草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展

陈婷, 陈振华, 徐天缘. 草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展[J]. 环境化学, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
引用本文: 陈婷, 陈振华, 徐天缘. 草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展[J]. 环境化学, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
CHEN Ting, CHEN Zhenhua, XU Tianyuan. Environmental photochemical behaviors of iron minerals and oxalate and reactive oxygen species generation: A review[J]. Environmental Chemistry, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
Citation: CHEN Ting, CHEN Zhenhua, XU Tianyuan. Environmental photochemical behaviors of iron minerals and oxalate and reactive oxygen species generation: A review[J]. Environmental Chemistry, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401

草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展

    通讯作者: E-mail:xutianyuan@cumt.edu.cn
  • 基金项目:
    国家自然科学基金 ( 22176212,21806050)资助.

Environmental photochemical behaviors of iron minerals and oxalate and reactive oxygen species generation: A review

    Corresponding author: XU Tianyuan, xutianyuan@cumt.edu.cn
  • Fund Project: the National Natural Science Foundation of China (22176212,21806050).
  • 摘要: 草酸与铁氧化物共存于自然环境中,二者之间的相互作用及光化学行为强烈影响着分子氧的活化. 而分子氧活化影响共存体系中污染物的迁移与转化,是发展绿色污染控制氧化技术的关键. 因此,探讨草酸与铁氧化物之间的相互作用与光化学活化分子氧是目前的研究热点之一. 本文系统总结了近年来围绕草酸与铁氧化物相互作用以及草酸诱导铁氧化物活化分子氧的研究成果,论述了草酸在铁氧化表面的吸附与转化特性、草酸铁络合物光化学过程以及活性氧产生与转移途径,同时探讨了上述过程对环境污染物降解的影响,借此加深理解草酸诱导铁氧化物环境光化学行为与活化分子氧原理,并对今后的研究发展方向提出了展望,以期为利用天然铁氧化物和有机质发展原位环境修复技术提供依据.
  • 多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类全球普遍存在的半挥发性有机污染物[13]. 研究表明,大气中的PAHs组分的致突变活性在大气污染物各组分中占比为35%—82%,且主要来自人为源[45]. 煤炭在当前我国能源消费结构中仍处于重要地位,但煤炭燃烧也是造成我国雾霾频发的重要因素之一[68]. 在煤炭燃烧过程中,会通过低温挥发和高温自由基缩合反应等途径生成和释放PAHs[911]. 认清燃煤电厂PAHs的排放特征是其污染控制及环境影响评价的基础和前提,但对于燃煤电厂烟气排放过程PAHs在细颗粒物中的迁移转化行为尚缺乏系统的研究.

    特征比值法常被用来解析环境中PAHs的来源,但是由于PAHs异构体具有较大的内源变异性,且其降解转化和大气迁移过程也会改变PAHs的分子组成,使分析结果具有较大不确定性[1214]. 单体稳定同位素分析法已普遍应用于环境痕迹调查,研究者通过分析不同燃烧源(如木材、甘蔗的燃烧、柴油车和汽油车尾气)PAHs的单体同位素值构建了人为源PAHs单体同位素数据库[1518],并探讨了13C生成途径,为其环境来源解析提供了有力证据. 研究表明,与PAHs特征比值较大的差异性不同,PAHs单体同位素比值(δ13C)受生物降解及光降解的作用不明显[19],表明出较强的源解析能力. 前期研究表明,燃煤电厂排放烟气中PAHs的含量和组成与锅炉类型、燃烧条件(如给煤性质、锅炉负荷、操作条件等)以及污染物控制过程等因素密不可分;燃煤产物(如飞灰、底灰、脱硫石膏等)中PAHs的赋存特征受其物化性质(包括粒径、残留碳和矿物种类)等因素控制[2022]. 本次对安徽淮南3家粉煤炉电厂排放烟气中的可吸入颗粒物(PM2.5–10、PM1–2.5、PM1)中PAHs的含量、组成及PAHs单体同位素值进行了系统研究.

