-
石油是人类重要的能源和工业原料. 在石油的开采、运输和炼制过程中,会不可避免地发生泄漏. 海洋作为石油运输的重要通道及陆源污染物的汇集地,石油污染风险较高. 曾发生过如“埃克森·瓦尔迪兹号(Exxon Valdez)”溢油、“深水地平线(Deepwater Horizon)”溢油、“河北精神号(Hebei Spirit)”溢油、“桑吉轮(Sanchi)”溢油、“蓬莱19-3溢油”、“11·22中石化东黄输油管道泄漏事故”、“交响乐轮(Symphony)”溢油等溢油事故,海洋石油污染伴随着人类社会经济的发展. 石油是含有多种烃类的混合物,在短期和长期时间内都可对海洋生态系统造成严重危害. 溢油初期的大量泄露会引起浮游类生物、鱼类、鸟类的死亡[1-2]. 而长期存在于海洋环境的石油烃(如多环芳烃类),会对海洋植物-红树林造成基因水平上的损伤[3],会改变海洋生物体内激素水平而引起死亡[4]. 在溢油污染发生后,有效的处理技术或方法能够减轻石油污染对海洋环境的影响.
当前,海洋石油污染去除主要通过化学、物理、生物等技术方法,包括分散剂、凝油剂、原位燃烧、围油栏、撇油器、吸附材料以及生物修复等. 在溢油事故应急处理中,喷洒分散剂往往是采取较多的处理方式. 但分散剂的使用并不能直接去除海洋中的石油,而是通过自身的分子特性将水面的油分散成油滴进入水相. 另外,大量的使用致使分散剂成分长时间滞留于海洋环境中,从而造成二次污染. 当采用燃烧法对水面石油进行燃烧时,会向大气中释放大量的黑碳并会再次沉积到海底[5];另外,燃烧过程中会产生大量的二噁英和呋喃等有毒物[6]. 围油栏和撇油器等机械设备能够阻止水面浮油的扩散并进行回收,且不会对环境造成二次污染,但易受天气和海况影响. 生物修复技术是依靠微生物的新陈代谢从而降解石油污染物,其修复过程较为漫长,一般作为末端处理措施使用[7].
吸附是一种经济、简单直接的处理方法,能够弥补上述处理措施存在的缺陷和不足. 用于吸附溢油的材料主要包括天然有机、合成有机以及无机材料. 天然有机吸附剂,来源广泛、简单易得且生物降解性强. 作为天然有机吸附剂之一的碳材料由于其具备孔隙发达、比表面积大等优点近年来得到了较多的关注,其中最具代表性的就是生物炭. 生物炭具有适应性强、原料广泛、制备简单等特点,且在吸附石油后可作为燃料直接燃烧产能.
生物炭起源于亚马逊盆地发现的一种黝黑且肥沃的土壤—“Terra Preta”,其意为“黑土”. “Terra Preta”土壤保持较高肥沃性的原因是其中含有大量的“木炭”类物质,后经科学家研究将其称为“生物炭”. 生物炭是通过在缺氧环境中加热而形成的富含碳的固体物质,原料来源包含植物、粪便、活性污泥、废弃物等[8]. 生物炭的理化性质主要受原料类型和制备条件的影响. 总的来说生物炭具有孔隙度高、比表面积大、阳离子交换量高、结构稳定、原料易得、成本低等优点[9]. 因此,生物炭成为了近年来的研究热点,关于生物炭的文章也越来越多(图1). 生物炭作为一种较理想的吸附剂常用于去除环境中的各类污染物,例如重金属、农药、抗生素、油类等[8]. 其次,生物炭在用于土壤时可保持土壤肥力,改善土壤物理性质,提高农作物产量,减少氮排放[10]. 另外,作为减少全球废弃物碳足迹的有效策略,将固体废弃物转化为生物炭,能够减少温室气体排放,实现碳封存,有利于促进循环经济发展[11].
