珠江口八大口门PAHs时空分布特征

张菲菲, 唐玉光, 孙培艳, 王鑫平, 李一鸣, 陆金仁, 包木太. 珠江口八大口门PAHs时空分布特征[J]. 环境化学, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
引用本文: 张菲菲, 唐玉光, 孙培艳, 王鑫平, 李一鸣, 陆金仁, 包木太. 珠江口八大口门PAHs时空分布特征[J]. 环境化学, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
ZHANG Feifei, TANG Yuguang, SUN Peiyan, WANG Xinping, LI Yiming, LU Jinren, BAO Mutai. Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary[J]. Environmental Chemistry, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
Citation: ZHANG Feifei, TANG Yuguang, SUN Peiyan, WANG Xinping, LI Yiming, LU Jinren, BAO Mutai. Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary[J]. Environmental Chemistry, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401

珠江口八大口门PAHs时空分布特征

    通讯作者: Tel:13455696560,E-mail:sg5106922@126.com;  Tel:0532-66782509,E-mail:mtbao@ouc.edu.cn
  • 基金项目:
    自然资源部渤海生态预警与保护修复重点实验室2022年开放基金(2022103)资助

Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary

    Corresponding authors: TANG Yuguang, sg5106922@126.com ;  BAO Mutai, mtbao@ouc.edu.cn
  • Fund Project: the Open Project Program of Key Laboratory of Ecological Warning,Protection & Restoration for Bohai Sea, Ministry of Natural Resources (2022103)
  • 摘要: 2019年2月、4月、8月和10月分别采集了珠江口八大口门入海口海水样品,采用气相色谱方法对10种多环芳烃(PAHs)(萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)进行定量源解析,PAHs的检出率较高,表明PAHs在八大口门海域水体中普遍存在. 在空间分布上,鸡啼门、虎门海域水体 PAHs 含量相对较高,蕉门、磨刀门、虎跳门和崖门居中,洪奇门和横门相对较少. 各口门 PAHs 含量呈现明显的表底分层现象,八大口门表层水 PAHs 的浓度范围为 ND—27260.00 ng·L−1,最大值出现在虎跳门4月份水样;底层水 PAHs 的浓度范围为ND—31175.00 ng·L−1,最大值出现在鸡啼门10月份水样. 在时间分布上,各口门表、底层海水PAHs 含量平均值均呈现出8月份最小的特征,是由于8月雨量大,雨水冲刷及径流作用增大,对入海口区域污染物进行一定程度的稀释. 从来源上看,八大口门海水中 PAHs 的来源主要为交通、煤焦油炼制、化石燃料的燃烧及加工炼制、木材燃烧、煤炭燃烧、油类不完全燃烧及油类泄漏混合污染等. 研究珠江口八大口门入海口水体多环芳烃污染情况,对珠江三角洲生态环境保护和治理具有重要意义.
  • 地下水是地球水资源的重要组成部分,是地球上一切生物生存及人类生产活动中不合或缺的自然资源,是支撑经济可持续发展的重要战略资源,也是构成并影响生态环境的重要因素[1-4]. 根据中国水利统计年鉴数据,从2013年至2020年我国地下水资源占总供水量的比例逐年减少,北方城市地下水供用量较南方高. 在2020年全国地下水资源占总供水量的15.35%,而内蒙古占41.98%. 随着经济的不断发展和工业化、现代化程度的不断提高,我国地下水开采量日益上升,同时由于人类不当的活动导致环境中的污染物入渗,使地下水遭受污染[5-6]. 由于地下水污染具有隐蔽性、滞后性及较弱的自净能力,地下水一旦发生污染就很难恢复,同时对居民饮水安全和社会经济可持续发展构成了严重威胁[7-8]. 因此,进行地下水环境风险评估,对于防治地下水污染、科学规划和可持续利用具有一定的参考价值.

    目前,对盐湖盆地蒸发特征、植被生长特征、土壤污染特征有较多的研究,杨宇娜等[9]揭示了吉兰泰及周边地区蒸散发的时空变化规律;迟旭等[10]探明吉兰泰盐湖绿洲防护林带同一建植年限柽柳灌丛形态大小与阻沙能力之间存在一定关系;张阿龙等[11]运用不同的评价方法对吉兰泰盐湖盆地土壤重金属中铬、汞、砷污染展开评价工作. 目前,对盐湖盆地地下水的风险评价较少,高瑞忠等[12]采用单因子指数法、内梅罗指数法和USEPA健康风险评价模型对吉兰泰盐湖盆地地下水中Cr、As、Hg重金属污染开展了一些健康风险评价工作. 评价方法常以单项指标评价法[13]、综合评价法[14-16]、模糊综合评价法[17-21]和集对分析法等为主[22]. 然而这些方法都有各自的缺点,例如单项指标评价法不能给出水体整体的质量状况,综合评价法只突出某单项评价指标对水体质量的影响,模糊数学法、集对分析法存在评价指标权重不唯一等问题[23]. 在实际的地下水质量评价工作中,需要根据研究区实际情况,选择恰当的评价方法并加以改进,方可得到切合实际的评价结果.

    本文针对地处西北旱区荒漠边缘的盐湖盆地,结合当地生态环境脆弱、降水量少、水质恶化、污染物种类与来源复杂等诸多问题. 运用李小牛等[24]提出的地下水风险评价概念模型,以盐湖盆地土壤作为风险源,以地下水系统作为风险受体展开风险评价,将地下水脆弱性[25-27]、地下水毒性污染物容量[28]及土壤毒性污染物潜在生态危害[29-32]有机结合起来,并借助ArcGIS技术进行污染分区表征[33-35],分析盐湖盆地地下水污染状况,以期为吉兰泰盐湖盆地地下水资源合理开发利用、地下水污染防控以及保障农牧民生活饮水安全、社会经济和自然环境相协调发展提供科学依据.

    吉兰泰盐湖盆地(38°35'—40°35'N,104°50'—106°40'E)位于内蒙古自治区阿拉善左旗吉兰泰镇,是地处乌兰布和沙漠西南边缘的贺兰山与巴彦乌拉山之间的断陷盆地. 盐湖盆地面积为20025 km2左右,高程1013—3159 m,地形向盐湖中心呈明显的环带状分布. 巴音乌拉山、贺兰山分别位于盐湖盆地的西北、东南方向,盐湖盆地的东南部和东北部分别为腾格里沙漠和乌兰布和沙漠. 盐湖盆地属于典型的大陆性干旱气候,多年平均气温8.6 ℃,常年蒸发强烈、降水稀少,多年平均蒸发量达2983.30 mm,平均降水量仅为108.80 mm,蒸发量为降水量的30倍左右. 由于降水主要集中在6—9 月份,且主要以暴雨形式出现,其时空分布又比较集中,洪水的特点表现为历时短、洪量集中、陡涨陡落,在降雨时期山区沟产流,滩地沟不产流等空间分布不均匀现象. 该研究区域处于山区地下水溶滤带,水质良好,矿化度一般小于0.50 g·L−1,水化学类型为单一的重碳酸钙水或重碳酸钙钠水. 根据多年测量数据显示地下水水位动态变化范围为4—7 m,含水介质主要为粗砂、细砂、砂砾石、卵砾石及一些砂质粘土. 土壤以粘土和不同类型亚粘土为主. 包气带主要以粘土、沙土、砾石为主. 吉兰泰盐湖(120 km2)属于中型盐湖,是我国西北荒漠区重要的盐业生产基地,盐的开采量居全国之首,同时也拥有国内规模最大的钠生产企业. 由于人类活动的干扰,导致盐湖盆地地区人地关系具有极端脆弱性和风险性. 盐湖盆地有着极端恶劣的气候条件,导致水资源呈现严重短缺态势,浅层地下水作为该区域的主要水资源,对维护该区域人地关系稳定、生物多样性、生态安全及当地农牧民生活饮用水安全具有重要的意义.

    由于土壤与浅层地下水之间重金属会发生迁移,在地表高温蒸发条件下,地下水通过毛细作用不断向地表运移,重金属向土壤富积,当地表发生积水后,土壤与水发生离子交换吸附和溶滤等作用,故土壤采样点与地下水采样点布设尽量吻合. 2020年6月—8月布点采集样品,根据《土壤环境监测技术规范》(HJ/T 166—2004)及结合盆地的地貌特征和土壤类型,确定以吉兰泰盐湖为中心向四周呈放射状均匀布设土壤采样点,采集土壤表层(0—10 cm)样品,研究区共布设56个采样点(见图1). 在采样过程中,每个采样点取土样1 kg左右,装入聚乙烯塑料袋中,防止交叉污染. 水样点的布设中充分考虑盐湖盆地地形特点和地下水汇流方向,在吉兰泰盐湖周边分散分布,共选取了127口取样井(参见图1). 取样井选取浅层饮用水井和灌溉井. 将采集的水样装于洁净的规格为1 L的聚乙烯塑料取样瓶中,加入3 mL 65% HNO3,将水样pH调至2以下,封口于4 ℃的便携式冷藏箱保存,送至内蒙古自治区水资源保护与利用重点实验室测定.

