-
近年来,随着我国汽车行业的发展和人们生活水平的提高,汽车保有量迅速增加,截至2022年3月底,全国汽车保有量达3.07 亿辆[1]. 机动车数量的激增使得城市发展空间受到限制,地上停车场已无法满足日益增长的停车需求,地下车库成为许多城市解决停车问题的主要途径. 机动车尾气排放是城市大气污染的主要来源之一,在开阔的室外环境,机动车尾气能够较快扩散或被稀释,而地下车库内车辆进出频繁,往往伴随刹车、怠速、冷启动等污染物排放量较大的过程[2],并且地下车库处于封闭半封闭状态,易造成污染物大量积累.
目前地下车库的相关研究主要关注一氧化碳、氮氧化合物、颗粒物等常规气态污染物,而关于大型城市商场地下车库中挥发性有机物(volatile organic compounds,VOCs)组分污染特征研究还较少. VOCs是大气中臭氧和二次有机气溶胶的重要前体物,成分复杂,包含数百种组分,某些组分(如苯、甲苯、二甲苯)具有毒性、刺激性、致畸性和致癌作用,对人体健康的危害不容忽视[3]. 城市商业建筑的地下车库中空气流动性较差,汽车尾气排放的VOCs不易发生扩散,某些时段人流量较大,长期暴露于高浓度VOCs环境中,人体呼吸系统、神经系统、造血系统等可能会出现慢性或急性损伤[4].
本研究在城市商业建筑地下车库中开展75 种VOCs观测实验,分析采样期间VOCs的污染特征,为地下车库的环境空气质量和健康风险评价提供基础数据.
城市商业建筑地下车库挥发性有机物(VOCs)污染特征及健康风险评价
Pollution characteristics and health risk assessment of volatile organic compounds (VOCs ) in underground garages of urban commercial buildings
-
摘要: 为研究城市商业建筑地下车库中挥发性有机物(VOCs)的污染特征及潜在影响,在所选取盐城市3 个典型商场的地下车库里进行了VOCs采样监测,获得了VOCs浓度水平、组成和日变化特征,评价了人体健康风险. 观测期间,3 个地下车库在9:00—13:00时间段内所有样品的总挥发性有机物(TVOCs)平均值分别为(2547.9±1595.2) μg·m−3、(1376.7±122.7) μg·m−3、(1689.1±93.1) μg·m−3;在所分析的75 种VOCs中3 个地下车库VOCs检出率分别为52.0%、36.0%和34.7%. 各地下车库所测VOCs占前几位的组分分别为甲苯(30.5%—48.2%)、异丙醇(4.5%—27.2%)、2-丁酮(3.8%—12.4%)、甲基环戊烷(2.2%—2.8%)、苯(1.5%—2.6%)、1,2-二氯乙烷(1.7%—2.2%). VOCs日变化浓度主要与车流量有关,在11:00和21:00时刻出现浓度峰值,分别为3785.4 μg·m−3、8694.3 μg·m−3. 健康风险评价结果表明,3 个地下车库内所监测的VOCs的非致癌风险危害指数(HI)分别为4.1、4.3和7.4,均超过了美国环境保护局推荐的最大可接受水平(HI=1);苯和乙苯的终生致癌风险因子值(Risk)分别在(1.2×10−4—6.2×10−4)、(3.8×10−6—2.5×10−5),均超出了安全阈值范围(Risk≤1×10−6),3 个地下车库均存在一定健康风险.Abstract: To study the pollution characteristics and potential impacts of volatile organic compounds (VOCs) in underground garages of urban commercial buildings, VOCs sampling and monitoring were conducted in underground garages of three selected typical shopping malls in Yancheng to obtain the VOCs concentration levels, composition and diurnal variation characteristics, and to evaluate human health risks. During the observation period, the mean values of total volatile organic compounds (TVOCs) of all samples in the three underground garages from 9:00 to 13:00 were (2547.9±1595.2) μg·m−3、(1376.7±122.7) μg·m−3、(1689.1±93.1) μg·m−3 , respectively. Among the 75 types of VOCs analyzed, the detection rates of VOCs in the three underground garages were 52.0%, 36.0% and 34.7%, respectively. The top components of VOCs measured in each underground garage were toluene(30.5%—48.2%), isopropanol(4.5%—27.2%), 2-butanone (3.8%—12.4%), methyl-cyclopentane(2.2%—2.8%), benzene(1.5%—2.6%), and 1,2-dichloroethane (1.7%—2.2%). The diurnal concentration of VOCs in the underground garage was mainly related to the traffic flow, with two peak concentrations of 3785.4 μg·m−3 and 8694.3 μg·m−3 at 11:00 and 21:00, respectively. The results of health risk evaluation showed that the non-carcinogenic risk hazard index (HI) of the VOCs monitored in the three underground garages were 4.1, 4.3 and 7.4, which exceeded the maximum acceptable level (HI=1) recommended by the U.S. Environmental Protection Agency. The lifetime carcinogenic risk factors (Risk) for benzene and ethylbenzene were(1.2×10−4—6.2×10−4) and(3.8×10−6—2.5×10−5), which were beyond the safety threshold range (Risk≤1×10−6). Health risks existed in all three underground garages.