为适应应用时不同的环境条件,通常会对生物炭进行改性处理,提高其使用性能. 在已有的研究中,常采用酸碱、氧化剂、金属及有机物改性等方法对其进行处理[12]. 尤其,在利用生物炭从水环境中去除有机污染物时,其去除效果主要是由表面疏水性决定的. 因此,往往会对生物炭进行疏水化处理,增强生物炭和目标污染物之间的相互作用,从而提高吸附效率. 生物炭在石油烃污染修复方面,除了作为吸附剂外,还可利用自身多孔的性质固定化石油烃降解菌去除污染物. 此外,生物炭表面丰富的官能团及营养元素还可刺激本土微生物,增强其代谢活性,有利于污染物的去除[13].
相较于在其他污染物治理方面的应用,生物炭在海洋环境石油污染修复方面受到的关注较少. 在海洋环境日益恶化的背景下,具有诸多优异性能的生物炭在去除海洋石油污染方面将具有广泛的发展空间. 因此,本文将针对生物炭在治理海洋石油污染方面的研究进行综述,详细介绍生物炭的制备过程及影响因素、生物炭的改性或功能化方法以及在海洋溢油治理中的各种应用. 本文将有利于提高人们对生物炭在海洋溢油修复领域的认知和了解.
生物炭材料在海洋石油类污染修复中的应用研究进展
Research progress on the application of biochar materials in the remediation of marine petroleum pollution
-
摘要: 时有发生的溢油事故以及沿海陆源输入性的石油污染会对海洋生态系统造成短期或长期的危害. 生物炭是一种原料来源广、低成本、环境友好的富含碳的材料,是解决全球废弃物碳足迹问题的重要措施. 近年来,基于生物炭的海洋石油烃修复材料被广泛关注. 因此,本文将详细介绍生物炭的制备及生物炭材料在海洋石油烃修复中的应用. 生物炭的制备过程中,其理化性质主要受原料类型、热解速率、热解温度和热解时间的影响. 生物炭的高孔隙率和丰富的表面官能团,使其具有溢油吸附的巨大潜力. 为提高溢油吸附效率,酸改性、磁改性和疏水改性等方法常用来改善生物炭的性质. 此外,生物炭基气凝胶因其独特的吸附性能,也得到了广泛的研究和关注. 除在水环境适用外,利用生物炭还可对沉积物中的石油烃进行封存和修复,以减少其扩散和生物利用度. 多孔、富含营养元素的特点使生物炭可以作为固定化材料来固定石油烃降解菌,以减少海洋环境条件对微生物的冲击,保证菌剂的降解效率. 综上,生物炭具备的各种优异性质使其在海洋石油污染修复中具有广阔的应用前景. 因此,生物炭实际应用的不足及自身存在的某些性质问题,是此后生物炭的研究重点,应当给予更多的关注.Abstract: Oil spills and the pollution of petroleum hydrocarbons from coastal land sources can cause short-term or long-term damage to marine ecosystems. Biochar is a carbon-rich material with a wide source of raw materials, low cost, and environmental friendliness. And it is an important measure to solve the global waste carbon footprint problem. In recent years, biochar materials for the remediation of marine oil pollution have attracted extensive attention. As a result, this paper discusses in great depth how biochar is prepared and used in the remediation of marine petroleum hydrocarbon pollution. In the preparation process of biochar, its physical and chemical properties are mainly affected by the type of raw materials, pyrolysis rate, pyrolysis temperature, and pyrolysis time. The high porosity and abundant surface functional groups of biochar make it have great potential for oil spill adsorption. In order to improve the oil spill adsorption efficiency, methods such as acid modification, magnetic modification, and hydrophobic modification are commonly used to improve the properties of biochar. Furthermore, biochar-based aerogels have received extensive research and attention due to their unique adsorption properties. Except in aquatic environments, biochar can be used to cap and remediate petroleum pollution in sediments to reduce diffusion and bioavailability. Biochar is porous and nutrient-rich, which can be used as an carrier material to immobilize petroleum hydrocarbon degrading bacteria, to reduce the impact of marine environmental conditions on microorganisms and ensure the degradation efficiency of hydrocarbon. In summary, the various excellent properties of biochar make it have broad application prospects in the remediation of marine oil pollution. Therefore, the deficiencies in the practical application of biochar and some of its problems are the focus of biochar research in the future, and more attention and attention should be paid to it.