    图 1  研究区域及采样点
    Figure 1.  Study area and sampling points

    测试前土壤样品采用王水-高氯酸(HNO3-HCI-HCIO4)开放式消煮法,空白和标准样品同时消解,以确保消解及分析测定的准确性. 水样使用0.45 μm的微孔过滤膜对水样进行过滤预处理. 样品中重金属测试参考《地下水污染地质调查评价规范》(DD 2008—01),使用电感耦合等离子体质谱仪(ICP-MS)分析测定,F、NO3、NO2采用离子色谱仪进行测定. 为保证分析的准确性,标准曲线的绘制采用国家标准中心提供的标准物质,分析过程中试剂均为优级纯,样品测定全程做空白样,每个样品设3 组平行实验,取平均值作为样品测定的最终值. 保证待测物质的相对标注偏差(RSD)均低于15%,符合美国国家环境保护局(USEPA)的要求(RSD<30%).

    本文以盐湖盆地土壤作为风险源,以地下水系统作为风险受体,首先结合当地自然条件采用地下水脆弱性评价方法来分析地下水环境变化,从而判断地下水水质易受到污染的可能性和地下水水量衰减的可能性. 通过采用地下水特征污染物容量指数分析地下水污染物容量和允许污染的程度,进而应用潜在生态危害指数评价研究区域土壤重金属潜在生态危害程度,最后将三者结合对地下水污染风险展开评价.

    目前国内外使用最广泛的地下水脆弱性评价方法是美国环境保护署于1987年提出的DRASTIC方法[36-39]. 地下水脆弱性DRASTIC指标体系,包含6个指标,其中,D-地下水位埋深,权重为5;R-降雨补给量,权重为4;A-含水层介质,权重为3;S-土壤类型,权重为2;T-地形坡度,权重为1;I-包气带介质,权重为5;C-地下水开采系数,权重为3.

    DRASTIC=ni=1ωi×Ri

    式中,DRASTIC为脆弱性指数;ωi为评价指标的权重(归一化后,D的权重为0.22;R的权重为0.17;A的权重为0.13;S的权重为0.09;T的权重为0.04;I的权重为0.22;C的权重为0.13);Ri为评价指标的评分等级;n为评价参数个数. DRASTIC指标体系评分根据当地的地质环境与评价标准相结合,见表1. DRASTIC<2,脆弱性低,属难污染;2≤DRASTIC<4,脆弱性较低,属较难污染;4≤DRASTIC<7,脆弱性中等,属中等污染;7≤DRASTIC<9,脆弱性较高,属较易污染;9≤DRASTIC,脆弱性高,属易污染[36].

    表 1  DRASTIC指标体系评分标准
    Table 1.  DRASTIC index system scoring criteria
    埋深/mBurial depth D净补给量/mm Net replenishment R含水层介质Aquifer media(A)土壤Soli(S)包气带类型Type of aeration zone(I)地形坡度/%Topographic gradient(T)渗透系数/(m·d−1)Permeability coefficient(C)评分Score
    >30.5≤51粘土卵砾石粘土为主(50%)>18≤4.11
    26.7—30.551—72亚粘土砂砾石亚粘土为主17—184.1—12.22
    22.9—26.772—92亚砂土泥炭亚砂土为主15—1712.2—20.33
    15.2—22.992—117粉砂胀缩或凝聚性粘土粉砂为主13—1520.3—28.54
    12.1—15.2117—148粉细砂砾质亚粘土粉细砂为主11—1328.5—34.65
    9.1—12.1148—178细砂亚粘土细砂为主9—1134.6—40.76
    6.8—9.1178—216中砂粉砾质亚粘土中砂为主7—940.7—61.57
    4.6—6.8216—235粗砂粘土质亚粘土粗砂为主4—761.5—71.68
    1.5—4.6235—255砂砾石垃圾砂砾石为主2—471.6—81.59
    <1.5>255卵砾石非胀缩和非凝聚性粘土卵砾石为主<2>81.510
     | Show Table
    DownLoad: CSV

    地下水中含有大量的可溶性物质,但同时也含有一定量对人体危害较大的污染物质,各类污染物质的容量有不同程度的差别[29]. 为了有效描述地下水中各组分所处的容量状态,提出了综合容量指数TCD. TCDi被定义为在地下水环境条件下,被测组分i的标准值与实测值的差值与其标准值的比值. 容量评价指数TCDi的物理意义是表示在不对当地地下水造成不良影响的前提下,允许地下水中i组分的容量值大小,容量指数的数值越大,表明在不对地下水造成不良影响的情况下可接受的污染物的量越多. 计算公式见(1)—(3)所示.

    TCDi=(CisCi)Cis (1)
    ¯TCDi=1nni=1TCDi (2)
    TCD=(¯TCDi2+TCD2g+TCD2m3 (3)

    式中,TCDi表示i组分的容量评价指数;Cis表示i组分的标准值;Ci表示i组分的实测值;TCD表示综合容量评价指数;TCDi表示各组分对应TCD的算术平均值,TCDm表示TCDi中的最大值,TCDg表示各组分TCDi中的次大值. 将综合容量评价指数TCD计算结果划分为5个评价等级,每个评价等级都对应于一种水环境状态和分值(见表2).

    表 2  容量指数评分标准
    Table 2.  Scoring criteria for capacity index
    TCD等级Rank水环境状态Water environment status分值Score
    0—0.2极易恶化5
    0.2—0.4极易污染4
    0.4—0.6易污染3
    0.6—0.8较易污染2
    >0.8不易污染1
     | Show Table
    DownLoad: CSV

    瑞典学者Hakanson提出了潜在生态危害指数法,该方法用于评价重金属污染及其生态危害 [40-41]. 将重金属的生态效应、环境效应与毒理学有机结合在一起,用来综合反映重金属对生态环境的潜在危害程度. 公式如式(4):

    Ei=Tir×(Ci/C0i) (4)

    式中,CiC0i分别为重金属i的实测值和参比值;Tir为第i种重金属的毒性系数,重金属Cr、Hg、As的毒性响应系数分别取:2、40、10.

    综合潜在生态危害指数,见公式(5):

    RI=ni=1Ei (5)

    式中:RI为研究区域多种重金属的综合潜在生态危害指数;Ei为某种待测重金属i的潜在生态危害指数,生态危害程度划分见表3.

    表 3  潜在生态危害系数与综合潜在生态危害指数等级划分
    Table 3.  Classification of potential ecological hazard index and comprehensive potential ecological hazard index
    等级Rank潜在生态危害指数Potential ecological hazard index综合潜在生态危害指数Comprehensive potential ecological hazard index潜在生态危害程度Potential ecological hazard level
    1Ei40RI150轻微生态危害
    240<Ei80150<RI300中等生态危害
    380<Ei160300<RI600强生态危害
    4160<Ei320RI>600很强生态危害
    5Ei320极强生态危害
     | Show Table
    DownLoad: CSV

    将地下水脆弱性指数DRASTIC、地下水污染物容量指数TCD和综合潜在生态危害指数RI相结合,通过整合处理得出研究区地下水污染风险指数R[24],然后采用自然分级法对地下水污染风险指数进行统计分析. 将地下水污染风险划分为低风险、较低风险、中等风险、较高风险和高风险5个等级,并依此绘制和划定研究区地下水污染风险分区图,如公式(6).

    R=DRASTIC×TCD×RI (6)

    根据采样过程中的实际测试,结合对研究区地质环境综合分析,依照地下水脆弱性评价表赋予地下水脆弱性各指标相应的值. 运用DRASTIC公式求得盐湖盆地地下水脆弱性指数范围为4.80—5.30. 指数越大,防污性能越低,地下水越容易受到污染;指数越小,防污性能越高. 根据地下水脆弱性和受污染程度分类标准,可判定盐湖盆地整体为中等脆弱性,属于中等受污染程度. 运用ArcGIS软件进行相应数据处理,绘制出研究区地下水脆弱性分区图(见图2a).

    图 2  地下水脆弱性(a)和特征污染物容量指数(b)分区
    Figure 2.  Groundwater vulnerability (a) and characteristic pollutant capacity index partition (b)

    研究区降水量时空分布极不均匀,夏季的降水量占全年的60%以上,多呈暴雨形式,冬季各月的降水量仅约占全年的1%,冬季呈现干旱少雨的特征. 由于贺兰山和巴乌拉山高原的地形作用,降水从东到西逐渐减少,贺兰山地区的降水超过400 mm,而西边的荒漠地区低于150 mm. 蒸发量从东边到西边呈上升趋势,是年降水量的4—12倍. 盐湖盆地的深度蒸发使得地下水出现盐渍化现象,地下水ρ(TDS)范围达到156—12140 mg·L−1之间,Cl/(Cl+HCO3)质量浓度比值全部>0.90,Na+/(Na++Ca2+)质量浓度比值范围在0.34—0.98之间,仅4个水样点Na+/(Na++Ca2+)比值<0.50,绝大多数水样点集中在右上角的虚线框内(见图3). 说明蒸发浓缩作用是决定吉兰泰盐湖盆地地下水主要离子含量的重要机制,而岩石风化、降水控制作用对研究区内地下水主要离子的含量影响十分微弱.

    图 3  吉兰泰盐湖盆地地下水Gibbs图
    Figure 3.  Gibbs plots of groundwater in Jilantai Salt Lake Basin

    采用自然分级法对地下水脆弱性指数进行统计分析,将中等脆弱性细化为5个类型,由图2a可见,在中等脆弱性的区域内吉兰泰盐湖西南部和吉兰泰镇东北部的地下水脆弱性最高,该区域土壤以沙土和细砂为主,含水层介质粒径大于细砂,地表污染物较易下渗到含水层对地下水造成影响. 吉兰泰盐湖附近地下水脆弱性相对较高,该地区位于盐湖附近地下水位较高,又由于该地区蒸发量大的特点,浅层地下水通过蒸发浓缩后污染物易得到富集,致使该地区地下水脆弱性相对较高. 贺兰山、宗别立镇、古拉本敖包镇的脆弱性处于相对较低的水平具有较高的防污能力,是由于该地区位于山区,地形坡度较大,含水层较深,地表污染物不易下渗到含水层,对地下水造成污染.

