-
重金属具有持久、易累积及不可降解等特性,在低浓度下仍有着强烈的毒性,可以由多种途径进入生态系统,造成资源浪费、环境污染,同时严重损害人体健康[1-2]. 湖泊是物质的“汇”,流域物质随大气沉降、降水直接进入水体,或是通过径流作用间接汇集至湖泊中,入湖后流速减缓,物质发生沉淀,形成湖泊沉积物,其中,重金属是最重要的成分之一. 沉积物重金属是湖泊流域众多污染源中对生态环境造成危害最大和影响最持久的污染源[3]. 在湖泊系统中沉积物既是重金属的“汇”,也可能是重金属的“源”:重金属可在沉积物中积累,而在水动力等外力作用下,沉积物会释放出重金属,造成二次污染[4]. 因此探究湖泊沉积物中重金属分布,评估湖泊重金属污染状况至关重要.
目前已有大量学者针对湖泊沉积物重金属污染问题开展了相关研究. 研究内容主要集中在沉积物重金属的时空分布特征[5-7]、定年与沉积速率[8-12]、来源分析[13-15]等方面. 研究结果表明,沉积柱重金属含量分布受到自然沉积的影响,也可能与不同时期的人类活动显著相关. 上游的人类活动主要通过工业活动[16-18]、燃料燃烧[17]、采矿冶炼[17,19]、生活污水[16]、农业生产、交通运输等途径影响沉积物重金属的来源与含量. 因此,根据湖泊沉积柱中重金属不同时期的沉积特征来反演其污染历史,对于目前湖泊重金属污染治理具有指导作用,但是仅通过沉积年代与重金属的垂向分布来大致推测重金属的来源与影响机制具有一定的不确定性,仍需结合上游活动等进一步验证. 因此,不同沉积年代的重金属特征与上游活动的关联关系仍需进一步研究.
洞庭湖具有重要的生态地位,但由于上游存在历时长、范围广的工业活动,湖泊生态安全受到严重威胁. 现有洞庭湖重金属研究集中于表层重金属含量、污染程度演化及来源解析[20-22];关于沉积柱定年研究主要集中在“四水”入湖沉积物系[23]. 对于湖中沉积柱重金属在不同区域环境、不同历史时期的分布和流域污染源仍具有不确定性.
为探究湖中沉积柱重金属含量与流域人类活动的关系,本次研究选取洞庭湖泥沙频繁交换的关键区域——东洞庭湖区作为研究对象,选取3种人类活动类型区域(码头、旅游区、自然保护区),采用同位素定年法,分析东洞庭湖沉积速率及分层依据,探究其典型重金属的垂向分布特征;运用相关性、主成分分析,确定各类重金属污染物的来源;结合湖泊沉积背景与流域内人为活动,验证并总结不同阶段东洞庭湖沉积物污染情况,以期为东洞庭湖沉积物重金属污染防治提供历史依据.