-
Key words:
- biochar /
- marine oil pollution /
- adsorption /
- sediment.
-
图 4 用Fe3O4制备磁化(a),月桂酸修饰生物炭(b),BC、LBC、MBC、LMBC、MLBC 和含油LBC的SEM照片(c),BC、LBC、MBC、LMBC、MLBC对原油的吸收(d)以及温度对原油吸附的影响(e)[45]
Figure 4. Preparation of Magnetization BC with Fe3O4(a), Lauric acid decoration of BC (b), SEM micrographs of BC, LBC, MBC, LMBC, MLBC, and oil-laden LBC (c), Crude oil uptake by BC, LBC, MBC, LMBC, and MLBC (d), and temperature dependence of crude oil uptake (e)[45]
表 1 不同生物质原料的生物炭气凝胶的吸油能力
Table 1. Oil sorption capacities of biochar aerogels derived from different biomass feedstock.
原料
Feedstock制备工艺
Synthesis process水接触角
Water contact angle油污
Oil contaminants吸附容量/(g·g−1)
Sorption capacity参考文献
Reference香蒲 亚氯酸钠处理,圆柱形模具,过滤,干燥,热解 151.0° 油和有机试剂 42.0—160.0 [52] 剑麻叶片 碱化和漂白处理,冻干纤维素,碳化 158.0° 油、有机试剂 77.7—147.3 [53] 甘蔗残渣 冷冻干燥,碳化 134.6° 有机试剂 31.9—55.02 [54] 玉米苞叶 碱化,漂白,冷冻干燥,碳化 152.0° 油、有机试剂 77.67—143.63 [55] 废弃榴莲壳 切割,水热处理,热解 112.3° 油、有机试剂 3.24—19.28 [56] 废弃报纸 冷冻干燥,热解 132.0° 油、有机试剂 29.0—51.0 [57] 香蕉皮和废报纸 冷冻干燥,热解 149.3° 油、有机试剂 35.0—115.0 [58] -
[1] ALY W, ABOUELFADL K Y. Impact of low-level water pollution on some biological aspects of redbelly tilapia (Coptodon zillii) in River Nile, Egypt [J]. The Egyptian Journal of Aquatic Research, 2020, 46(3): 273-279. doi: 10.1016/j.ejar.2020.08.001 [2] QUIGG A, PARSONS M, BARGU S, et al. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill [J]. Marine Pollution Bulletin, 2021, 164: 112074. doi: 10.1016/j.marpolbul.2021.112074 [3] VELDKORNET D, RAJKARAN A, PAUL S, et al. Oil induces chlorophyll deficient propagules in mangroves [J]. Marine Pollution Bulletin, 2020, 150: 110667. doi: 10.1016/j.marpolbul.2019.110667 [4] WIKELSKI M, WONG V, CHEVALIER B, et al. Marine iguanas Die from trace oil pollution [J]. Nature, 2002, 417: 607-608. doi: 10.1038/417607a [5] PERRING A E, SCHWARZ J P, SPACKMAN J R, et al. Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill [J]. Geophysical Research Letters, 2011, 38(17): L17809. [6] AURELL J, GULLETT B K. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns [J]. Environmental Science & Technology, 2010, 44(24): 9431-9437. [7] KUMAR V, KUMAR M, PRASAD R. Microbial Action on Hydrocarbons[M]. Singapore: Springer Singapore, 2018. [8] WU L, LI B H, LIU M Z. Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars [J]. Chemosphere, 2018, 210: 239-246. doi: 10.1016/j.chemosphere.2018.07.003 [9] LEHMANN J, JOSEPH S. Biochar for Environmental Management: Science, Technology and Implementation[M]. London: Routledge, 2015. [10] MORALES V L, PÉREZ-RECHE F J, HAPCA S M, et al. Reverse engineering of biochar [J]. Bioresource Technology, 2015, 183: 163-174. doi: 10.1016/j.biortech.2015.02.043 [11] WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality [J]. The Innovation, 2021, 2(4): 100180. doi: 10.1016/j.xinn.2021.100180 [12] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater [J]. Bioresource Technology, 2016, 214: 836-851. doi: 10.1016/j.biortech.2016.05.057 [13] NGUYEN H N, PIGNATELLO J J. Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills [J]. Environmental Engineering Science, 2013, 30(7): 374-380. doi: 10.1089/ees.2012.0411 [14] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments [J]. Journal of Hazardous Materials, 2021, 404: 124052. doi: 10.1016/j.jhazmat.2020.124052 [15] ONI B A, OZIEGBE O, OLAWOLE O O. Significance of biochar application to the environment and economy [J]. Annals of Agricultural Sciences, 2019, 64(2): 222-236. doi: 10.1016/j.aoas.2019.12.006 [16] MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion [J]. Bioresource Technology, 2014, 164: 189-197. doi: 10.1016/j.biortech.2014.05.008 [17] 盛奎川, 杨生茂. 生物炭概念的内涵及语词辨析 [J]. 核农学报, 2022, 36(2): 481-487. doi: 10.11869/j.issn.100-8551.2022.02.0481 SHENG K C, YANG S M. Biochar concept connotation and phrases discrimination [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 481-487(in Chinese). doi: 10.11869/j.issn.100-8551.2022.02.0481