    对研究区采集的127个浅层地下水样品中部分重金属元素和毒性离子检测结果进行统计和汇总,见表4.

    表 4  盐湖盆地浅层地下水特征毒性元素含量统计分析
    Table 4.  Statistical analysis of characteristic toxic elements in shallow groundwater in the Salt Lake Basin
    元素Element含量范围/(mg·L−1)Content range平均值/(mg·L−1)Average value标准差Standard deviation变异系数/%Coefficient of variation地下水质量标准(GBT14848-2017)/(mg·L−1)Groundwater Quality Standards超标率/%Exceeding rate
    Cr0.0012—0.270.0380.048125.400.05022.05
    Hg0.0000020—0.00100.000200.0002098.700.00100
    As0.00011—0.0660.00470.0086183.500.01011.02
    F-0—46.182.774.95178.701.0062.20
    NO2-0—11.060.641.59248.701.0014.17
    NO3-0—48.473.128.76280.7020.004.72
     | Show Table
    DownLoad: CSV

    表4可见,研究区被测浅层地下水样品中Cr、Hg、As、F、NO2、NO3共6种元素的平均含量分别为0.038、0.00020、0.0047、2.77、0.64、3.12 mg·L−1. 与《地下水质量标准》(GBT 14848-2017) 中Ⅲ类水水质指标相比较,被测的127个地下水采样点,除重金属Hg的含量在标准范围内外,其他元素均有个别点位超出标准限值. 其中,样品中F超标率最高,超标率为62.20%. 变异系数可反映采样总体中各样点之间的平均差异程度,被测采样点浅层地下水中Cr、Hg、As、F、NO2、NO3变异程度分别为125.40%、98.70%、183.50%、178.70%、248.70%、280.70%,Cr、As、F、NO2、NO3为强变异性,Hg为中等变异性,表明这6种元素含量值波动幅度大,连续性变化较差,受外界因素干扰较为明显. 通过采用公式(1—3)计算127个采样点浅层地下水特征污染物单组分容量评价指数和多组分容量评价指数. 以表4多组分容量评价指数划分标准为依据,运用ArcGIS软件克里格插值法计算和划定研究区的容量评价等级范围,见图2b. 由图 2b 可见,研究区浅层地下水特征污染物容量评价指标值均大于 0.60,即对应水环境风险等级为良好以上.锡林高勒镇西北部,吉兰泰镇东北部地下水易污染,巴音乌拉山、乌兰布和沙漠、贺 兰山、吉兰泰湖为山脉和湖泊,受人为因素干扰较小,地下水呈现不易被污染状态.

    研究区域干旱少雨,土壤类型属于其他,表层土壤样品pH大于7.5,重金属含量的描述性统计分析见表5. 由表5可知,土壤中重金属Cr、Hg、As的平均含量分别为26.32、0.17、11.77 mg·kg−1,与内蒙古当地土壤背景值相比较[32],Cr的平均含量在背景值范围内,Hg、As的平均含量分别超出背景值的4.25、1.57倍. 在56个采样点中,重金属Cr、Hg、As的超标率分别为5.36%、73.21%、73.21%. Cr、Hg、As含量的最大值高于背景值,而最小值低于背景值,表明研究区域土壤存在局部超标点或超标区域,与国家土壤标准值相比较,3种重金属元素含量均未超过《土壤环境质量 农用地土壤污染风险管控标准》(GB 15618-2018)风险筛选值的限值范围. Cr、Hg、As元素的变异系数分别为37.46%、94.12%、50.81%,3种重金属变异系数均在中等变异性范围内. 因此,可推断该区域重金属的累积不排除是受人为因素干扰所致. 注:(CV<10%为弱变异性,10%≤CV≤100%为中等变异性,CV>100%为强变异性).

    表 5  盐湖盆地土壤特征毒性元素含量统计分析(mg·kg−1
    Table 5.  Statistical analysis of soil characteristic toxic elements in the Salt Lake Basin
    毒性元素Toxic element最小值Min最大值Max均值Average标准差Standard deviation变异系数/%Coefficient of variation内蒙古自治区背景值Inner Mongolia Autonomous region background国家标准(GB15618-2018)National standard
    背景值Background超标率Exceeding rate标准值Standard超标率Exceeding rate
    Cr2.9055.2126.329.8637.4641.405.36%250.000
    Hg0.000.600.170.1694.120.0473.21%3.400
    As0.0021.7411.775.9850.817.5073.21%25.000
     | Show Table
    DownLoad: CSV

    以内蒙古土壤环境背景值为评价标准,3种重金属潜在生态危害系数Ei值如表6所示.

    表 6  潜在生态危害指数评价结果
    Table 6.  Evaluation results of potential ecological hazard index
    元素ElementEiˉEi样品比例 Sample ratio
    轻微危害Minor hazard中等危害Moderate hazard强危害Strong hazard很强危害Very hazard极强危害Extremely hazard
    Cr0.14—2.671.27100%0000
    Hg1.59—601.48171.3626.79%14.29%19.64%14.29%25%
    As0—28.9815.69100%0000
     | Show Table
    DownLoad: CSV
    RI¯RI样品比例 Sample ratio
    轻微危害Minor hazard中等危害Moderate hazard强危害Strong hazard很强危害Very hazard
    RI21.89—609.47188.3258.93%14.29%25%1.79%
     | Show Table
    DownLoad: CSV

    表6可见,Cr、Hg、As的潜在生态危害系数平均值由大到小依次为Hg>As>Cr,土壤中Hg的平均潜在生态危害系数为171.36,呈中等、强、很强、极强危害程度样品数占总数的73.21%,潜在危害性较大,这与Hg毒性系数较大和污染程度严重相关,Cr、As的潜在生态危害系数均小于40,对土壤生态环境的危害属于轻微. Cr、Hg、As平均综合潜在生态危害系数为188.32,属于中等潜在生态危害程度,在盐湖盆地中有41.07%的样品点属于中等、强、很强潜在生态危害. 因此,应当注重土壤重金属污染源的控制以及土壤重金属的污染监测.

    运用ArcGIS及克里格插值法绘制单种重金属潜在生态危害指数和综合潜在生态危害指数分布图(见图4),进行研究区潜在生态危害的空间变化特征分析. 由图4可以看出,盐湖盆地Cr的生态危害系数由吉兰泰湖西南部向东北部呈梯度递增,巴音乌拉山周围和敖伦布拉格镇强度相对较高,其最大值为2.67,属于轻微生态危害,这可能与巴音乌拉山岩石风化水土流失有关. 吉兰泰盐湖盆地东南方向的锡林高勒镇和巴彦浩特镇附近Hg的生态危害系数较高,达到中等潜在生态危害,与张阿龙等对吉兰泰盐湖盆地土壤重金属研究结果相一致[11]. As生态风险系数整体处于轻微生态危害,强度较高的区域主要分布在锡林高勒镇、宗别立镇、吉兰泰镇、敖伦布拉格镇. 因此,可初步推断出As的潜在生态危害可能与当地居民人为活动因素干扰影响较为密切. 综合潜在生态危害程度由东北向西南部呈扇形递增,吉兰泰盐湖东南方向指数较大,这与Hg的生态危害系数空间分布相似,且与Hg潜在危害指数较大,在综合潜在生态危害中贡献率大有关.

    图 4  土壤特征污染物潜在生态危害指数图
    Figure 4.  Potential ecological hazard index of soil characteristic pollutants

    运用ArcGIS空间分析功能,将图23、5以概念模型(6)作为运算规则,进行整合处理得到各个区域的地下水污染危险指数R;运用自然分级方法对盐湖盆地地下水环境质量进行统计分析,并将其污染风险划分为低风险、较低风险、中等风险、较高风险和高风险5个级别,并绘制盐湖盆地地下水污染风险分区图,结果见图5.

    图 5  地下水污染风险分区
    Figure 5.  Groundwater pollution risk zoning

    图5可以发现,研究区域内吉兰泰盐湖西南部地下水风险等级呈梯度逐渐递增,锡林高勒镇西部处于高风险区域,较高风险区位于贺兰山西部和锡林高勒镇附近,贺兰山区域降水主要在该区域形成地表径流,在地表径流过程中累积了大量物质,由于该地区蒸发量大,径流污染物通过蒸发浓缩后入渗地下导致该区域地下水处于较高风险,其中较高风险及以上的面积占研究区总面积的25.77%,该区域内地下水脆弱性、地下水污染物容量指数、土壤毒性污染物风险指数均相对较高. 贺兰山的西南部、古拉本敖包镇、巴音乌拉山西南部处于中风险地段,面积占比为11.49%. 巴音乌拉山和贺兰山西南部附近地下水属于较低风险,面积占比为33.06%. 低风险区域主要分布在乌兰布和沙漠和吉兰泰镇,面积占比为29.68%,此区域主要处于沙漠地带,受人为干预较弱,同时此区域地下水容量指数和土壤毒性污染物潜在危害性处于相对较低的水平. 盐湖盆地处于西北寒旱区,面临严峻的水资源短缺问题. 因此,需要进一步加强地下水水位、水质、开采量、气候条件等监测监管工作. 在制定和实施地下水治理措施时,应当结合当前面临的地下水资源问题,充分考虑当地地理条件和当地的经济发展,设计直接且明确的可持续发展方案.