基于多元统计方法的东洞庭湖沉积物重金属时空分布特征与来源变化
Temporal and spatial distribution characteristics and source changes of heavy metals in sediments of East Dongting Lake based on multivariate statistical methods
-
摘要: 流域上游矿山开采和重金属冶炼等人类活动的影响使得洞庭湖水域重金属污染问题严重,制约了该区域社会经济的可持续发展. 针对近100年来洞庭湖重金属污染不明的现状,本研究以东洞庭湖为研究对象,结合放射性核素210Pb定年技术,分析沉积物中7种重金属(As、Cd、Cr、Cu、Mn、Pb、Zn)的时空分布特征,并采用主成分分析方法,解析重金属污染物的来源. 研究结果表明,近100年来东洞庭湖存在As、Cd、Pb、Cu、Zn污染情况. 其中As的平均含量较高,在东洞庭湖自然保护区(DDTH)下层均值达184.05 mg·kg−1;除鹿角(LJ)下层,Mn元素平均含量均高于洞庭湖背景值,对其需引起重视. 重金属含量在垂向上变幅较大,且沉积过程大体可分为3个阶段(1937年前;1937—1978年;1978—2020年). 源解析结果表明,早期的东洞庭湖沉积物重金属污染主要来自“采矿源”;中期主要受到“工业源”、“农业源”及“交通源”的共同影响;而近期为多种污染源共同支配形成的“混合源”. 本研究结果进一步明确了湖泊沉积物重金属的空间分布特征以及污染历史的演化过程,为湖泊环境管理提供理论支撑.Abstract: The heavy metal pollution in Dongting Lake is serious due to the intensive human activities such as mining and heavy metal smelting in the upper reaches, which restricts the sustainable development of the region’s society and economy. For the uncertain situation of the heavy metal pollution in Dongting Lakre over the past century, this study selected East Dongting Lake as the research object. The spatial and temporal distributions of seven heavy metals (As, Cd, Cr, Cu, Mn, Pb, and Zn) in sediments were analyzed with the help of 210Pb dating technique, and their source was identified by principal component analysis. The results showed that the East Dongting Lake was contaminated by As, Cd, Pb, Cu and Zn in the past 100 years. In DDTH (the nature reserve), the average content of As was relatively high with the value in the lower layer reaching 184.05 mg·kg−1. Except for the lower layer LJ (wharf), the average content of Mn in all the sites exceeded the background value, which needs more attention. The content of heavy metals showed obvious variation along the vertical direction, and the deposition process can be divided into three stages: before 1937,1937—1978, and 1978—2020. The source identification results showed that heavy metal pollution of sediments in East Dongting Lake was mainly from “mining sources” in the early period. In the middle period, it was mainly affected by the “industrial source”, “agricultural source” and “transportation source”. In recent years, the “mixed source” formed the combined domination of the pollution sources. Our findings clarified the spatial distributions of heavy metals in lake sediments and their evolutionary processes of pollution history, and further provided theoretical support for lake environmental management.
-
Key words:
- heavy metals /
- East Dongting Lake /
- sediments /
- pollution history /
- sources.
-
表 1 样品点基本信息
Table 1. Basic information of sample points
采样点
Sampling site地理位置
Location代表意义
MeaningsLJ 112°59' 24.09" E,29°7' 42.90" N 鹿角;湘江入湖口、港口、航运中心 JSD 113°0' 25.88" E,29°22' 6.82" N 君山岛;旅游景区沿线公路附近 DDTH 112°47' 33.87" E,29°27' 49.66" N 东洞庭自然保护区;位于湿地保护区核心,远离人类活动 表 2 东洞庭湖沉积柱重金属含量(mg·kg−1)