[18] VAUGHN S F, KENAR J A, THOMPSON A R, et al. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates [J]. Industrial Crops and Products, 2013, 51: 437-443. doi: 10.1016/j.indcrop.2013.10.010 [19] DAI Y J, ZHANG N X, XING C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review [J]. Chemosphere, 2019, 223: 12-27. doi: 10.1016/j.chemosphere.2019.01.161 [20] YOU S M, OK Y S, CHEN S S, et al. A critical review on sustainable biochar system through gasification: Energy and environmental applications [J]. Bioresource Technology, 2017, 246: 242-253. doi: 10.1016/j.biortech.2017.06.177 [21] FANG J E, ZHAN L, OK Y S, et al. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass [J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 15-21. doi: 10.1016/j.jiec.2017.08.026 [22] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282 [23] MOHAN D, PITTMAN C U Jr, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review [J]. Energy & Fuels, 2006, 20(3): 848-889. [24] ZHANG Y C, WANG X, LIU B J, et al. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality [J]. Chemosphere, 2020, 246: 125699. doi: 10.1016/j.chemosphere.2019.125699 [25] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading [J]. Biomass and Bioenergy, 2012, 38: 68-94. doi: 10.1016/j.biombioe.2011.01.048 [26] SHAKOOR M B, ALI S, RIZWAN M, et al. A review of biochar-based sorbents for separation of heavy metals from water [J]. International Journal of Phytoremediation, 2020, 22(2): 111-126. doi: 10.1080/15226514.2019.1647405 [27] GE S B, YEK P N Y, CHENG Y W, et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach [J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110148. doi: 10.1016/j.rser.2020.110148 [28] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J]. Chemosphere, 2010, 80(8): 935-940. doi: 10.1016/j.chemosphere.2010.05.020 [29] HIGASHIKAWA F S, CONZ R F, COLZATO M, et al. Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water [J]. Journal of Cleaner Production, 2016, 137: 965-972. doi: 10.1016/j.jclepro.2016.07.205 [30] TANG J C, ZHU W Y, KOOKANA R, et al. Characteristics of biochar and its application in remediation of contaminated soil [J]. Journal of Bioscience and Bioengineering, 2013, 116(6): 653-659. doi: 10.1016/j.jbiosc.2013.05.035 [31] YUAN P, WANG J Q, PAN Y J, et al. Review of biochar for the management of contaminated soil: Preparation, application and prospect [J]. Science of the Total Environment, 2019, 659: 473-490. doi: 10.1016/j.scitotenv.2018.12.400 [32] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2010, 44(4): 1247-1253. [33] YANG M Y, WANG J Q, CHEN Y, et al. Biochar produced from cotton husks and its application for the adsorption of oil products [J]. IOP Conference Series:Earth and Environmental Science, 2020, 545(1): 012022. doi: 10.1088/1755-1315/545/1/012022 [34] ZHAO M Y, CUI Y B, LI X, et al. Study on purification of oil-polluted sea water by rice hull adsorbent[J]. Applied Mechanics and Materials, 2013, 295/296/297/298: 1245-1248. [35] KANDANELLI R, MEESALA L, KUMAR J, et al. Cost effective and practically viable oil spillage mitigation: Comprehensive study with biochar [J]. Marine Pollution Bulletin, 2018, 128: 32-40. doi: 10.1016/j.marpolbul.2018.01.010 [36] 张明远. 利用生物炭去除海水及沙砾中石油污染的研究[D]. 青岛: 青岛理工大学, 2019. ZHANG M Y. Study on using biochar to remove oil pollution from seawater and sand[D]. Qingdao: Qingdao Tehcnology University, 2019 (in Chinese).