    (1)吉兰泰盐湖盆地下水脆弱性指数范围为4.80—5.30属于中等脆弱性,为中等受污染程度,盐湖西南部和东北部的地下水脆弱性相对较高,贺兰山、宗别立镇、古拉本敖包镇的脆弱性相对较低.

    (2)地下水样品中重金属Hg的含量在标准限值范围内,Cr、Hg、As、F、NO2、NO3元素均有超标现象,其中F超标率最高,达62.20%. 地下水特征污染物容量评价指标值均大于0.60,即对应水环境风险等级为良好以上. 锡林高勒镇西北部,吉兰泰镇东北部地下水易污染.

    (3)盐湖盆地土壤中Hg的平均潜在生态危害系数为171.36,达到中等生态危害程度,Hg呈中等以上危害程度样品数占总数的73.21%,潜在危害性较大. 综合潜在生态危害系数为188.32,属于中等潜在生态危害,在盐湖盆地中有41.07%的样品点属于中等、强、很强潜在生态危害. 土壤重金属对环境的影响具有一定的历史承载性和实际的连续性,未来应加强地表土壤重金属纵向迁移对地下水的影响.

    (4)应用地下水风险评价概念模型,对研究区域地下水进行污染风险评价,吉兰泰盐湖西南部地下水风险等级呈梯度逐渐递增,锡林高勒镇西部地下水整体处于较高风险及高风险. 其中,中风险区域面积占研究区域的11.49%,较高风险以上的面积占研究区域的25.77%. 建议加强对该区域地下水的监测并采取适当措施进行防治,必要时开展盐湖盆地地下水环境、地质环境、生态环境健康等方面研究,确保地下水可持续开发利用.

  • 图 1  采样站点示意图

    Figure 1.  Location map of sampling sites in the Pearl River Estuary.

    图 2  珠江口八大口门全年四季度表(a)、底(b)层海水 PAHs 的分布

    Figure 2.  PAHs Concentrations in surface water (a) and bottom water (b) of Pearl River Estuary.

    图 3  珠江口八大口门各季度表、底层海水PAHs平均值

    Figure 3.  Mean value of PAHs Concentrations in surface water and bottom water of Pearl River Estuary.

    表 1  珠江口八大口门海水 PAHs 同族体检出情况(ng·L−1

    Table 1.  PAHs in eight main entrances of Pearl River Estuary

    PAHs组分Component of PAHs虎门Humen蕉门Jiaomen洪奇门Hongqimen横门Hengmen磨刀门Modaomen鸡啼门Jitimen虎跳门Hutiaomen崖门Yamen
    表层2月苊Acenaphthene8430.0011005.00ND.ND.9460.0010005.0012900.0012965.00
    芴Fluorene3970.004195.00ND.ND.ND.2130.00ND.2235.00
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    4月苊Acenaphthene5490.005300.005350.002940.00ND.7020.006670.004430.00
    芴Fluorene5050.004730.004960.004850.002515.005730.005235.006575.00
    苯并蒽Benzanthracene6000.009045.003105.006300.006700.0012450.0015355.00ND.
    8月苊AcenaphtheneND.ND.ND.ND.ND.ND.ND.ND.
    芴FluoreneND.ND.ND.ND.ND.ND.ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    10月苊Acenaphthene6280.004115.00ND.3690.004460.008620.004515.007675.00
    芴Fluorene4080.005120.00ND.3135.003945.004465.003720.003645.00
    苯并蒽Benzanthracene16645.00ND.ND.4630.003780.004270.003545.00ND.
    底层2月苊Acenaphthene12895.00ND.ND.ND.9010.0010805.0010295.007645.00
    芴Fluorene3765.00ND.ND.ND.ND.3880.00ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    4月苊Acenaphthene2505.006300.00ND.3365.00ND.ND.6150.00ND.
    芴Fluorene2300.005385.00ND.5360.007790.00ND.4565.00ND.
    苯并蒽Benzanthracene8945.00ND.ND.7720.0011355.007350.0010515.007375.00
    8月苊AcenaphtheneND.ND.ND.ND.ND.ND.ND.ND.
    芴FluoreneND.ND.ND.4850.00ND.ND.ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    10月苊Acenaphthene9740.00ND.ND.ND.ND.12770.005075.006760.00
    芴Fluorene4315.00ND.ND.ND.ND.9000.003480.005500.00
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.9310.003840.004810.00
      ND.,未检出.
    PAHs组分Component of PAHs虎门Humen蕉门Jiaomen洪奇门Hongqimen横门Hengmen磨刀门Modaomen鸡啼门Jitimen虎跳门Hutiaomen崖门Yamen
    表层2月苊Acenaphthene8430.0011005.00ND.ND.9460.0010005.0012900.0012965.00
    芴Fluorene3970.004195.00ND.ND.ND.2130.00ND.2235.00
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    4月苊Acenaphthene5490.005300.005350.002940.00ND.7020.006670.004430.00
    芴Fluorene5050.004730.004960.004850.002515.005730.005235.006575.00
    苯并蒽Benzanthracene6000.009045.003105.006300.006700.0012450.0015355.00ND.
    8月苊AcenaphtheneND.ND.ND.ND.ND.ND.ND.ND.
    芴FluoreneND.ND.ND.ND.ND.ND.ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    10月苊Acenaphthene6280.004115.00ND.3690.004460.008620.004515.007675.00
    芴Fluorene4080.005120.00ND.3135.003945.004465.003720.003645.00
    苯并蒽Benzanthracene16645.00ND.ND.4630.003780.004270.003545.00ND.
    底层2月苊Acenaphthene12895.00ND.ND.ND.9010.0010805.0010295.007645.00
    芴Fluorene3765.00ND.ND.ND.ND.3880.00ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    4月苊Acenaphthene2505.006300.00ND.3365.00ND.ND.6150.00ND.
    芴Fluorene2300.005385.00ND.5360.007790.00ND.4565.00ND.
    苯并蒽Benzanthracene8945.00ND.ND.7720.0011355.007350.0010515.007375.00
    8月苊AcenaphtheneND.ND.ND.ND.ND.ND.ND.ND.
    芴FluoreneND.ND.ND.4850.00ND.ND.ND.ND.
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.ND.ND.ND.
    10月苊Acenaphthene9740.00ND.ND.ND.ND.12770.005075.006760.00
    芴Fluorene4315.00ND.ND.ND.ND.9000.003480.005500.00
    苯并蒽BenzanthraceneND.ND.ND.ND.ND.9310.003840.004810.00
      ND.,未检出.
    下载: 导出CSV

    表 2  与国内水域 PAHs 浓度比较

    Table 2.  Comparison of species and concentrations of PAHs in the surface water of various estuary and coastal

    区域Regional浓度范围/(ng·L−1)Concentration平均值/(ng·L−1)Mean value参考文献Reference
    长江口Yangtze Estuary172.60―2441.20[32]
    东江Dongjiang River469.10―677.30586.3[33]
    松花江Songhua River1.23―92,899.009180.05[34]
    辽河Liao River55.65―5700.003498.86[34]
    海河Hai River31.70―401.25104.78[34]
    淮河Huai River79.94―9050.002795.25[34]
    黄河Yellow River4.98―6610.00950.18[34]
    长江中游支流Middle Yangtze River20.80―90.4040.70[35]
    太湖Taihu Lake238.00―7422.001592.00[36]
    银川湿地Yinchuan Wetland818.69―2538.841623.14[37]
    盐城滨海湿地Yancheng Coastal Wetlands227.00―884.00479.0[38]
    广东海珠湿地Haizhu Wetland, Guangdong139.00―1134.00[39]
    辽东湾Liaodong Bay106.80―468.10367.4[40]
    渤海湾Bohai Bay48.00―607.00[41-42]
    胶州湾Jiaozhou Bay23.60―86.20[43]
    洋浦湾Yangpu Bay528.80―2208.30[44]
    大亚湾Daya Bay4228.00―29,325.00[45]
    珠江口八大口门Eight main entrances of Pearl River EstuaryND―24,265.00本研究
    区域Regional浓度范围/(ng·L−1)Concentration平均值/(ng·L−1)Mean value参考文献Reference
    长江口Yangtze Estuary172.60―2441.20[32]
    东江Dongjiang River469.10―677.30586.3[33]
    松花江Songhua River1.23―92,899.009180.05[34]
    辽河Liao River55.65―5700.003498.86[34]
    海河Hai River31.70―401.25104.78[34]
    淮河Huai River79.94―9050.002795.25[34]
    黄河Yellow River4.98―6610.00950.18[34]
    长江中游支流Middle Yangtze River20.80―90.4040.70[35]
    太湖Taihu Lake238.00―7422.001592.00[36]
    银川湿地Yinchuan Wetland818.69―2538.841623.14[37]
    盐城滨海湿地Yancheng Coastal Wetlands227.00―884.00479.0[38]
    广东海珠湿地Haizhu Wetland, Guangdong139.00―1134.00[39]
    辽东湾Liaodong Bay106.80―468.10367.4[40]
    渤海湾Bohai Bay48.00―607.00[41-42]
    胶州湾Jiaozhou Bay23.60―86.20[43]
    洋浦湾Yangpu Bay528.80―2208.30[44]
    大亚湾Daya Bay4228.00―29,325.00[45]
    珠江口八大口门Eight main entrances of Pearl River EstuaryND―24,265.00本研究
    下载: 导出CSV
  • [1] 刘玉灿, 田一, 苏庆亮, 等. 我国地表水污染现状与防治策略探索 [J]. 净水技术, 2021, 40(11): 62-70. doi: 10.15890/j.cnki.jsjs.2021.11.009