Table 2. Contents of heavy metals in sedimentary columns of East Dongting Lake (mg·kg−1)
东洞庭湖分区
East Dongting Lake SubdivisionAs Cd Cr Cu Mn Pb Zn DDTH 上层 ND ND 19.36 13.45 798.55 18.55 51.91 中层 ND ND 21.33 6.22 861.39 17.22 53.11 下层 184.05 ND 26.75 10.85 939.58 18.55 71.5 JSD 上层 ND ND 30.17 20.00 298.33 29.5 124.92 中层 ND ND 9.17 28.17 974.25 23.42 67.80 下层 0.27 ND 13.80 29.32 596.16 22.19 55.55 LJ 上层 ND 0.40 19.52 16.50 1139.78 26.69 167.38 中层 0.27 ND 23.23 24.73 661.41 32.45 73.77 下层 0.10 ND 27.60 28.30 441.00 31.90 132.58 洞庭湖重金属背景值[26] 12.90 0.33 44.00 20.20 450.00 23.30 83.30 “ND”,未检测出数据. ”ND”, No data is detected. 表 3 大型湖泊沉积物重金属含量(mg·kg−1)
Table 3. Heavy metal content in large lake sediments (mg·kg−1)
年份
YearsCd Cr Cu Mn Pb Zn 2020年 太湖[31] 0.07 93.69 31.32 — 34.16 101.93 洪泽湖[32] 0.23±0.07 66.78±12.33 25.35±6.23 27.28±6.31 74.77±18.19 鄱阳湖[33] 0.79 70.2 39.8 — 43.0 119.4 洞庭湖[34] 1.91 93.47 37.98 — 36.35 147.19 1978年 太湖北部[35] — 6082 20—30 — 8—14 40—75 洪泽湖[36] — 27—70 38—47 0.4—0.9 9.5—16 45—78 鄱阳湖[37] — 120 320 900 5 500 1937年 太湖北部 — 60—69 20—25 — 7—12 40—64 鄱阳湖 — 62 175 720 2 260 “—”,数据缺失. “—”, missing data. 表 4 沉积物下层重金属含量相关性分析结果
Table 4. Correlation analysis results of heavy metal content in lower layer of sediment
Cr Cu Mn Pb Zn As LJ Cr 1.00 Cu 0.00 1.00 Mn 0.00 1.00** 1.00 Pb 0.00 −1.00** −1.00** 1.00 Zn −0.10 0.400 0.40 −0.40 1.00 As 0.00 −0.35 −0.35 0.35 0.71 1.00 JSD Cr 1.00 Cu 0.26 1.00 Mn −0.20 0.17 1.00 Pb 0.25 0.76** 0.32 1.00 Zn 0.50* 0.50* −0.17 0.46* 1.00 As 0.19 0.07 0.05 −0.02 0.00 1.00 DDTH Cr 1.00 Cu −0.23 1.00 Mn 0.08 0.46* 1.00 Pb 0.12 0.17 0.41 1.00 Zn 0.14 −0.38 0.22 0.08 1.00 As −0.05 −0.36 −0.16 −0.16 0.51* 1.00 *. P<0.05,相关性显著;**. P<0.01,相关性极显著.
*. P < 0.05, significant correlation; **. P < 0.01, the correlation was extremely significant.表 5 沉积物中层重金属含量相关性分析结果
Table 5. correlation analysis results of heavy metal content in the middle layer of sediment
Cr Cu Mn Pb Zn As LJ Cr 1.00 Cu 0.16 1.00 Mn −0.22 −0.37 1.00 Pb −0.41 −0.72* 0.29 1.00 Zn −0.37 −0.85** 0.56 0.89** 1.00 As −0.50 0.30 −0.10 0.10 −0.10 1.00 JSD Cr 1.00 Cu −0.44 1.00 Mn −0.52 0.57 1.00 Pb −0.08 0.40 0.13 1.00 Zn 0.07 0.36 −0.14 0.69* 1.00 — DDTH Cr 1.00 Cu −0.71* 1.00 Mn −0.43 0.53 1.00 Pb −0.22 0.64 0.23 1.00 Zn 0.64 −0.67* −0.37 −0.34 1.00 — *. P<0.05,相关性显著;**. P<0.01,相关性极显著.
*. P < 0.05, significant correlation; **. P < 0.01, the correlation was extremely significant.表 6 沉积物上层重金属含量相关性分析结果
Table 6. correlation analysis results of heavy metal content in the upper layer of sediment
Cr Cu Pb Mn Zn Cd LJ Cr 1.00 Cu 0.34 1.00 Pb 0.03 0.12 1.00 Mn −0.09 0.27 −0.24 1.00 Zn 0.05 0.10 0.11 0.56** 1.00 Cd −0.44* −0.29 0.33 0.02 0.55** 1.00 JSD Cr 1.00 Cu 0.18 1.00 Pb 0.73** 0.05 1.00 Mn −0.76** −0.28 −0.76** 1.00 Zn 0.90** −0.05 0.83** −0.78** 1.00 — DDTH Cr 1.00 Cu −0.46 1.00 Pb 0.67** −0.46 1.00 Mn −0.44 0.23 −0.82** 1.00 Zn 0.82** −0.24 0.49* −0.28 1.00 — *. P<0.05,相关性显著;**. P<0.01,相关性极显著.