    样品采集于安徽淮南3家燃煤电厂(HPA、HPB和HPC)的燃煤机组烟囱(图1). 根据不同的粉煤炉类型和大气污染控制设施条件将燃煤机组分别命名为HPA-1、HPA-2、HPA-3、HPB-1、HPB-2、HPC-1(表1). 其中HPA-1、HPA-2、HPA-3的运行条件为亚临界,HPB-1、HPB-2的运行条件为亚临界,HPC-1的运行条件为超临界. 所有粉煤炉均安装了静电除尘器(electrostatic precipitators,ESPs);此外,HPA-3、HPB-2、HPC-1安装了湿法烟气脱硫(wet flue-gas desulfurization,WFGD)系统. 粉煤炉中燃烧温度范围是1200—1500 ℃,在ESPs处温度大幅下降(130—180 ℃),在WFGD处为80—90 ℃.

    图 1  燃煤锅炉机组采样点示意
    Figure 1.  Schematic diagram of boiler generator set
    表 1  本实验采样的基本信息
    Table 1.  Basic information of sampling
    参数Parameter 粉煤炉类型Pulverized coal furnace type
    HPA-1 HPA-2 HPA-3 HPB-1 HPB-2 HPC-1
    运行条件 亚临界 亚临界 亚临界 亚临界 亚临界 超临界
    燃煤机组容量/MW 300 300 300 600 600 600
    大气污染控制设施 ESPs ESPs ESPs+WFGD ESPs ESPs+WFGD ESPs+WFGD
    烟气流速/(m·s–1 8.7 11.4 9.3 9.8 7.9 10.1
    烟气温度/℃ 69.4 67.2 72.3 74.5 68.5 73.5
     | Show Table
    DownLoad: CSV

    采样前将石英滤膜置于500 ℃高温条件下煅烧12 h,将XAD-2聚苯乙烯合成树脂置于丙酮和二氯甲烷中浸泡48 h. 选用改进型撞击式颗粒物采样器,采样时采样探头方向与烟气流动方向一致,控制采样器流量为18.7 L·min–1. 采集的可吸入颗粒物样品按粒径分为PM2.5–10、PM1–2.5、PM1. 为防止烟气冷凝,烟枪以及PMs撞击器温度需保持120 ℃. 采样后,用预焙铝箔包装聚氨酯泡沫基板并将其密封于聚乙烯袋中,并置于温度20 ℃、相对湿度约35%的恒定条件下保存72 h,然后称重. 为保证结果的可重复性,将不同类型的样品以3份平行样的形式收集保存.

    采用索氏提取法对样品中PAHs进行萃取,将蒽-d10、芘-d10、1-硝基芘-d9加标到提取器中,于200 mL二氯甲烷中萃取48 h,浓缩萃取液,将溶剂交换至正己烷,然后进行色谱分离. 先用10 mL正己烷洗脱色谱柱,再用15 mL正己烷和二氯甲烷(7:3,体积比)混合液洗脱PAHs. 最后氮吹至1 mL,并溶于异辛烷. 加入内标(萘-d8、二氢苊-d10、蒽-d10、䓛-d12、苝-d12).

    采用气相色谱-质谱联用仪(Shimadzu GC-MS-QP 2010)测定PAHs. 选择离子监测模式,电子轰击模式(70 eV)下进行定量分析. 色谱条件为:载气(高纯He)流速为1 mL·min–1;柱温初始为60 ℃(保持3 min),以5 ℃·min–1的速率升至200 ℃,继续以2 ℃·min–1的速率升至260 ℃(保持5 min),最后以5 ℃·min–1的速率升至290 ℃(保持3 min). 离子源温度是210 ℃,进样口温度为280 ℃;无分流自动进样1 μL. 用于通过m/z峰面积与相应的内标的m/z峰面积统一化,并利用响应因子进行定量分析. 本次分析的16种美国优控PAHs分别为:萘(Nap),苊(Acy),二氢苊(Ace),芴(Flu),蒽(Ant),菲(Phe),荧蒽(Fla),芘(Pyr),苯并[a]蒽(BaA),䓛(Chr),苯并[b]荧蒽(BbF),苯并[k]荧蒽(BkF),苯并[a]芘(BaP),二苯并[a,h]蒽(DahA),茚并[1,2,3,-cd]芘(InP),苯并[g,h,i]芘(BghiP).