    LIU Y C, TIAN Y, SU Q L, et al. Current situation and control strategy of surface water pollution at home [J]. Water Purification Technology, 2021, 40(11): 62-70(in Chinese). doi: 10.15890/j.cnki.jsjs.2021.11.009

    [2] 刘璐, 孙启智, 刘章华, 等. 水环境中微塑料的迁移及其与有机污染物的复合毒性效应研究进展 [J]. 环境化学, 2022, 41(5): 1504-1514. doi: 10.7524/j.issn.0254-6108.2021070904

    LIU L, SUN Q Z, LIU Z H, et al. Migration of microplastics and their combined toxic effects with organic pollutants in water environment: A review [J]. Environmental Chemistry, 2022, 41(5): 1504-1514(in Chinese). doi: 10.7524/j.issn.0254-6108.2021070904

    [3] 鲍茜, 郑姚颖, 沈大航, 等. 十溴二苯乙烷的污染现状及环境行为研究进展 [J]. 环境化学, 2022, 41(6): 1905-1919. doi: 10.7524/j.issn.0254-6108.2021020202

    BAO Q, ZHENG Y Y, SHEN D H, et al. Research progress on the pollution status and environmental behaviors of decabromodiphenyl ethane [J]. Environmental Chemistry, 2022, 41(6): 1905-1919(in Chinese). doi: 10.7524/j.issn.0254-6108.2021020202

    [4] 张贞莹, 温蓓, 黄红林, 等. 脂环族溴代阻燃剂的生物富集、代谢及毒性效应研究进展 [J]. 环境化学, 2022, 41(5): 1480-1503. doi: 10.7524/j.issn.0254-6108.2021102902

    ZHANG Z Y, WEN B, HUANG H L, et al. Research progress on bioconcentration, metabolism and toxicity of cycloaliphatic brominated flame retardant isomers [J]. Environmental Chemistry, 2022, 41(5): 1480-1503(in Chinese). doi: 10.7524/j.issn.0254-6108.2021102902

    [5] 姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展 [J]. 环境化学, 2022, 41(1): 70-82. doi: 10.7524/j.issn.0254-6108.2020090303

    JI Q S, KONG X C, WANG X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review [J]. Environmental Chemistry, 2022, 41(1): 70-82(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090303

    [6] 张运超, 任路遥. 某化工企业地块土壤污染修复效果评估 [J]. 广州化工, 2022, 50(12): 115-117,120. doi: 10.3969/j.issn.1001-9677.2022.12.034

    ZHANG Y C, REN L Y. Evaluation on remediation effect of soil pollution in A chemical enterprise plot [J]. Guangzhou Chemical Industry, 2022, 50(12): 115-117,120(in Chinese). doi: 10.3969/j.issn.1001-9677.2022.12.034

    [7] 舒心, 胡培良, 李东阳, 等. 某炼铁厂汞和多环芳烃复合污染土壤热脱附试验研究 [J]. 广东化工, 2022, 49(14): 90-93,127. doi: 10.3969/j.issn.1007-1865.2022.14.032

    SHU X, HU P L, LI D Y, et al. Experimental study on thermal desorption of mercury and polycyclic aromatic hydrocarbons composite contami nated soil in an ironmaking plant [J]. Guangdong Chemical Industry, 2022, 49(14): 90-93,127(in Chinese). doi: 10.3969/j.issn.1007-1865.2022.14.032

    [8] HAN F L, GUO H, HU J L, et al. Sources and health risks of ambient polycyclic aromatic hydrocarbons in China [J]. Science of the Total Environment, 2020, 698: 134229. doi: 10.1016/j.scitotenv.2019.134229
    [9] MENG Y, LIU X H, LU S Y, et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China [J]. Science of the Total Environment, 2019, 651: 2497-2506. doi: 10.1016/j.scitotenv.2018.10.162
    [10] SHARMA M D, ELANJICKAL A I, MANKAR J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons [J]. Journal of Hazardous Materials, 2020, 398: 122994. doi: 10.1016/j.jhazmat.2020.122994
    [11] 刘良叙, 李朝风, 王嘉伟, 等. 芳香类天然产物的合成生物学研究进展 [J]. 生物工程学报, 2021, 37(6): 2010-2025. doi: 10.13345/j.cjb.210074

    LIU L X, LI C F, WANG J W, et al. Synthetic biology for the synthesis of aromatic natural products: A review [J]. Chinese Journal of Biotechnology, 2021, 37(6): 2010-2025(in Chinese). doi: 10.13345/j.cjb.210074

    [12] 张文博, 刘宾绪, 江涛, 等. 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价 [J]. 环境化学, 2022, 41(2): 561-571. doi: 10.7524/j.issn.0254-6108.2021030701

    ZHANG W B, LIU B X, JIANG T, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea [J]. Environmental Chemistry, 2022, 41(2): 561-571(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030701

    [13] 田芹, 佟玲, 安子怡, 等. 沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质研制 [J]. 岩矿测试, 2022, 41(3): 511-520. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016

    TIAN Q, TONG L, AN Z Y, et al. Development of certified reference materials of polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls in sediments [J]. Rock and Mineral Analysis, 2022, 41(3): 511-520(in Chinese). doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016

    [14] ABBASSY M A, KHALIFA M A, NASSAR A M K, et al. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans [J]. Toxicological Research, 2021, 37(4): 495-503. doi: 10.1007/s43188-020-00085-8
    [15] YIN S J, SUN Y, YU J H, et al. Prenatal exposure to organochlorine pesticides is associated with increased risk for neural tube defects [J]. Science of the Total Environment, 2021, 770: 145284. doi: 10.1016/j.scitotenv.2021.145284
    [16] 刘太胜, 姜沄林, 陆尧, 等. 珠江口海域沉积物中总氮总磷的空间分布特征 [J]. 广东化工, 2021, 48(16): 148-149. doi: 10.3969/j.issn.1007-1865.2021.16.061

    LIU T S, JIANG Y L, LU Y, et al. Spatial distribution and pollution status of total nitrogen and total Phosphorus in sediments of Pearl River Estuary and its adjacent area [J]. Guangdong Chemical Industry, 2021, 48(16): 148-149(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.16.061

    [17] 袁蕾, 张纯超, 吕彦儒. 珠江口水体TOC与COD关系研究 [J]. 海洋环境科学, 2015, 34(5): 700-705. doi: 10.13634/j.cnki.mes.2015.05.010

    YUAN L, ZHANG C C, LV Y R. Correlation analysis between TOC and COD in Pearl River Estuary [J]. Marine Environmental Science, 2015, 34(5): 700-705(in Chinese). doi: 10.13634/j.cnki.mes.2015.05.010

    [18] 袁国明, 何桂芳, 林端. 珠江八大口门污染物浓度变化及成因分析 [J]. 海洋环境科学, 2009, 28(5): 553-557. doi: 10.3969/j.issn.1007-6336.2009.05.018

    YUAN G M, HE G F, LIN D. Pollutant concentration variation and analysis of causes in Eight Major Outlet of Pearl Rive [J]. Marine Environmental Science, 2009, 28(5): 553-557(in Chinese). doi: 10.3969/j.issn.1007-6336.2009.05.018

    [19] 国家质量技术监督局. 中华人民共和国国家标准 GB 17378.2-2007 海洋监测规范 第2部分: 数据处理与分析质量控制[J].

    National Bureau of Quality and Technical Supervision. National Standards of the People 's Republic of China. GB 17378.2-2007 The specification for marine monitoring— Part 3: Sample collection, storage and transportation

    [20] 平立凤, 骆永明. 有机质对多环芳烃环境行为影响的研究进展 [J]. 土壤, 2005, 37(4): 362-369. doi: 10.3321/j.issn:0253-9829.2005.04.003

    PING L F, LUO Y M. Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons [J]. Soils, 2005, 37(4): 362-369(in Chinese). doi: 10.3321/j.issn:0253-9829.2005.04.003

    [21] KONG J J, DAI Y X, HAN M S, et al. Nitrated and parent PAHs in the surface water of Lake Taihu, China: Occurrence, distribution, source, and human health risk assessment [J]. Journal of Environmental Sciences, 2021, 102: 159-169. doi: 10.1016/j.jes.2020.09.025
    [22] ZHU Y X, LIANG B, XIA W W, et al. Assessing potential risks of aquatic polycyclic aromatic compounds via multiple approaches: A case study in Jialing and Yangtze Rivers in downtown Chongqing, China [J]. Environmental Pollution, 2022, 294: 118620. doi: 10.1016/j.envpol.2021.118620
    [23] 张学浪, 潘泽瀚. 城镇化进程中的农村人口转移与分布空间 [J]. 华南农业大学学报(社会科学版), 2014, 13(4): 88-100.

    ZHANG X L, PAN Z H. Rural population transfer and distribution space in urbanization process [J]. Journal of South China Agricultural University (Social Science Edition), 2014, 13(4): 88-100(in Chinese).