-
Key words:
- underground garage /
- volatile organic compounds /
- health risk assessment
-
表 1 VOCs目标化合物
Table 1. Target VOCs
类别
TypesVOCs组分及其对应R2
VOCs components and their corresponding R2烷烃(Alkanes) 正己烷(0.998)、环已烷(0.995)、正庚烷(0.997) 烯烃(Alkenes) 丙烯(0.99)、1,3-丁二烯(0.99) 芳香烃(Aromatics) 苯(0.999)、甲苯(0.995)、乙基苯(0.994)、1,2-二甲基苯(0.996)、间,对-二甲苯(0.992)、1,3,5-三甲基苯(0.992)、1,2,4-三甲基苯(0.997)、4-乙基甲苯(0.997)、苯乙烯(0.995)、萘(0.99) OVOCs 丙酮(0.995)、2-丁酮(0.998)、2-己酮(0.996)、甲基异丁酮(0.999)、异丙醇(0.999)、丙烯醛(0.99)、乙醇(0.99)、
乙酸乙酯(0.994)、乙酸乙烯酯(0.99)、甲基叔丁基醚(0.992)、四氢呋喃(0.999)、甲基丙烯酸甲酯(0.999)、
1,4-二恶烷(0.998)卤代烃(Halocarbons) 一氯甲烷(0.99)、三溴甲烷(0.998)、一溴二氯甲烷(0.995)、1,1-二氯乙烷(0.999)、1,1,2-三氯乙烷(0.992)、顺式-1,2-二氯乙烯(0.999)、顺式-1,3-二氯丙烯(0.999)、二氟二氯甲烷(0.99)、1,2-二氯丙烷(0.998)、1,1,2-三氟三氯乙烷(0.997)、溴甲烷(0.993)、1,2-二氯乙烷(0.999)、1,2-二溴乙烷(0.997)、三氯氟甲烷(0.998)、1,1,2,2-四氟-1,2-二氯乙烷(0.99)、二氯甲烷(0.99)、1,1,2,2-四氯乙烷(0.993)、1,1,1-三氯乙烷(0.996)、氯乙烷(0.99)、氯二溴甲烷(0.995)、四氯乙烯(0.995)、六氯-1,3-丁二烯(0.997)、三氯乙烯(0.999)、反式-1,3-二氯丙烯(0.998)、氯乙烯(0.99)、1,1-二氯乙烯(0.997)、反式-1,2-二氯乙烯(0.998)、氯苯(0.998)、1,2-二氯苯(0.997)、1,4-二氯苯(0.995)、1,3-二氯苯(0.997)、1,2,4-三氯苯(0.99)、苄基氯(0.994)、氯仿(0.999)、四氯化碳(0.999) 硫化物(Sulfides) 二硫化碳(0.99) 表 2 不同研究中VOCs主要组分的比较
Table 2. Comparison of the main components of VOCs in different studies
对象
ObjectsVOCs主要组分
The main components of VOCs参考文献
References地下车库环境样品
(Sample underground garage environment)甲苯、二甲苯、苯、异丙醇、2-丁酮、丙酮、正癸烷、十一烷、1,2-二氯乙烷 本研究 整个运行工况的汽车尾气
(Exhaust gas from gasoline vehicles for the entire operating conditions)甲苯、二甲苯、乙苯、正癸烷、1,2,4-三甲苯、苯 乔月珍等[19] 甲苯、二甲苯、C5—C6 烷烃、苯、C2—C4 烯烃 Dai等[20] 甲苯、二甲苯、异戊烷、1-丁烯、乙烯、苯 段乐军等[15] 低速工况下的汽车尾气
(Exhaust gasoline vehicle at idling conditions)乙烯、甲苯、乙烷、丙烷、苯、二甲苯 陆思华等[21] 甲苯、二甲苯、乙炔、乙烯、正己醛、丙酮 张靳杰等[13] 高速工况下的汽车尾气
(Exhaust gasoline vehicle at high speed conditions)异戊烷、甲苯、二甲苯、二氯甲烷、正己醛 张靳杰等[13] 乙烷、乙烯、异戊烷、甲苯、1,2-二氯乙烷 高爽等[22] 表 3 各地下车库VOCs健康风险评价
Table 3. VOCs health risk assessment of each underground garage
组分
ComponentsRfC IUR HQ Risk 地下车库A
Underground
garage A地下车库B
Underground
garage B地下车库C
Underground
garage C地下车库A
Underground
garage A地下车库B
Underground
garage B地下车库C
Underground
garage C正己烷 0.7 — 0.005738 0.000652 0.001461 — — — 环己烷 6.0 — 0.000021 — 0.000892 — — — 苯 0.03 7.8×10−6 1.709147 3.476952 6.189932 1.2×10−4 3.5×10−4 6.2×10−4 甲苯 5.0 — 0.217777 0.000137 — — — — 乙苯 1.0 2.5×10−6 0.027645 0.003574 0.006213 2.5×10−5 3.8×10−6 6.7×10−6 间,对-二甲苯 0.1 — 0.010916 0.034546 0.019412 — — — 1,2-二甲苯 0.1 — 0.046718 — — — — — 1,3,5-三甲苯 0.06 — 0.021107 — 0.009749 — — — 1,2,4-三甲苯 0.06 — 0.054257 — — — — — 1,2,3-三甲苯 0.06 — 0.063806 — — — — — 苯乙烯 1.0 — — — 0.002545 — — — 2-丁酮 5.0 — 0.014437 0.002640 0.002957 — — — 环己酮 0.7 — — 0.000729 0.006776 — — — 1,2-二氯乙烷 0.007 — 1.801733 0.782779 1.201451 — — — 氯苯 0.05 — 0.115255 — — — — — 1,1,2-三氯乙烷 — 1.6×10−5 — — — 1.9×10−4 — - 注:“-”为缺省值. Note: "-" is the default value. -
