-
随着世界人口增长与工业化进程加快,水资源短缺与污染问题严重影响人类生活. 印染行业的发展给我们带来了五颜六色的染料和布料,与此同时,也产生了几十万吨的废水[1]. 据统计,印染废水占全球排放废水的20%. 印染废水成分复杂含有大量的染料和无机盐,大量有害染料排放到水体对生态环境造成严重危害,且丰富的无机盐排放也造成了资源浪费[2 − 3]. 因此,高效处理印染废水并实现染料和无机盐有效分离具有重要的现实意义.
目前,常用的印染废水处理工艺有吸附法、化学氧化、电化学沉淀等,这些方法能够有效处理印染废水,但无法实现染料和无机盐混合物选择性分离,且常规工艺易产生二次污染[4]. 与其他技术相比,膜分离技术表现出能耗低、无二次污染等优点,其中纳滤技术被广泛用于处理印染废水中[5]. 然而,商业纳滤膜具有致密的分离层,可以有效去除染料分子并对无机盐有较高的去除率,却很难实现染料分子和无机盐的选择性分离[6]. 最近,较大孔径的疏松复合膜得到越来越多的关注[7].
近年来,界面聚合(IP)法是制备疏松纳滤膜最常用的方法,通过添加多孔和官能团的材料来制备染料和盐选择性分离的疏松纳滤膜[8],例如,在分离层中加入二维材料、两性离子、金属有机框架(MOFs)等功能性材料,来改善膜的性能[9 − 11]. MOFs材料由于其高比表面积和可调节孔径等性质,已广泛用于制备疏松纳滤膜[12]. 例如,Zhou等通过真空过滤辅助和化学交联制备了CuTz-1/GO复合膜,该膜具有高渗透通量40.2 L·m−2·h−1·bar−1,刚果红的去除率高达99.4%,以及低脱盐率(NaCl为0.3%),并且在可见光照下,膜表面附着的染料被有效光催化去除,膜的性能几乎恢复到原来的分离效果[13]. 另外,单宁酸(TA)是一种廉价的天然多酚化合物,具有丰富的酚羟基,可以与金属离子发生螯合反应生成非晶体化的金属/多酚网络,这在膜分离领域引起了关注[14]. Liu等通过配位组装将TA和PEI接枝到聚醚砜/Fe超滤膜上,优化后的疏松复合膜具有较高纯水通量(124.6 L·m−2·h−1·bar−1),高染料去除率(刚果红为99.8%)和低脱盐率(NaCl为5.3%)[15].
本研究以单宁酸为改性剂,通过溶剂热合成了具有亲水性和光催化特性的MIL-53(Fe) 纳米颗粒 (TA@MIL-53(Fe)). 由于TA含有大量的酚羟基,利用其亲水性包覆复合材料,此外,利用TA与金属离子发生螯合反应,使得TA与MOF中的Fe3+配位生成金属/多酚网络. 利用TA的弱酸性蚀刻MOF,蚀刻过程不会改变材料的框架结构. 因此,TA@MIL-53(Fe) 可以作为良好的材料用于制备疏松复合膜. 对合成的缺陷型TA@MIL-53(Fe) 纳米颗粒的结构和性能进行了系统的研究,以哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为油相单体,通过IP法将TA@MIL-53(Fe) 纳米颗粒包埋在PA层中制备疏松复合膜. 详细分析了TA@MIL-53(Fe) 负载对复合膜形貌、化学结构及分离性能的影响. 另外,对最优疏松纳滤膜进行了染料脱盐、长期稳定性、抗污性能及光催化自清洁测试. 结果表明,所制备的疏松复合膜具有高渗透通量,优异的染料截留率和较低的脱盐率,且具有优异的光催化自清洁性能.