    [24] 马莉莎. 珠三角城市群空间扩展研究 [J]. 江西建材, 2017(9): 34-35. doi: 10.3969/j.issn.1006-2890.2017.09.027

    MA L S. Study on spatial expansion of Pearl River Delta urban agglomeration [J]. Jiangxi Building Materials, 2017(9): 34-35(in Chinese). doi: 10.3969/j.issn.1006-2890.2017.09.027

    [25] 杨北辰, 解启来, 郑芊等. 新疆典型地区植物和土壤多环芳烃污染特征、来源解析及健康风险评价 [J]. 环境科学, 2022,43(12): 5751-5760. doi: 10.13227/j.hjkx.202112229

    YANG B C, JIE Q L, ZHENG Q, et al. Occurence, source analysis, and health risks of polycyclic aromatic hydrocarbons in plants and soils from typical areas of Xinjiang, China [J]. Environmental Science, 2022,43(12): 5751-5760(in Chinese). doi: 10.13227/j.hjkx.202112229

    [26] MACKAY D. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals[M]. 2nd ed. Boca Raton, FL: CRC/Taylor & Francis, 2006
    [27] ZHANG Y, DOU H, CHANG B, et al. Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China [J]. Annals of the New York Academy of Sciences, 2008, 1140: 218-227. doi: 10.1196/annals.1454.006
    [28] 李亮, 郝峰, 石艳菊. 热脱附-气相色谱/质谱法测定环境空气中苯酚、萘、苊和芴 [J]. 环境与发展, 2022, 34(4): 126-130,143. doi: 10.16647/j.cnki.cn15-1369/X.2022.04.019

    LI L, HAO F, SHI Y J. Determination of phenol, naphthalene, acenaphthene, fluorene in environmental air by gas chromatography/mass spectrometry coupled with automated thermal desorption [J]. Environment and Development, 2022, 34(4): 126-130,143(in Chinese). doi: 10.16647/j.cnki.cn15-1369/X.2022.04.019

    [29] 杨梦茹, 徐雄, 王东红等. 长江典型江段水体多环芳烃的分布特征、来源及其生态风险评价 [J]. 中国环境科学, 2022,42(12): 5308-5317. doi: 10.3969/j.issn.1000-6923.2022.01.001

    YANG M R, XU X, WANG D H, et al. Distribution characteristics, source and ecological risks assessment of Polycyclic Aromatic Hydrocarbons in water bodies of typical sections of the Yangtze River [J]. China Environmental Science, 2022,42(12): 5308-5317(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.01.001

    [30] 张鸿龄, 孙丽娜, 孙铁珩, 等. 浑河水环境中多环芳烃(PAHs)污染来源解析 [J]. 沈阳大学学报(自然科学版), 2013, 25(2): 87-91.

    ZHANG H L, SUN L N, SUN T H, et al. Sources of polycyclic aromatic hydrocarbons (PAHs) in surface water from Hunhe River [J]. Journal of Shenyang University (Natural Science), 2013, 25(2): 87-91(in Chinese).

    [31] 王璟, 王春江, 赵冬至, 等. 渤海湾和黄河口外表层海水中芳烃的组成、分布及来源 [J]. 海洋环境科学, 2010, 29(3): 406-410. doi: 10.3969/j.issn.1007-6336.2010.03.026

    WANG J, WANG C J, ZHAO D Z, et al. Composition, distribution and source of polycyclic aromatic hydrocarbons in surface water of Bohai Bay and outside Huanghe Estuary [J]. Marine Environmental Science, 2010, 29(3): 406-410(in Chinese). doi: 10.3969/j.issn.1007-6336.2010.03.026

    [32] 王成龙. 长江流域—河口—近海环境中多环芳烃分布特征及影响因素研究[D]. 南京: 南京大学, 2017.

    WANG C L. Studies on the distribution characteristics and its influencing factors of polycyclic aromatic hydrocarbons in Changjiang River-estuary-sea system[D]. Nanjing: Nanjing University, 2017(in Chinese).

    [33] 胡俊杰, 兰善红, 康耿等. 东江流域典型毒害有机污染物的污染特征、来源及生态风险 [J]. 环境科学学报, 2022,42(11): 147-155. doi: 10.13671/j.hjkxxb.2022.0147

    HU J J, LAN S H, KANG G, et al. Pollution, source and ecological risk assessment of typical toxic organic pollutants in the Dongjiang River [J]. Acta Scientiae Circumstantiae, 2022,42(11): 147-155(in Chinese). doi: 10.13671/j.hjkxxb.2022.0147

    [34] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价 [J]. 环境科学, 2019, 40(5): 2101-2114. doi: 10.13227/j.hjkx.201809034

    FAN B, WANG X N, HUANG Y, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114(in Chinese). doi: 10.13227/j.hjkx.201809034

    [35] 董磊, 汤显强, 林莉, 等. 长江武汉段丰水期水体和沉积物中多环芳烃及邻苯二甲酸酯类有机污染物污染特征及来源分析 [J]. 环境科学, 2018, 39(6): 2588-2599. doi: 10.13227/j.hjkx.201710014

    DONG L, TANG X Q, LIN L, et al. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters during high water level periods in the Wuhan section of the Yangtze River, China [J]. Environmental Science, 2018, 39(6): 2588-2599(in Chinese). doi: 10.13227/j.hjkx.201710014

    [36] 李涛, 王玉, 徐枫, 等. 太湖流域地表水中多环芳烃的来源解析及风险评价 [J]. 环境科学与技术, 2018, 41(11): 198-204. doi: 10.19672/j.cnki.1003-6504.2018.11.031

    LI T, WANG Y, XU F, et al. Pollution characteristics, source apportionment and risk assessment of polycyclic aromatic hydrocarbons in surface water from Taihu Lake Basin [J]. Environmental Science & Technology, 2018, 41(11): 198-204(in Chinese). doi: 10.19672/j.cnki.1003-6504.2018.11.031

    [37] 田大年, 党丽慧, 丁润梅, 等. 银川市湿地表层水中多环芳烃的分布、来源及生态风险评价 [J]. 环境科学, 2019, 40(7): 3068-3077. doi: 10.13227/j.hjkx.201812096

    TIAN D N, DANG L H, DING R M, et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the surface waters of the Yinchuan wetlands [J]. Environmental Science, 2019, 40(7): 3068-3077(in Chinese). doi: 10.13227/j.hjkx.201812096

    [38] 蔡杨, 李伟, 左雪燕, 等. 盐城滨海湿地土壤多环芳烃分布特征及影响因素 [J]. 生态环境学报, 2021, 30(6): 1249-1259. doi: 10.16258/j.cnki.1674-5906.2021.06.016

    CAI Y, LI W, ZUO X Y, et al. Distribution characteristics and influencing factors of PAHs in Yancheng coastal wetland soil [J]. Ecology and Environmental Sciences, 2021, 30(6): 1249-1259(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.06.016

    [39] 李海燕, 赖子尼, 曾艳艺, 等. 广东典型湿地环境沉积物及鱼体中多环芳烃的污染特征及风险评估 [J]. 生态毒理学报, 2019, 14(5): 296-307.

    LI H Y, LAI Z N, ZENG Y Y, et al. Pollution characteristics and risk assessment of PAHs in sediments and fishes from typical wetlands of Guangdong Province [J]. Asian Journal of Ecotoxicology, 2019, 14(5): 296-307(in Chinese).

    [40] 张玉凤, 吴金浩, 宋永刚, 等. 辽东湾海水中PAHs分布与来源特征及风险评估 [J]. 环境科学研究, 2017, 30(6): 892-901. doi: 10.13198/j.issn.1001-6929.2017.02.31

    ZHANG Y F, WU J H, SONG Y G, et al. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater in Liaodong Bay, China [J]. Research of Environmental Sciences, 2017, 30(6): 892-901(in Chinese). doi: 10.13198/j.issn.1001-6929.2017.02.31

    [41] QIAN X, LIANG B C, FU W J, et al. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: Spatial distribution, composition, sources and ecological risk assessment [J]. Marine Pollution Bulletin, 2016, 112(1/2): 349-358.
    [42] TONG Y F, CHEN L, LIU Y, et al. Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China [J]. Marine Pollution Bulletin, 2019, 142: 520-524. doi: 10.1016/j.marpolbul.2019.04.004
    [43] SUN J W, PAN L Q, CAO Y H, et al. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) from Manila clam Ruditapes philippinarum in Laizhou, Rushan and Jiaozhou, bays of China, and investigation of its relationship with human carcinogenic risk [J]. Marine Pollution Bulletin, 2020, 160: 111556. doi: 10.1016/j.marpolbul.2020.111556
    [44] LI P, CAO J, DIAO X P, et al. Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China [J]. Marine Pollution Bulletin, 2015, 93(1/2): 53-60.
    [45] SUN R X, LIN Q, KE C L, et al. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China [J]. Marine Pollution Bulletin, 2016, 103(1/2): 325-332.
    [46] 吴鹏, 刘永, 肖雅元, 等. 春季珠江口万山群岛毗邻海域渔业生态环境状况评价 [J]. 南方水产科学, 2022, 18(5): 1-8. doi: 10.12131/20210332

    WU P, LIU Y, XIAO Y Y, et al. Evaluation of fisheries ecological environment in adjacent sea areas of Wanshan Archipelago in Pearl River Estuary in spring [J]. South China Fisheries Science, 2022, 18(5): 1-8(in Chinese). doi: 10.12131/20210332