*. P < 0.05, significant correlation; **. P < 0.01, the correlation was extremely significant. -
[1] GAFUR N, SAKAKIBARA M, SANO S, et al. A case study of heavy metal pollution in water of bone river by artisanal small-scale gold mine activities in eastern part of gorontalo, Indonesia [J]. Water, 2018, 10(11): 1507. doi: 10.3390/w10111507 [2] ZHANG S C, CHEN B, DU J R, et al. Distribution, assessment, and source of heavy metals in sediments of the Qinjiang River, China [J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9140. doi: 10.3390/ijerph19159140 [3] 王永平, 洪大林, 申霞, 等. 骆马湖沉积物重金属及营养盐污染研究 [J]. 南水北调与水利科技, 2013, 11(6): 45-48,143. WANG Y P, HONG D L, SHEN X, et al. Heavy metals and nutrients pollution in sediments of Luoma Lake [J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(6): 45-48,143(in Chinese).
[4] DAI L J, WANG L Q, LI L F, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China [J]. The Science of the Total Environment, 2018, 621: 1433-1444. doi: 10.1016/j.scitotenv.2017.10.085 [5] ENGDAW F, HEIN T, BENEBERU G. Heavy metal distribution in surface water and sediment of megech river, a tributary of lake Tana, ethiopia [J]. Sustainability, 2022, 14(5): 2791. doi: 10.3390/su14052791 [6] KÜKRER S, ÇAKıR Ç, KAYA H K, et al. Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment [J]. Environmental Forensics, 2019, 20(4): 385-401. doi: 10.1080/15275922.2019.1657985 [7] 赵晓亮, 李响, 卢洪斌,等. 东江湖表层沉积物重金属污染特征与潜在生态风险评价 [J]. 环境科学, 2022, 43(6): 3048-3057. ZHAO X L, LI X, LU H B, et al. Analysis of heavy metal pollution characteristics and potential ecological risks of surface sediments in Dongjiang Lake [J]. Environmental Science, 2022, 43(6): 3048-3057(in Chinese).
[8] BAUD A, AULARD C, GHANBARI H, et al. A framework for 210 Pb model selection and its application to 37 cores from Eastern Canada to identify the dynamics and drivers of lake sedimentation rates [J]. Earth Surface Processes and Landforms, 2022, 47(10): 2518-2530. doi: 10.1002/esp.5391 [9] ZANKO L M, REAVIE E D, POST S P, et al. Inhalable, Elongate mineral particles from lake sediment records trace mining activities in northern Minnesota [J]. Journal of Paleolimnology, 2022, 68(2): 215-230. doi: 10.1007/s10933-022-00243-y [10] STRAKHOVENKO V D, BELKINA N A, EFREMENKO N A, et al. The first data on the mineralogy and geochemistry of the suspension of lake onego [J]. Russian Geology and Geophysics, 2022, 63(1): 55-71. doi: 10.2113/RGG20204280 [11] 李忠武, 王磊, 冉凤维, 等. 基于APCS-MLR模型的西洞庭湖沉积物重金属来源解析 [J]. 长沙理工大学学报(自然科学版), 2022, 19(2): 1-14. LI Z W, WANG L, RAN F W, et al. Source analysis of heavy metals in sediments of West Dongting Lake based on APCS-MLR model [J]. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(2): 1-14(in Chinese).