[1] 中华人民共和国公安部. 全国机动车保有量突破4亿辆, 一季度新注册登记新能源汽车111万辆, 同比增加138.20%[EB/OL]. The Ministry of Public Security of the People's Republic of China. National motor vehicle fleet exceeds 400 million vehicles, 1.11 million new energy vehicles registered in the first quarter, an increase of 138.20% [EB/OL].
[2] 白文艳. 城市商业建筑地下车库气态污染物污染特性及其影响因素研究[D]. 西安: 长安大学, 2021. BAI W Y. Study on pollution characteristics and influencing factors of gaseous pollutants in urban commercial buildings underground parking garage[D]. Xi'an: Changan University, 2021 (in Chinese).
[3] 孙丽娜, 刘刚. 环境空气中挥发性有机污染物的研究现状[J]. 环境与健康杂志, 2011, 28(10): 930-933. SUN L N, LIU G. Research advance in volatile organic compounds in air[J]. Journal of Environment and Health, 2011, 28(10): 930-933 (in Chinese).
[4] TAGIYEVA N, SHEIKH A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults[J]. Expert Review of Clinical Immunology, 2014, 10(12): 1611-1639. doi: 10.1586/1744666X.2014.972943 [5] 马召坤, 刘善军, 仇帅, 等. 山东省汽车喷涂行业VOCs排放特征研究[J]. 环境保护科学, 2016, 42(4): 133-138. MA Z K, LIU S J, QIU S, et al. Characteristics of volatile organic compound emission from the automobile painting industry in Shandong Province[J]. Environmental Protection Science, 2016, 42(4): 133-138 (in Chinese).
[6] HIEU N T, LEE B K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea[J]. Atmospheric Research, 2010, 98(2/3/4): 526-537. [7] LI H M, WANG Q G, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution, 2016, 208: 655-662. doi: 10.1016/j.envpol.2015.10.042 [8] USEPA. Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F) [R]. Washington DC: Office of Emergency and Remedial Response, US Environmental Protection Agency, 2009. [9] 甘浩, 徐勃, 张向炎, 等. 淄博市化工园区夏季环境VOCs污染特征及健康风险评价[J]. 环境科学研究, 2022, 35(1): 20-29. GAN H, XU B, ZHANG X Y, et al. Characteristics and health risk assessment of atmospheric VOCs in a chemical industrial park of Zibo in summer[J]. Research of Environmental Sciences, 2022, 35(1): 20-29 (in Chinese).
[10] 马陈熀, 王章玮, 刘建军, 等. 银川都市圈大气挥发性有机物的污染特征及臭氧生成潜势初步分析[J]. 环境化学, 2022, 41(3): 801-812. doi: 10.7524/j.issn.0254-6108.2020111104 MA C H, WANG Z W, LIU J J, et al. Preliminary analysis of pollution characteristics of ambient volatile organic compounds and ozone formation potential in Yinchuan metropolitan area[J]. Environmental Chemistry, 2022, 41(3): 801-812 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020111104
[11] 张猛. 停车场中VOCs组分特征研究[D]. 大连: 大连海事大学, 2016. ZHANG M. The research of VOCs components characteristic in a parking area[D]. Dalian: Dalian Maritime University, 2016 (in Chinese).