    [47] TAO W, NIU L X, DONG Y H, et al. Nutrient pollution and its dynamic source-sink pattern in the Pearl River Estuary (south China) [J]. Frontiers in Marine Science, 2021, 8: 713907. doi: 10.3389/fmars.2021.713907
  • 加载中
图( 3) 表( 2)
计量
  • 文章访问数:  4318
  • HTML全文浏览数:  4318
  • PDF下载数:  106
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2023-01-16
  • 刊出日期:  2023-03-27
张菲菲, 唐玉光, 孙培艳, 王鑫平, 李一鸣, 陆金仁, 包木太. 珠江口八大口门PAHs时空分布特征[J]. 环境化学, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
引用本文: 张菲菲, 唐玉光, 孙培艳, 王鑫平, 李一鸣, 陆金仁, 包木太. 珠江口八大口门PAHs时空分布特征[J]. 环境化学, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
ZHANG Feifei, TANG Yuguang, SUN Peiyan, WANG Xinping, LI Yiming, LU Jinren, BAO Mutai. Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary[J]. Environmental Chemistry, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401
Citation: ZHANG Feifei, TANG Yuguang, SUN Peiyan, WANG Xinping, LI Yiming, LU Jinren, BAO Mutai. Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary[J]. Environmental Chemistry, 2023, 42(3): 863-872. doi: 10.7524/j.issn.0254-6108.2022091401

珠江口八大口门PAHs时空分布特征

    通讯作者: Tel:13455696560,E-mail:sg5106922@126.com;  Tel:0532-66782509,E-mail:mtbao@ouc.edu.cn
  • 1. 中国海洋大学海洋理论与工程技术教育部重点实验室海洋高等研究院,青岛,266100
  • 2. 中国海洋大学化学化工学院,青岛,266100
  • 3. 寿光市海洋渔业发展中心,潍坊,262700
  • 4. 自然资源部渤海生态预警与保护修复重点实验室,国家海洋局北海环境监测中心,青岛,266100
基金项目:
自然资源部渤海生态预警与保护修复重点实验室2022年开放基金(2022103)资助

摘要: 2019年2月、4月、8月和10月分别采集了珠江口八大口门入海口海水样品,采用气相色谱方法对10种多环芳烃(PAHs)(萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)进行定量源解析,PAHs的检出率较高,表明PAHs在八大口门海域水体中普遍存在. 在空间分布上,鸡啼门、虎门海域水体 PAHs 含量相对较高,蕉门、磨刀门、虎跳门和崖门居中,洪奇门和横门相对较少. 各口门 PAHs 含量呈现明显的表底分层现象,八大口门表层水 PAHs 的浓度范围为 ND—27260.00 ng·L−1,最大值出现在虎跳门4月份水样;底层水 PAHs 的浓度范围为ND—31175.00 ng·L−1,最大值出现在鸡啼门10月份水样. 在时间分布上,各口门表、底层海水PAHs 含量平均值均呈现出8月份最小的特征,是由于8月雨量大,雨水冲刷及径流作用增大,对入海口区域污染物进行一定程度的稀释. 从来源上看,八大口门海水中 PAHs 的来源主要为交通、煤焦油炼制、化石燃料的燃烧及加工炼制、木材燃烧、煤炭燃烧、油类不完全燃烧及油类泄漏混合污染等. 研究珠江口八大口门入海口水体多环芳烃污染情况,对珠江三角洲生态环境保护和治理具有重要意义.

English Abstract

  • 随着工业快速发展、城镇化比例提高,越来越多的易挥发、难降解有机污染物被释放到环境中[1]. 由于其普遍具有难降解的特性,其在环境及生物体内持久存在[2]. 同时,这些污染物可通过大气沉降、地表径流等进入水体[3],导致水环境污染的日益加重,并进一步通过食物链和生物积累的作用[4]最终对人类健康和生态环境产生严重的负面影响. 研究显示,持久性有机污染物的污染水平通常与该地区的工业化发展水平和其产业结构呈现正相关的关系[5]. 如上海某工业区内,大多数企业使用燃煤锅炉,其燃烧排放的污染物通过大气干湿沉降等积累到周边环境,导致区内土壤及地下水重金属、有机污染物含量超标严重,其中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染较为严重,浓度范围达到1.56—4.60 mg·kg−1,超标深度达到0—2 m[6]. 重庆某炼厂污染区域,多环芳烃含量较高,其超标倍数最高为1277.7 倍[7]. 在雨水冲刷及径流的作用下,国内大部分河流、湖泊及海域都已出现不同程度的持久性有机污染物污染,部分地区已存在潜在严重生态危害[810]. 因此,详细评估水环境中典型持久性有机污染物的污染及其风险,对于制定相关污染物控制措施是非常重要的.

    PAHs 是一种含有2个及以上苯环的芳香烃化合物,及由其所衍生的复杂化合物的总称[11]. PAHs 是一种典型的持久性有机污染物,其中萘、苊、二氢苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、苊、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并芘、二苯并蒽、苯并茈是美国环保署规定优先控制的污染物,具有致畸、致癌、致突变效应,可通过食物链及生物积累等作用进行传递,对生态环境、生物及人体健康造成极大的危害[12-13]. PAHs 中萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛等都是毒性大、致癌性强、难降解的污染物[11, 12]. PAHs 污染引起了人类社会的极大关注,由于具有积聚性、高毒性、迁移性等性质,PAHs 极易在生物体内富集,并通过生物放大效应导致各类神经、免疫和生殖系统疾病[14-15]. 有研究证明[8, 10],PAHs 可损害女性生殖系统,损害人体肺功能等对人类健康产生极大威胁.

    珠江三角洲是我国经济最发达地区之一,由于人口密度大、城市密集、工业发达、近海船舶活动频繁等原因,珠江已成为珠三角生活污水入海的主要载体,珠江口已成为广东省中重度污染的主要海域[16-17]. 珠江口是珠江的河口湾,形如喇叭,由八大口门出海,分别为虎门、蕉门、洪奇门、横门(东四门)、磨刀门、鸡啼门、虎跳门和崖门(西四门). 珠江口八大口门是上游陆源污染物向南海输出的最后通道,珠江沿程的污染物经一系列生物、化学、物理过程后,最终经八大口门入海,各口门的污染物及其浓度直接影响着珠江口近海海域的水质[18]. 因此,该区域的水环境安全问题值得引起高度重视,然而目前,关于珠江口八大口门的持久性有机物污染及其相关环境问题的研究仍然较为有限.

    为此,本研究选取10种优控 PAHs (萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)为目标污染物,旨在阐明 PAHs 的污染水平和时空分布;分析其主要来源;评估其生态风险,以期为珠江口八大口门流域持久性有机物污染的控制、促进区域经济和环境协调发展提供数据支撑,为珠江三角洲水资源的可持续发展提供科学依据.

    • 2019 年对珠江口八大口门海水水质中多环芳烃(萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)总量共进行4次调查,分别在2月、4月、8月和10月进行. 其中,蕉门、洪奇门、横门、磨刀门、鸡啼门、虎跳门受河流作用较强,河口径流强、潮流弱,海水入侵距离短;虎门和崖门则受潮流作用较强,河口呈喇叭状,海水入侵距离长[18]. 水质样品使用有机玻璃采水器采集,水深约为5—15 m,分别采集表层(距水面0.5 m)和底层(距水底0.5 m)样品,样品采集按照《海洋监测规范》的要求进行[19]. 样品采集后以0.45μm滤膜过滤,滤液于4℃冷藏,并尽快进行分析. 具体的调查站位如图1所示.

    • 10种多环芳烃标液(萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛). 二氯甲烷,色谱纯;无水硫酸钠(Na2SO4),分析纯, 400 ℃ 烘4 h ,干燥器中保存.

    • 量取 500 mL 海水样品至分液漏斗,用 15 mL 二氯甲烷萃取,重复3次,收集二氯甲烷萃取液,过无水硫酸钠柱去除水分,氮吹浓缩至 1 mL ,待气相色谱分析.

    • 采用配有电子捕获检测器的气相色谱(Agilent 7890A)对 10 种PAHs进行定量分析,色谱条件为:HP-5 毛细管色谱柱(30 m × 0.32 mm × 0.25 μm);载气为高纯氮气;无分流进样(进样量1.0 μL);进样口和检测器温度分别为260 ℃和290 ℃,初始温度120 ℃,稳定2 min,以10 ℃·min−1 升到280 ℃,恒温15 min,柱前压力10.0 Psi,氮气流速1.97 mL·min−1.

    • 本次研究对珠江口八大口门全年四季度表、底层海水 PAHs 的含量做了调查,结果如图2所示.

      珠江口八大口门全年四季度表层海水水质 PAHs 含量的分布特征,见图2(a). 从图2可以看出,总体来看,各口门表层海水 PAHs 普遍被检出. 从表层海水PAHs平均值来看,2月份,崖门(15200.00 ng·L−1)>蕉门(15195.00 ng·L−1)>虎跳门(12900.00 ng·L−1)>虎门(12400.00 ng·L−1)>鸡啼门(12135.00 ng·L−1)>磨刀门(9460.00 ng·L−1),洪奇门和横门PAHs为未检出;4月份,虎跳门(27260.00 ng·L−1)>鸡啼门(25200.00 ng·L−1)>虎门(22740.00 ng·L−1)>蕉门(19075.00 ng·L−1)>横门(14090.00 ng·L−1)>洪奇门(13415.00 ng·L−1)>崖门(11005.00 ng·L−1)>磨刀门(9215.00 ng·L−1);8月份,各口门均为未检出;10月份,虎门(27005.00 ng·L−1)>鸡啼门(17355.00 ng·L−1)>磨刀门(12185.00 ng·L−1)>虎跳门(11780.00 ng·L−1)>横门(11455.00 ng·L−1)>崖门(11330.00 ng·L−1)>蕉门(9235.00 ng·L−1),洪奇门为未检出.