[12] DU Y, CAI S M, ZHANG X Y, et al. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis [J]. Geomorphology, 2001, 41(2/3): 171-181. [13] MENG W, LIU Y, ZHU S J, et al. Distribution and ecological risk of heavy metals in sediment across the Dongting Lake Basin [J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 739-749,767. [14] MAYANGLAMBAM B, NEELAM S S. Geochemistry and pollution status of surface sediments of Loktak Lake, Manipur, India [J]. SN Applied Sciences, 2020, 2(12): 2097. doi: 10.1007/s42452-020-03903-8 [15] CÉCILE G, MARC D, ZHANG M X, et al. Trace Element Contamination in One of the Yangtze Tributaries (Hunan, China)—Source Review and Potential Release from Sediments [J]. Water, 2021, 13(3): 1-24. [16] WANG J, LIU G, LU L, et al. Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China [J]. Catena, 2015, 129: 30-38. doi: 10.1016/j.catena.2015.02.008 [17] LI J, MICHALSKI G, OLSON E J, et al. Geochemical characterization and heavy metal sources in PM10 in Arequipa, Peru [J]. Atmosphere, 2021, 12(5): 641. doi: 10.3390/atmos12050641 [18] FEBRIANSYAH M R, SEPTIANA L M, SUPRIATIN S, et al. The patterns of lead and copper levels in the vicinity of heavy metal sources in Lampung, the southern part of Sumatra, Indonesia [J]. IOP Conference Series:Earth and Environmental Science, 2021, 739(1): 012001. doi: 10.1088/1755-1315/739/1/012001 [19] EL OUATY O, EL M'RINI A, NACHITE D, et al. Assessment of the heavy metal sources and concentrations in the Nador Lagoon sediment, Northeast-Morocco [J]. Ocean & Coastal Management, 2022, 216: 105900. [20] XU Y F, WU Y, HAN J G, et al. The current status of heavy metal in lake sediments from China: Pollution and ecological risk assessment [J]. Ecology and Evolution, 2017, 7(14): 5454-5466. doi: 10.1002/ece3.3124 [21] RAN F W, NIE X D, LI Z W, et al. Chronological records of sediment organic carbon at an entrance of Dongting Lake: Response to historical meteorological events [J]. The Science of the Total Environment, 2021, 794: 148801. doi: 10.1016/j.scitotenv.2021.148801 [22] ZENG J, HAN G L, WU Q X, et al. Geochemical characteristics of dissolved heavy metals in Zhujiang River, Southwest China: spatial-temporal distribution, source, export flux estimation, and a water quality assessment [J]. PeerJ, 2019, 7: e6578. doi: 10.7717/peerj.6578 [23] 隆院男, 唐蓉, 蒋昌波, 等. 近60年湘江流域水沙特性及其对人类活动的响应 [J]. 农业工程学报, 2018, 34(24): 132-143. LONG Y N, TANG R, JIANG C B, et al. Variability characteristics of runoff-sediment discharge and their response to human activities in Xiang River Basin in recent 60 years [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 132-143(in Chinese).
[24] 李从先, 杨守业, 范代读, 赵娟. 三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响 [J]. 第四纪研究, 2004, 24(5): 495-500. LI C X, YANG S Y, FAN D D, et al. The change in Changjiang suspended load and its impact on the delta after completion of Three Gorges Dam [J]. Quaternary Sciences, 2004, 24(5): 495-500(in Chinese).
[25] 吴道喜. 长江中游洪灾成因及防治策略研究[D]. 武汉: 武汉大学, 2005. WU D X. Flood disaster in the middle Yangtze River: The reason and its management[D]. Wuhan: Wuhan University, 2005 (in Chinese).
[26] 李健, 曾北危, 姚岳云, 张立成, 丘昌强, 钱杏珍. 洞庭湖水系水体环境背景值调查研究 [J]. 环境科学, 1986, 7(4): 62-68,104. LI J, ZENG B W, YAO Y Y, et al. Studies on environmental background levels in waters of Dongting Lake system [J]. Environmental Science, 1986, 7(4): 62-68,104(in Chinese).