基于单宁酸改性MIL-53(Fe)制备光催化自清洁复合膜用于高效染料/盐分离
Preparation of photocatalytic self-cleaning composite membrane high-efficiency dyes/salt separation based on tannin modified MIL-53(Fe)
-
摘要: 膜分离技术已广泛应用于印染废水处理中,用于染料/盐混合物的选择性分离. 然而,目前商业膜通量低和不可避免的污染问题大大降低了处理效率. 本文利用单宁酸(TA)的表面官能化和刻蚀作用制备了具有亲水性和光催化活性的TA@MIL-53(Fe)粉末,并通过真空抽滤辅助技术将光催化活性材料引入聚酰胺(PA)选择层,制备了一种新型高通量自清洁复合膜. 使用SEM、AFM、FTIR以及UV-vis等表征探究材料对复合膜的影响以及光催化自清洁机理. 结果表明,当TA@MIL-53(Fe)添加量为0.02% wt时,复合膜性能最优,通量高达64.2 L·m−2·h−1·bar−1,对MB和TB的染料截留率均保持在95%以上. 同时,所制备的膜对盐的去除率较低. 此外,与水力冲洗后的膜通量回收率(FRR)相比,MPTA-0.02复合膜经光催化自清洗后的FRR高达96.5%. 与此同时,MPTA-0.02复合膜具有良好的自清洗性能和长期稳定性. 这为开发具有优良防污性能的染料/盐分离膜提供了新的思路.
-
关键词:
- 单宁酸 /
- MIL-53(Fe) /
- 高通量 /
- 光催化自清洁 /
- 染料/盐.
Abstract: Membrane separation has been widely employed in printing and dyeing wastewater treatment (PDW) for selective separation of dyes/salt mixtures. However, the current low membrane flux and inevitable fouling issues greatly reduce treatment efficiency. In this paper, TA@MIL-53(Fe) powder with hydrophilic and photocatalytic activity was prepared by surface functionalization and etching of tannins (TA). Subsequently, a novel high-throughput self-cleaning composite membrane was developed by incorporating photocatalytic active materials into the polyamide (PA) selection layer using vacuum filtration assisted technology. SEM, AFM, FTIR and UV-vis were used to explore the influence of materials on composite membranes and the photocatalytic self-cleaning mechanism. The results revealed that the composite membrane exhibited optimal performance when the amount of TA@MIL-53(Fe) added was 0.02% wt. At this composition, the membrane demonstrated a flux of 64.2 L·m−2·h−1·bar−1, with the dye retention rate for MB and TB remaining above 95%. At the same time, the prepared membrane had a low salt removal rate. Furthermore, compared to the membrane flux recovery (FRR) achieved through hydraulic flushing, the FRR of the MPTA-0.02 composite membrane after photocatalytic self-cleaning reached 96.5%. At the same time, MPTA-0.02 composite film had good self-cleaning performance and long-term stability. This provides a new approach for the development of dyes/salt separation membranes with excellent antifouling properties.-
Key words:
- tannic acid /
- MIL-53(Fe) /
- high throughput /
- photocatalytic self-cleaning /
- dyes/salts.
-
图 12 MPTA-0.02复合膜抗污性能测试: (a) 复合膜在不同染料溶液中循环过滤测试, (b) 复合膜污染情况, (c) 膜的通量恢复率(FRR)
Figure 12. MPTA-0.02 composite membrane anti-fouling performance test: (a) cyclic filtration test of the composite membrane in different dye solutions, (b) contamination of the composite membrane, (c) flux recovery rate (FRR) of the membrane
-
[1] SUN Z Y, ZHU X W, TAN F X, et al. Poly(vinyl alcohol)-based highly permeable TFC nanofiltration membranes for selective dye/salt separation[J]. Desalination, 2023, 553: 116479. doi: 10.1016/j.desal.2023.116479 [2] JOSHI U S, JEWRAJKA S K. Tight ultrafiltration and loose nanofiltration membranes by concentration polarization-driven fast layer-by-layer self-assembly for fractionation of dye/salt[J]. Journal of Membrane Science, 2023, 669: 121286. doi: 10.1016/j.memsci.2022.121286 [3] SONG Y F, SUN Y K, ZHANG N, et al. Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent[J]. Separation and Purification Technology, 2021, 271: 118870. doi: 10.1016/j.seppur.2021.118870 [4] EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. doi: 10.1016/j.jwpe.2022.103273 [5] ZHAO D L, FENG F, SHEN L G, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454: 140447. doi: 10.1016/j.cej.2022.140447 [6] FENG X Q, LIU D C, YE H, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533. doi: 10.1016/j.seppur.2021.119533 [7] ZHANG P F, RAJABZADEH S, SONG Q Q, et al. Development of loose nanofiltration PVDF hollow fiber membrane for dye/salt separation[J]. Desalination, 