    以二氯甲烷(15 mL)为流动相,流量为1.3 mL·min–1,用薄层色谱板进一步纯化,浓缩至1 mL. 采用Agilent 6890 GC和Isoprime IRMS进行同位素分析,色谱柱为DB-XLB(30 m×0.25 mm×0.25 µm),载气(高纯He)流速为1 mL·min–1. PAHs单体化合物经气相色谱流出并通过氧化铜燃烧器(900 ℃)生成CO2. 比较δ13C和二氧化碳(99.996%,δ13CVPDB = –35.4 ℃),并于每次运行开始时用作参考混入质谱仪,以分析单个PAHs化合物的C值. 同位素组成成分用δ13C表示,以VPDB标准,用下式计算:

    stringUtils.convertMath(!{formula.content})

    为提高实验的准确性,每个样品同位素测试平行样3份,结果的标准偏差在0.1—0.5 ℃范围内,准确度在±0.3 ℃范围内.

    为确保PAHs浓度定量的准确性,每5个样品需做1组平行样、分析空白和加标回收. 加标回收率为蒽-d10:83%(68%—103%)、芘-d10:84%(范围:81%—115%). 仪器检测限值定义为校准标准的最低浓度与程序空白中发现的信噪比的3倍. 实验数据的统计处理使用SPSS16.0软件. 方差分析试验用于6个燃煤机组之间PAHs浓度的平均值进行比较. 通过t-test检验了不同粒度颗粒物之间PAHs浓度的平均差异,显著性水平设定为P=0.05.

    在6个燃煤机组中,同一大气污染控制设施下,机组容量为600 MW的HPB-1(PAHs:5.28 μg·m−3)相较于300 MW的HPA-1(7.45 μg·m−3)和HPA-2(6.45 μg·m−3)以及机组容量为600 MW的HPB-2(3.59 μg·m−3)和HPC-1(2.86 μg·m−3)相较于300 MW的HPA-3(PAHs:4.52 μg·m−3)烟气中PAHs的含量都明显较低(表2),这说明大机组比小机组燃烧效率更高. 此外, HPB-1排放烟气中PAHs含量明显高于同为600 MW的HPB-2和HPC-1,说明湿式脱硫对于去除烟气中的PAHs具有一定作用.