[37] EL GHERIANY I A, AHMAD EL SAQA F, ABD EL RAZEK AMER A, et al. Oil spill sorption capacity of raw and thermally modified orange peel waste [J]. Alexandria Engineering Journal, 2020, 59(2): 925-932. doi: 10.1016/j.aej.2020.03.024 [38] LEE K T, CHENG C L, LEE D S, et al. Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel [J]. Energy, 2022, 239: 122467. doi: 10.1016/j.energy.2021.122467 [39] AlAMERI K, GIWA A, YOUSEF L, et al. Sorption and removal of crude oil spills from seawater using peat-derived biochar: An optimization study [J]. Journal of Environmental Management, 2019, 250: 109465. doi: 10.1016/j.jenvman.2019.109465 [40] 赵莹莹. 利用海产废弃物制备生物炭吸附海水中石油的研究[D]. 青岛: 青岛理工大学, 2021. ZHAO Y Y. Study on useing biochar prepared by marine waste to adsorb oil from seawater[D]. Qingdao: Qingdao Tehcnology University, 2021 (in Chinese).
[41] PENG P, LANG Y H, WANG X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms [J]. Ecological Engineering, 2016, 90: 225-233. doi: 10.1016/j.ecoleng.2016.01.039 [42] 孟蒙蒙, 夏文香, 许如康, 等. 盐酸改性松木屑生物炭吸附海洋溢油的模拟研究 [J]. 海洋环境科学, 2022, 41(3): 474-480,488. doi: 10.12111/j.mes.20210024 MENG M M, XIA W X, XU R K, et al. Study on adsorption of marine oil spill by hydrochloric acid modified pine sawdust biochar [J]. Marine Environmental Science, 2022, 41(3): 474-480,488(in Chinese). doi: 10.12111/j.mes.20210024
[43] 姚鑫鑫. 裙带菜磁性生物炭复合材料对油污的吸附性能研究[D]. 舟山: 浙江海洋大学, 2020. YAO X X. Study on the absorption performance of wakame magnetic biochar composite material to oil[D]. Zhoushan: Zhejiang Ocean University, 2020 (in Chinese).