      珠江口八大口门全年四季度底层海水水质 PAHs 含量的分布特征,见图2(b). 从图2可以看出,总体来看,除洪奇门,各口门底层海水 PAHs 普遍被检出. 从底层海水PAHs平均值来看,2月份,虎门(16660.00 ng·L−1)>鸡啼门(14685.00 ng·L−1)>虎跳门(10295.00 ng·L−1)>磨刀门(9010.00 ng·L−1)>崖门(7645.00 ng·L−1),其它各口门均为未检出;4月份,虎跳门(21230.00 ng·L−1)>磨刀门(19145.00 ng·L−1)>横门(16445.00 ng·L−1)>虎门(13750.00 ng·L−1)>蕉门(11685.00 ng·L−1)>崖门(7375.00 ng·L−1)>鸡啼门(7350.00 ng·L−1),洪奇门为未检出;8月份,横门(4850.00 ng·L−1),其它各口门均为未检出;10月份,鸡啼门(31175.00 ng·L−1)>崖门(17070.00 ng·L−1)>虎门(14090.00 ng·L−1)>虎跳门(12400.00 ng·L−1),其它各口门均为未检出.

      从空间分布上看,各口门PAHs含量呈现明显的表底分层现象,为表层高而底层低或者底层高而表层低的特征. 研究表明,大气干湿沉降等外源引入使水体表层 PAHs含量比水体下层中高得多,而接近水底 PAHs 的含量比表层水中高,这主要是因为沉积物颗粒的再悬浮作用[20]. 各口门表层水 PAHs 的浓度范围为 ND—27260.00 ng·L−1,最大值出现在虎跳门4月份水样. 各口门底层水 PAHs 的浓度范围为ND—31175.00 ng·L−1,最大值出现在鸡啼门10月份水样. 由图1可以看出,虎跳门区域河道复杂,海水入侵距离短,潮流弱,同时4月份刚进入丰水期,降水的增多可能给水体带来更多的大气沉降物,加之径流汇集的影响,导致当时表层水体PAHs 含量较高. 鸡啼门位于珠江水系的较下游区域,同时10月份进入枯水期,雨水冲刷及地表径流相对减少,导致鸡啼门当时水体 PAHs 含量较高. 在海岸带水环境中,河流的输入是十分重要的来源,因此入海口处 PAHs 含量要比开阔海中要高,且浓度随离入海口距离的增加而减少. 一般靠近入海口、工业发达地区、油田和排污口等污染源的海水中 PAHs 的浓度较高. 此次调查中有个别口门如蕉门,PAHs 分布具有表层高而底层未检出的特征,这说明该区域 PAHs 分布主要是由外源引入,而横门在8月则具备底层高而表层未检出的特征,其它口门也存在这种现象,如4月磨刀门、10月鸡啼门的 PAHs 分布均为底层明显高于表层,其原因主要是受底质的影响,PAHs 通过再悬浮作用回到水体中.

    • 珠江口八大口门全年四季度表、底层海水 PAHs 平均值的分析结果见图3. 虎门各月份 PAHs 含量变化为:10月(20547.50 ng·L−1)>4月(18245.00 ng·L−1)>2月(14530.00 ng·L−1),8月为未检出;蕉门:4月(15380.00 ng·L−1)>2月(7597.50 ng·L−1)>10月(4617.50 ng·L−1),8月为未检出;洪奇门4月份为(6707.50 ng·L−1),其它各月份均为未检出;横门:4月(15267.50 ng·L−1)>10月(5727.50 ng·L−1)>8月(2425.00 ng·L−1),2月为未检出;磨刀门:4月(14180.00 ng·L−1)>2月(9235.00 ng·L−1)>10月(6092.50 ng·L−1),8月为未检出;鸡啼门:10月(24265.00 ng·L−1)>4月(16275.00 ng·L−1)>2月(13410.00 ng·L−1),8月为未检出;虎跳门:4月(24245.00 ng·L−1)>10月(12090.00 ng·L−1)>2月(11597.00 ng·L−1),8月为未检出;崖门:10月(14200.00 ng·L−1)>2月(11422.50 ng·L−1)>4月(9190.00 ng·L−1),8月为未检出. 从4次调查的平均值来看,PAHs 分布处于一个较为稳定的范围内,其中8月份除横门有较低含量分布外,其它各口门PAHs 在此月份普遍为未检出.

      从时间分布上看,各口门表、底层海水PAHs 含量平均值均呈现出8月份最小的特征,原因可能是8月雨量大,雨水冲刷及径流作用增大,对入海口区域污染物进行一定程度的稀释作用[21]. 珠江流域4月和8月处于丰水期,2月和10月处于枯水期. 除8月份只有横门有检出且含量较低外,其它各口门PAHs 在此月份普遍为未检出. 蕉门、洪奇门、横门、磨刀门、虎跳门呈现出4月 PAHs 含量略高于2月和10月的现象,从图1可以看出这些区域地形复杂,距开阔海域较远,加之工业化程度较高、人口密度大等原因,可能是造成该区域出现此趋势的原因. 另外,降雨引起沉积物扰动也可能导致沉积物中 PAHs 再次进入水体[22].

    • 本次调查结果显示,检出率较高的 PAHs 同族体主要为苊、芴、苯并蒽,表、底层海水PAHs检出情况如表1所示.

      珠江流域人口增长速度较快,1982—2010年,珠江流域总人口由1772.43万增至5594.09万,加速了区域城镇化的扩大和工业化的发展[24]. 而海洋环境中 PAHs 来源主要包括有机质的燃烧如化石燃料燃烧和高温热解、石油类产品及自然来源如天然成岩过程以及生物体等. 不同环数的 PAHs 来自不同的排放源,2—3 环PAHs主要来源于石油污染,4 环PAHs主要来源于煤炭燃烧,5—6 环PAHs主要来源于机动车尾气排放[25].

      从分析结果可以看出(见表1),所调查区域海水中多为低环数 PAHs,其中3环 PAHs (苊和芴)和4环 PAHs (苯并蒽)含量较高,而憎水性最强的5环和6环的 PAHs 在所调查水样中检出率较低. 主要是由于低环数(4环及以下) PAHs 主要来源于石油污染及煤炭、木材等在低、中温范围的燃烧,高环数 PAHs 主要来源于化石燃料的高温燃烧[26],可见低环数 PAHs 的产生来源比高环数的更为广泛,且低环数PAHs在水中的溶解度比高环数的更高,最终导致水体中低环数 PAHs 检出率较高.

      综合分析,珠江口八大口门海水中多环芳烃主要来源于化石燃料燃烧:苊的检出说明存在交通和煤焦油炼制的来源[28];苊烯的检出说明存在木材燃烧的来源[29];芴、苯并蒽的检出说明存在油类不完全燃烧、煤炭燃烧及油类泄漏混合污染等的来源[30]. 同时,由于高环数(5、6环)PAHs 比低环数(2—4环) PAHs 更容易富集在颗粒物上,这也可能导致所调查海域水体中多为低环数的 PAHs[31].

    • 同国内不同河口及近岸水中 PAHs 含量相比(见表2),珠江口八大口门表、底层海水PAHs 含量平均值处于中等水平,略低于邻近的大亚湾区域. 然而,随着工农业生产的发展,陆源污染物源源不断地通过八大口门输送入南海. 有研究表明粤港澳地区的大气、水体已经受到各种污染物的污染,尤其是对珠江口水质的污染[46-47]. 河口作为淡水与海水的相互作用地带,成为排污的直接受害区,其生态系统承受着巨大的压力,所以珠江口八大口门海水环境中 PAHs 的污染应当引起相关部门的足够重视.

    • 本文对珠江口八大口门各季度海水水体 PAHs 的含量进行了调查,结果表明,各口门水质都受到一定程度的污染. 在空间分布上,各口门 PAHs 含量呈现明显的表底分层现象,八大口门表层水 PAHs 的浓度范围为 ND—27260.00 ng·L−1,最大值出现在虎跳门4月份水样;底层水 PAHs 的浓度范围为ND—31175.00 ng·L−1,最大值出现在鸡啼门10月份水样. 总体分布特征为,鸡啼门、虎门海域水体 PAHs 含量相对较高,蕉门、磨刀门、虎跳门和崖门居中,洪奇门和横门相对较少. 在时间分布上,各口门表、底层海水PAHs 含量平均值均呈现出8月份最小的特征,是由于8月雨量大,雨水冲刷及径流作用增大,对入海口区域污染物进行一定程度的稀释. 从来源上看,八大口门海水中 PAHs 的来源主要为交通、煤焦油炼制、化石燃料的燃烧及加工炼制、木材燃烧、煤炭燃烧、油类不完全燃烧及油类泄漏混合污染等.

    参考文献 (47)

返回顶部

目录

/

返回文章
返回