2009, 9(3): 83-86 (in Chinese). doi: 10.3969/j.issn.1009-6094.2009.03.021
[54] FUJIMOTO N, SUDO R, SUGIURA N, et al. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N: P supply ratios and temperatures[J]. Limnology and Oceanography, 1997, 42(2): 250-256. doi: 10.4319/lo.1997.42.2.0250 [55] SARMA S S S, NANDINI S, GULATI R D. Life history strategies of cladocerans: Comparisons of tropical and temperate taxa[J]. Hydrobiologia, 2005, 542(1): 315-333. doi: 10.1007/s10750-004-3247-2 [56] HAN M Q, DONG C C, MA S Q, et al. Food web responses to a cyanobacterial bloom in a freshwater Eutrophic Lake[J]. Water, 2021, 13(9): 1296. doi: 10.3390/w13091296 [57] WILLÉN E. Planktonic green algae in an acidification gradient of nutrient-poor lakes[J]. Archiv Für Protistenkunde, 1992, 141(1/2): 47-64. [58] 顾礼明, 曹慧敏, 范铭芳, 等. 大型湖库浮游植物生物多样性研究进展综述[J]. 污染防治技术, 2019, 32(4): 37-39. GU L M, CAO H M, FAN M F, et al. Research progress of phytoplankton biodiversity in large lakes and reservoirs: A review[J]. Pollution Control Technology, 2019, 32(4): 37-39 (in Chinese).
[59] SARI L A, AL DIANA N, ARSAD S, et al. Monitoring of phytoplankton abundance and chlorophyll-a content in the estuary of Banjar Kemuning River, Sidoarjo Regency, East Java[J]. Journal of Ecological Engineering, 2021, 22(1): 29-35. doi: 10.12911/22998993/128877 [60] 曾祥波, 黄邦钦, 陈纪新, 等. 台湾海峡小型浮游动物的摄食对夏季藻华演替的影响[J]. 海洋学报, 2006, 28(5): 107-116. ZENG X B, HUANG B Q, CHEN J X, et al. Grazing impact of microzooplankton on algal bloom in the Taiwan Strait in summer[J]. Acta Oceanologica Sinica, 2006, 28(5): 107-116 (in Chinese).
[61] 潘胜军, 沈志良. 胶州湾叶绿素a浓度及浮游植物的粒级组成[J]. 应用生态学报, 2009, 20(10): 2468-2474. PAN S J, SHEN Z L. Chlorophyll-a concentration and phytoplankton size-fractionated composition in Jiaozhou Bay[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2468-2474 (in Chinese).