[44] GURAV R, BHATIA S K, CHOI T R, et al. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids [J]. Science of the Total Environment, 2021, 781: 146636. doi: 10.1016/j.scitotenv.2021.146636 [45] NAVARATHNA C M, DEWAGE N B, KEETON C, et al. Biochar adsorbents with enhanced hydrophobicity for oil spill removal [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9248-9260. [46] YANG S D, CHEN L, MU L, et al. Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances [J]. RSC Advances, 2015, 5(48): 38470-38478. doi: 10.1039/C5RA03701H [47] ZHANG J P, LI B C, LI L X, et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose [J]. Journal of Materials Chemistry A, 2016, 4(6): 2069-2074. doi: 10.1039/C5TA10001A [48] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: Current status and perspectives [J]. Bioresource Technology, 2017, 246: 110-122. doi: 10.1016/j.biortech.2017.08.122 [49] XU R K, XIAO S C, YUAN J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues [J]. Bioresource Technology, 2011, 102(22): 10293-10298. doi: 10.1016/j.biortech.2011.08.089 [50] JIANG Y F, SUN H, YVES U J, et al. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil [J]. Environmental Geochemistry and Health, 2016, 38(1): 243-253. doi: 10.1007/s10653-015-9712-1 [51] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071 [52] YANG J, XU P, XIA Y F, et al. Multifunctional carbon aerogels from typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants [J]. Cellulose, 2018, 25(10): 5863-5875. doi: 10.1007/s10570-018-1994-x [53] ZHANG T, YUAN D S, GUO Q, et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu [J]. Food and Bioproducts Processing, 2019, 114: 154-162. doi: 10.1016/j.fbp.2018.12.007 [54] LI Z X, LEI S J, XI J C, et al. Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal [J]. Chemical Engineering Journal, 2021, 426: 129580. doi: 10.1016/j.cej.2021.129580 [55] JING Z F, DING J C, ZHANG T, et al. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation [J]. Food and Bioproducts Processing, 2019, 115: 134-142. doi: 10.1016/j.fbp.2019.03.010 [56] WANG Y, ZHU L, ZHU F Y, et al. Removal of organic solvents/oils using carbon aerogels derived from waste durian shell [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 351-358. doi: 10.1016/j.jtice.2017.06.037 [57] HAN S J, SUN Q F, ZHENG H H, et al. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution [J]. Carbohydrate Polymers, 2016, 136: 95-100. doi: 10.1016/j.carbpol.2015.09.024 [58] YUE X J, ZHANG T, YANG D Y, et al. Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation [J]. Journal of Cleaner Production, 2018, 199: 411-419. doi: 10.1016/j.jclepro.2018.07.181 [59] MADHUBASHANI A M P, GIANNAKOUDAKIS D A, AMARASINGHE B M W P K, et al. Propensity and appraisal of biochar performance in removal of oil spills: A comprehensive review [J]. Environmental Pollution, 2021, 288: 117676. doi: 10.1016/j.envpol.2021.117676 [60] EEK E, CORNELISSEN G, KIBSGAARD A, et al. Diffusion of PAH and PCB from contaminated sediments with and without mineral capping;measurement and modelling [J]. Chemosphere, 2008, 71(9): 1629-1638. doi: 10.1016/j.chemosphere.2008.01.051 [61] SILVANI L, di PALMA P R, RICCARDI C, et al. Use of biochar as alternative sorbent for the active capping of oil contaminated sediments [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5241-5249. doi: 10.1016/j.jece.2017.10.004 [62] O'CONNOR D, PENG T Y, ZHANG J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials [J]. Science of the Total Environment, 2018, 619/620: 815-826. doi: 10.1016/j.scitotenv.2017.11.132 [63] JIA H, LI J, LI Y, et al. The remediation of PAH contaminated sediment with mangrove plant and its derived biochars [J]. Journal of Environmental Management, 2020, 268: 110410. doi: 10.1016/j.jenvman.2020.110410 [64] OH S Y, SON J G, LIM O T, et al. The role of black carbon as a catalyst for environmental redox transformation [J]. Environmental Geochemistry and Health, 2012, 34(1): 105-113. [65] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. [66] GOMEZ-EYLES J L, GHOSH U. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations [J]. Chemosphere, 2018, 203: 179-187. doi: 10.1016/j.chemosphere.2018.03.132 [67] ZHANG H R, TANG J C, WANG L, et al. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar [J]. Journal of Environmental Sciences, 2016, 47: 7-13. doi: 10.1016/j.jes.2015.12.023 [68] CHEN Y, YU B, LIN J J, et al. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material [J]. Chemical Engineering Journal, 2016, 289: 463-470. doi: 10.1016/j.cej.2016.01.010 [69] ZHOU H H, JIANG L J, LI K L, et al. Enhanced bioremediation of diesel oil-contaminated seawater by a biochar-immobilized biosurfactant-producing bacteria Vibrio sp. LQ2 isolated from cold seep sediment [J]. Science of the Total Environment, 2021, 793: 148529. doi: 10.1016/j.scitotenv.2021.148529