[27] 李超显, 黄健柏. 流域重金属污染治理政策工具选择的政策网络分析: 以湘江流域为例 [J]. 湘潭大学学报(哲学社会科学版), 2017, 41(6): 21-27. LI C X, HUANG J B. The policy network analysis of policy instrument selection of heavy metal pollution governance in river basin: A case study of Xiangjiang river basin [J]. Journal of Xiangtan University(Philosophy and Social Sciences), 2017, 41(6): 21-27(in Chinese).
[28] 杨梦昕, 付湘晋, 李忠海, 等. 湘江流域重金属污染情况及其对食物链的影响 [J]. 食品与机械, 2014, 30(5): 103-106. YANG M X, FU X J, LI Z H, et al. Heavy metal pollution status in Xiangjiang river and its effect on food chain [J]. Food & Machinery, 2014, 30(5): 103-106(in Chinese).
[29] 彭海波. 两型社会建设中湘江污染治理的法制建设研究[D]. 长沙: 中南林业科技大学, 2013. PENG H B. Study on legal construction for the goverance of Xiangjiang River pollution in the two-oriented society construction [D]. Changsha: Central South University of Forestry & Technology, 2013 (in Chinese).
[30] 谢意南, 欧阳美凤, 黄代中, 等. 洞庭湖及其入湖口沉积物中重金属的污染特征、来源与生态风险 [J]. 环境化学, 2017, 36(10): 2253-2264. doi: 10.7524/j.issn.0254-6108.2017020303 XIE Y N, OUYANG M F, HUANG D Z, et al. Pollution characteristics, sources and ecological risk of heavy metals in sediments from Dongting Lake and its lake inlets [J]. Environmental Chemistry, 2017, 36(10): 2253-2264(in Chinese). doi: 10.7524/j.issn.0254-6108.2017020303
[31] 邓延慧, 王正文, 丁润楠, 等. 太湖湖体沉积物营养盐和重金属污染特征研究 [J]. 环境生态学, 2020(12): 67-72. DENG Y H, WANG Z W, DING R N, et al. Study on pollution characteristics of nutrient salts and heavy metals in sediment of Taihu Lake [J]. Environmental Ecology, 2020(12): 67-72(in Chinese).
[32] 訾鑫源, 张鸣, 谷孝鸿, 等. 洪泽湖围栏养殖对表层沉积物重金属含量影响与生态风险评价 [J]. 环境科学, 2021, 42(11): 5355-5363. ZI X Y, ZHANG M, GU X H, et al. Impact of enclosure culture on heavy metal content in surface sediments of Hongze Lake and ecological risk assessment [J]. Environmental Science, 2021, 42(11): 5355-5363(in Chinese).
[33] 刘佳伟, 杨明生. 鄱阳湖流域重金属污染评价与分析 [J]. 环境污染与防治, 2022, 44(1): 99-103. doi: 10.15985/j.cnki.1001-3865.2022.01.017 LIU J W, YANG M S. Assessment and analysis of heavy metal pollution in Poyang Lake Basin [J]. Environmental Pollution & Control, 2022, 44(1): 99-103(in Chinese). doi: 10.15985/j.cnki.1001-3865.2022.01.017
[34] 尹宇莹, 彭高卓, 谢意南, 等. 洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析 [J]. 环境化学, 2021, 40(8): 2399-2409. doi: 10.7524/j.issn.0254-6108.2020042401 YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake [J]. Environmental Chemistry, 2021, 40(8): 2399-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042401
[35] 张伯镇. 太湖北部湖湾沉积物毒害污染物分布特征及风险评价: 以重金属和多环芳烃为例[D]. 兰州: 兰州交通大学, 2015. ZHANG B Z. Pollution characteristics and risk of persistent toxic substances in the sediments from northern Taihu Lake—a case study for heavy metal and polycyclic aromatic hydrocarbons[D]. Lanzhou: Lanzhou Jiatong University, 2015 (in Chinese).