[12] 单龙, 咸月, 王磊黎, 等. 盐城市城区VOCs污染特征及来源解析[J]. 中国环境监测, 2021, 37(6): 38-49. SHAN L, XIAN Y, WANG L L, et al. Pollution characteristics and source apportionment of VOCs in Yancheng city[J]. Environmental Monitoring in China, 2021, 37(6): 38-49 (in Chinese).
[13] 张靳杰. 武汉市机动车尾气VOCs和颗粒物排放特征研究[D]. 武汉: 华中科技大学, 2019. ZHANG J J. Study on the characteristics of volatile organic compounds and particulate matter from on-use vehicles in Wuhan[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
[14] CAO X Y, YAO Z L, SHEN X B, et al. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China[J]. Atmospheric Environment, 2016, 124: 146-155. doi: 10.1016/j.atmosenv.2015.06.019 [15] 段乐君, 袁自冰, 沙青娥, 等. 不同排放标准下机动车挥发性有机化合物排放特征趋势研究[J]. 环境科学学报, 2021, 41(4): 1239-1249. DUAN L J, YUAN Z B, SHA Q E, et al. Investigation on the trend of emission characteristics of volatile organic compounds from motor vehicle exhaust under different emission standards[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1239-1249 (in Chinese).
[16] 刘丽莉, 姚志良. 机动车尾气排放VOCs研究进展[J]. 环境科学与技术, 2012, 35(3): 68-74, 103. doi: 10.3969/j.issn.1003-6504.2012.03.016 LIU L L, YAO Z L. Review on study of VOCs emission from vehicles[J]. Environmental Science & Technology, 2012, 35(3): 68-74, 103 (in Chinese). doi: 10.3969/j.issn.1003-6504.2012.03.016
[17] 姚立, 葛茂发, 乔志敏, 等. 挥发性有机物对流层大气化学过程研究进展[J]. 化学通报, 2006, 69(5): 399. YAO L, GE M F, QIAO Z M, et al. Progresses of tropospheric chemistry of volatile organic compounds[J]. Chemistry, 2006, 69(5): 399 (in Chinese).
[18] 王攀, 聂晶, 任连海, 等. 餐厨垃圾处理厂挥发性有机物释放特征[J]. 环境污染与防治, 2013, 35(9): 14-18. WANG P, NIE J, REN L H, et al. The emission characteristics of volatile organic compounds from food waste treatment plant[J]. Environmental Pollution & Control, 2013, 35(9): 14-18 (in Chinese).
[19] 乔月珍, 王红丽, 黄成, 等. 机动车尾气排放VOCs源成分谱及其大气反应活性[J]. 环境科学, 2012, 33(4): 1071-1079. QIAO Y Z, WANG H L, HUANG C, et al. Source profile and chemical reactivity of volatile organic compounds from vehicle exhaust[J]. Environmental Science, 2012, 33(4): 1071-1079 (in Chinese).
[20] DAI T Y, WANG W, REN L H, et al. Emissions of non-methane hydrocarbons from cars in China[J]. Science China Chemistry, 2010, 53(1): 263-272. doi: 10.1007/s11426-010-0002-6 [21] 陆思华, 白郁华, 张广山, 等. 机动车排放及汽油中VOCs成分谱特征的研究[J]. 北京大学学报(自然科学版), 2003, 39(4): 507-511. doi: 10.13209/j.0479-8023.2003.077 LU S H, BAI Y H, ZHANG G S, et al. Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2003, 39(4): 507-511 (in Chinese). doi: 10.13209/j.0479-8023.2003.077
[22] 高爽, 金亮茂, 史建武, 等. 轻型汽油车VOCs排放特征和排放因子台架测试研究[J]. 中国环境科学, 2012, 32(3): 397-405. doi: 10.3969/j.issn.1000-6923.2012.03.003 GAO S, JIN L M, SHI J W, et al. VOCs emission characteristics and emission factors of light-duty gasoline vehicles with bench test[J]. China Environmental Science, 2012, 32(3): 397-405 (in Chinese). doi: 10.3969/j.issn.1000-6923.2012.03.003
[23] 赵燕. 挥发性有机化合物大气反应机理的理论研究[D]. 济南: 山东大学, 2009. ZHAO Y. Theoretical study on the atmospheric reaction mechanism of volatile organic compounds[D]. Jinan: Shandong University, 2009 (in Chinese).