2023, 549: 116315. doi: 10.1016/j.desal.2022.116315 [8] SAMSAMI S, MOHAMADIZANIANI M, SARRAFZADEH M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives[J]. Process Safety and Environmental Protection, 2020, 143: 138-163. doi: 10.1016/j.psep.2020.05.034 [9] ZHAO A N, ZHANG M, BAO Y M, et al. Loose nanofiltration membrane constructed via interfacial polymerization using porous organic cage RCC3 for dye/salt separation[J]. Journal of Membrane Science, 2022, 664: 121081. doi: 10.1016/j.memsci.2022.121081 [10] MARADDI A, HALAKARNI M, MANOHARA HALANUR M, et al. Fe-MOF induced biopolymer-based sustainable self-cleaning membranes for effective selective separation and wastewater treatment[J]. Sustainable Materials and Technologies, 2023, 35: e00537. doi: 10.1016/j.susmat.2022.e00537 [11] HE J S, WANG Y, NI F, et al. Ultra-Highly permeable loose nanofiltration membrane containing PG/PEI/Fe3+ ternary coating for efficient dye/salt separation[J]. Separation and Purification Technology, 2022, 292: 121020. doi: 10.1016/j.seppur.2022.121020 [12] TONG Y H, WU Y Z, XU Z L, et al. Photocatalytic self-cleaning EVAL membrane by incorporating bio-inspired functionalized MIL-101(Fe) for dye/salt separation[J]. Chemical Engineering Journal, 2022, 444: 136507. doi: 10.1016/j.cej.2022.136507 [13] ZHOU S Y, FENG X Q, ZHU J Y, et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation[J]. Journal of Membrane Science, 2021, 623: 119058. doi: 10.1016/j.memsci.2021.119058 [14] LIU Y F, BAI Z X, LIN G, et al. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation[J]. Applied Surface Science, 2022, 584: 152595. doi: 10.1016/j.apsusc.2022.152595 [15] LIU Y F, BAI Z X, LIN G, et al. Tannic acid-mediated interfacial layer-by-layer self-assembly of nanofiltration membranes for high-efficient dye separation[J]. Applied Surface Science, 2022, 602: 154264. doi: 10.1016/j.apsusc.2022.154264 [16] JIANG Y, YANG Q M, XU Q J, et al. Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols[J]. Analytical Biochemistry, 2019, 577: 82-88. doi: 10.1016/j.ab.2019.04.020 [17] YANG J X, WANG D, WANG J H, et al. Corrosion resistance and near-infrared light induced self-healing behavior of polycaprolactone coating with[email protected]on magnesium alloy[J]. Applied Surface Science, 2022, 585: 152729. doi: 10.1016/j.apsusc.2022.152729 [18] JIA Y, LIU P X, LIU Y B, et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification[J]. Fuel, 2023, 339: 126938. doi: 10.1016/j.fuel.2022.126938 [19] KACHHADIYA D D, MURTHY Z V P. Highly efficient chitosan-based bio-polymeric membranes embedded with green solvent encapsulated MIL-53(Fe) for methanol/MTBE separation by pervaporation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109307. doi: 10.1016/j.jece.2023.109307 [20] WU C J, VALERIE MAGGAY I, CHIANG C H, et al. Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane[J]. Chemical Engineering Journal, 2023, 451: 138990. doi: 10.1016/j.cej.2022.138990 [21] GHANBARI R, NAZARZADEH ZARE E, PAIVA-SANTOS A C, et al. Ti3C2Tx MXene@MOF decorated polyvinylidene fluoride membrane for the remediation of heavy metals ions and desalination[J]. Chemosphere, 2022, 311(Pt 2): 137191. [22] QIN Y, LIU H L, LIU Y M, et al. Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure[J]. Journal of Membrane Science, 2020, 604: 118064. doi: 10.1016/j.memsci.2020.118064 [23] XIE H L, SHEN L G, XU Y C, et al. Tannic acid (Ta)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (sp) for efficient oil-water separation[J]. SSRN Electronic Journal, 2022: 120873. [24] LIU S, TONG X, LIU S H, et al. Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property[J]. Journal of Membrane Science, 2021, 626: 119171. doi: 10.1016/j.memsci.2021.119171 [25] XIE H L, CHEN B H, LIN H J, et al. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO3-based biomineralization and TA-Ti(IV) coating strategy[J]. The Science of the Total Environment, 2023, 857(Pt 2): 159183. [26] JI K, YUE Y L, YANG P. Interface effect in MIL-53(Fe)/metal-phenolic network (Ni, Co, and Mn) nanoarchitectures for efficient oxygen evolution reaction[J]. Applied Surface Science, 2023, 608: 155184. doi: 10.1016/j.apsusc.2022.155184 [27] GAO C M, CHEN H Y, LIU S H, et al. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method[J]. Chemosphere, 2022, 288: 132537. doi: 10.1016/j.chemosphere.2021.132537 [28] XUE J J, XU M J, GAO J M, et al. Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127288. doi: 10.1016/j.colsurfa.2021.127288 [29] CHEN Y Z, BAI Y T, MENG L J, et al. Engineering nanocomposite metal-phenolic network membranes with hollow MOFs via in-situ etching for High-efficiency organic solvent nanofiltration[J]. Chemical Engineering Journal, 2022, 437: 135289. doi: 10.1016/j.cej.2022.135289 [30] SINGH S, KHULBE K C, MATSUURA T, et al. Membrane characterization by solute transport and atomic force microscopy[J]. Journal of Membrane Science, 1998, 142(1): 111-127. doi: 10.1016/S0376-7388(97)00329-3 [31] JIA T Z, LU J P, CHENG X Y, et al. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes[J]. Journal of Membrane Science, 2019, 580: 214-223. doi: 10.1016/j.memsci.2019.03.015 [32] BURTS K, PLISKO T, DMITRENKO M, et al. Novel thin film nanocomposite membranes based on chitosan succinate modified with Fe-BTC for enhanced pervaporation dehydration of isopropanol[J]. Membranes, 2022, 12(7): 653. doi: 10.3390/membranes12070653 [33] GU Y H, YAN X, CHEN Y, et al. Exquisite manipulation of two-dimensional laminar graphene oxide (GO) membranes via layer-by-layer self-assembly method with cationic dyes as cross-linkers[J]. Journal of Membrane Science, 2022, 658: 120738. doi: 10.1016/j.memsci.2022.120738 [34] SUN W G, ZHANG N, LI Q, et al. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation[J]. Journal of Membrane Science, 2023, 670: 121372. doi: 10.1016/j.memsci.2023.121372 [35] SHI Q H, ZHANG N, WANG D, et al. Polyethylenimine-mica nanosheets/cellulose nanofibers stacked loose nanofiltration membrane for effective dye/salt separation[J]. Desalination, 2023, 551: 116410. doi: 10.1016/j.desal.2023.116410 [36] LI S L, GUAN Y X, QIN Y W, et al. An antifouling loose nanofiltration membrane prepared by cross-linking HPAN ultrafiltration membrane with zwitterionic polymer PEI-CA for efficient dye desalination[J]. Desalination, 2023, 549: 116354. doi: 10.1016/j.desal.2022.116354 [37] WANG Y, BAO C Y, LI D, et al. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts[J]. Journal of Membrane Science, 2022, 661: 120925. doi: 10.1016/j.memsci.2022.120925 [38] WANG X L, DONG S Q, QIN W, et al. Fabrication of highly permeable CS/NaAlg loose nanofiltration membrane by ionic crosslinking assisted layer-by-layer self-assembly for dye desalination[J]. Separation and Purification Technology, 2022, 284: 120202. doi: 10.1016/j.seppur.2021.120202 [39] XIANG X, CHEN D Y, LI N J, et al. Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation[J]. Separation and Purification Technology, 2022, 282: 119910. doi: 10.1016/j.seppur.2021.119910 [40] KUSWORO T D, YULFARIDA M, KUMORO A C, et al. A highly durable and hydrophilic PVDF- MoS2/WO3-PVA membrane with visible light driven self-cleaning performance for pollutant-burdened natural rubber wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109583. doi: 10.1016/j.jece.2023.109583 [41] CHEN J C, GAO C M, ZHAO S Q, et al. Construction of PES membranes using NH2-MIL-125 and Pluronic F127 via RTIPS method toward elevated ultrafiltration, antifouling and self-cleaning performance[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107162. doi: 10.1016/j.jece.2022.107162