[36] 张文斌. 洪泽湖沉积物中营养盐和重金属分布特征、评价及其演化规律研究[D]. 长春: 吉林建筑工程学院, 2010. ZHANG W B. Study on the distribution, evaluation and evolution of nutrients and heavy metals in Hongze Lake sediments[D]. Changchun: Jilin Jianzhu University, 2010 (in Chinese).
[37] 刘小真. 鄱阳湖流域底质重金属及杀虫剂类POPs垂直污染分布特征[D]. 南昌: 南昌大学, 2008. LIU X Z. Perpendicularity pollution and distributing character of both heavy metal and OCPs of sediment in Poyang Lake drainage basin[D]. Nanchang: Nanchang University, 2008 (in Chinese).
[38] 蔡长卿, 金昌盛, 陈佳, 等. 东洞庭湖沉积物重金属污染及生态-健康风险 [J]. 农业环境科学学报, 2022, 41(6): 1337-1347. CAI C Q, JIN C S, CHEN J, et al. Sediment heavy metal pollution and its ecological and health risk assessment in the East Dongting Lake, China [J]. Journal of Agro-Environment Science, 2022, 41(6): 1337-1347(in Chinese).
[39] 李利强, 王丑明, 张屹, 等. 洞庭湖大型底栖动物与表层沉积物重金属研究 [J]. 生态环境学报, 2016, 25(2): 286-291. LI L Q, WANG C M, ZHANG Y, et al. Study of macrozoobenthos and heavy metals of surface sediment in Dongting Lake [J]. Ecology and Environmental Sciences, 2016, 25(2): 286-291(in Chinese).
[40] 戴翌晗. 典型矿冶城市农田土壤重金属污染来源解析 [J]. 环境生态学, 2022, 4(5): 25-31. DAI Y H. Source apportionment of heavy metals in agricultural soil of a typical mining and metallurgy city [J]. Environmental Ecology, 2022, 4(5): 25-31(in Chinese).
[41] 解瑞峰. 中国北方典型湖泊重金属沉积特征、污染来源与趋势预测[D]. 哈尔滨: 哈尔滨师范大学, 2021. XIE R F. Deposition characteristic, source analysis and trend prediction of heavy metals in typical lakes in Northern China[D]. Harbin: Harbin Normal University, 2021 (in Chinese).
[42] 郭旻欣. 基于GIS的淮南矿区土壤Cu、Ni、As、Zn和Cr元素空间分布特征及来源分析[D]. 合肥: 合肥工业大学, 2016. GUO M X. Research on spatial distribution and contamination sources of heavy metal Cu, Ni, As, Zn, Cr in Huainan mining area based on GIS[D]. Hefei: Hefei University of Technology, 2016 (in Chinese).
[43] 湖南省志编纂委会. 湖南省志[M]. 长沙: 湖南人民出版社, 1982. Hunan Provincial Chronicles Compilation Committee. Hunan Provincial chronicles[M]. Changsha: Hunan People's Publishing House, 1982 (in Chinese).
[44] 余燕飞. 近代湘鄂赣山区煤铁开发及其影响 [J]. 江汉论坛, 2020(4): 103-110. YU Y F. Coal and steel mining development in Hunan, Hubei and Jiangxi Mountains in modern China and its influence [J]. Jianghan Tribune, 2020(4): 103-110(in Chinese).
[45] 李欢娟, 李会霞, 史兴民. 西安市主要湖泊表层沉积物重金属污染及生态风险评估 [J]. 干旱区资源与环境, 2019, 33(2): 122-126. LI H J, LI H X, SHI X M. Pollution characteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi'an [J]. Journal of Arid Land Resources and Environment, 2019, 33(2): 122-126(in Chinese).
[46] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价 [J]. 环境科学, 2018, 39(6): 2884-2892. ZHOU Y, CHEN Q, DENG S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China [J]. Environmental Science, 2018, 39(6): 2884-2892(in Chinese).
[47] 王宏. 东洞庭湖湿地土壤重金属的分布特征及风险评价[D]. 长沙: 湖南师范大学, 2012. WANG H. Spatial distribution and risk assessment of heavy metals in Eastern Dongting Lake wetland[D]. Changsha: Hunan Normal University, 2012 (in Chinese).
[48] 朱陈名, 朱咏莉, 韩建刚, 等. 洪泽湖重金属污染现状与防控技术 [J]. 南京林业大学学报(自然科学版), 2017, 41(3): 175-181. ZHU C M, ZHU Y L, HAN J G, et al. The heavy metal pollution situation and control in Hongze Lake [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(3): 175-181(in Chinese).
[49] 杜吉净, 毛龙江, 谭志海, 等. 海州湾岩芯沉积物重金属污染评价和来源分析 [J]. 海洋环境科学, 2016(6): 814-821. doi: 10.13634/j.cnki.mes.2016.06.028 DU J J, MAO L J, TAN Z H, et al. Pollution evaluation and source identification of heavy metals in sediments from core in Haizhou Bay [J]. Marine Environmental Science, 2016(6): 814-821(in Chinese). doi: 10.13634/j.cnki.mes.2016.06.028
[50] 李湘岳. 岳阳市志[M]. 北京: 中央文献出版社, 2005. LI X Y. Yueyang annals[M]. Beijing: Central Literature Publishing House, 2005 (in Chinese).
[51] 张爱国, 魏兴萍. 西南典型岩溶槽谷土壤重金属污染与来源解析 [J]. 环境科学与技术, 2020, 43(12): 166-176. doi: 10.19672/j.cnki.1003-6504.2020.12.023 ZHANG A G, WEI X P. Pollution and source analysis of heavy metals in soils of typical Karst troughs in southwestern China [J]. Environmental Science & Technology, 2020, 43(12): 166-176(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.12.023
[52] 张转玲, 谭红, 何锦林, 等. 贵州草海表层沉积物重金属污染特征及来源分析 [J]. 生态环境学报, 2018, 27(12): 2314-2320. ZHANG Z L, TAN H, HE J L, et al. Distribution characteristics and source identification of heavy metals in surface sediments of Caohai Lake in Guizhou [J]. Ecology and Environmental Sciences, 2018, 27(12): 2314-2320(in Chinese).
[53] 金恺. 两种蔊菜属植物对重金属镉的耐性研究[D]. 沈阳: 沈阳农业大学, 2019. JIN K. Studies of two species of Rorippa on resistance to cadmium[D]. Shenyang: Shenyang Agricultural University, 2019 (in Chinese).
[54] 雷津宁, 蒋兰香. 生态环境损害法律责任追究实证研究: 以湖南十大案件为素材 [J]. 时代法学, 2017, 15(2): 56-63. LEI J N, JIANG L X. On empirical research for law accountability of eco-environmental —as for the material of top 10 cases in Hunan [J]. Presentday Law Science, 2017, 15(2): 56-63(in Chinese).
[55] 赵思颖. 稻田镉污染高光谱响应及其关系研究[D]. 南昌: 江西师范大学, 2016. ZHAO S Y. Research on response and its relationship of Cd pollution in paddy field and hyperspectral[D]. Nanchang: Jiangxi Normal University, 2016 (in Chinese).
[56] 何培金, 朱培高. 岳阳市情要览[M]. 长沙: 湖南人民出版社, 1988. HE P J, ZHU P G. Overview of Yueyang City[M]. Changsha: Hunan People's Publishing House, 1988 (in Chinese).
[57] 岳阳市农村区划委员会. 湖南省岳阳地区农业区划报告集[M]. 岳阳: 岳阳地区印刷厂, 1985. Yueyang Rural Zoning Committee. Report Collection of Agricultural Zoning in Yueyang, Hunan Province[M]. Yueyang: Yueyang printing house, 1985 (in Chinese).