    表 2  不同采样点烟气颗粒物中PAHs的含量
    Table 2.  PAHs concentrations in particulate matters of flue gas at different sampling sites
    PAHs PM2.5-10/(µg·m−3 PM1-2.5/(µg·m−3 PM1/(µg·m−3
    1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
    Nap 0.43 0.29 0.32 0.27 0.22 0.17 0.31 0.29 0.36 0.25 0.25 0.15 0.28 0.17 0.23 0.18 0.13 0.13
    Acy 0.34 0.32 0.28 0.23 0.26 0.18 0.48 0.47 0.24 0.26 0.24 0.21 0.45 0.53 0.23 0.28 0.23 0.19
    Ace 0.25 0.23 0.19 0.15 0.17 0.13 0.15 0.16 0.12 0.13 0.15 0.13 0.19 0.21 0.13 0.21 0.18 0.13
    Flu 0.29 0.18 0.17 0.14 0.14 0.12 0.3 0.29 0.17 0.18 0.12 0.14 0.28 0.31 0.15 0.18 0.13 0.18
    Ant 0.31 0.31 0.16 0.19 0.20 0.12 0.33 0.31 0.16 0.18 0.18 0.13 0.31 0.26 0.18 0.19 0.15 0.19
    Phe 0.17 0.19 0.11 0.16 0.15 0.09 0.26 0.25 0.14 0.15 0.12 0.11 0.26 0.23 0.20 0.21 0.19 0.14
    Fla 0.93 1.0 0.89 0.87 0.61 0.45 1.4 1.3 0.93 0.88 0.82 0.48 2.0 1.8 1.4 1.8 1.1 0.72
    Pyr 0.77 0.87 0.69 0.58 0.38 0.28 1.3 1.3 0.86 0.96 0.64 0.46 1.6 1.7 0.91 1.4 0.78 0.58
    BaA 0.5 0.36 0.43 0.44 0.37 0.32 0.96 0.96 0.57 0.83 0.48 0.37 1.9 1.7 1.1 1.2 0.87 0.67
    Chr 0.47 0.47 0.22 0.29 0.28 0.18 0.93 1.1 0.61 0.94 0.49 0.32 1.4 1.6 1.0 1.2 1.0 0.59
    BbF 0.63 0.51 0.25 0.38 0.16 0.19 1.1 1.0 0.51 0.71 0.41 0.28 1.6 1.2 1.3 1.2 0.66 0.56
    BkF 0.47 0.37 0.19 0.33 0.18 0.16 0.63 0.68 0.34 0.34 0.21 0.17 0.97 0.96 0.54 0.69 0.37 0.27
    BaP 0.41 0.31 0.13 0.29 0.13 0.10 0.95 0.94 0.39 0.54 0.34 0.26 1.7 1.6 1.2 1.2 0.74 0.53
    DahA 0.52 0.35 0.16 0.23 0.12 0.11 0.64 0.45 0.33 0.42 0.17 0.18 0.78 0.94 0.49 0.74 0.52 0.39
    InP 0.55 0.38 0.16 0.29 0.11 0.14 0.74 0.74 0.38 0.69 0.28 0.21 1.2 1.1 0.63 1.1 0.58 0.35
    BghiP 0.41 0.31 0.17 0.44 0.11 0.12 0.79 0.63 0.31 0.56 0.24 0.22 1.4 1.3 0.87 1.3 0.68 0.48
    总含量 7.45 6.45 4.52 5.28 3.59 2.86 11.27 10.87 6.42 8.02 5.14 3.82 16.32 15.61 10.56 13.08 8.31 6.10
      注:1:HPA-1,2:HPA-2,3:HPA-3,4:HPB-1,5:HPB-2,6:HPC-1
     | Show Table
    DownLoad: CSV

    不同机组烟气中PAHs的组成也存在明显的差异性,高分子量PAHs化合物(如BbF、BaP、InP和BghiP)在机组容量较小的粉煤炉(即HPA-1和HPA-2)中的含量更高(图2);此外,超临界粉煤炉中高分子量PAHs的含量明显低于亚临界粉煤炉. 这可以表明相对较低热效率燃烧促进了这些PAHs化合物的产生.

    图 2  不同燃煤机组16种美国优控PAHs的分布特征
    Figure 2.  The relative compositions of 16 USEPA priority PAHs concentrations in flue gases of different coal-fired boilers

    PAHs在PM2.5-10中的浓度分数为19.6%—22.4%,在PM1-2.5中为30.0%—33.0%,在PM1中为46.6%—49.6%(表2). 不难看出,PAHs在这3种不同粒度的可吸入颗粒物中的浓度分数表现出总含量随着粒度的减少而增大的趋势,推测可能是因为颗粒越细,在燃烧室的停留时间久越短且具有的表面积也越大. 而这些细小颗粒物很大一部分可以直达人体肺泡[2325],威胁生命健康,所以针对燃煤电厂细颗粒物排放的控制十分重要.

    表2可以看出,粒径对PAHs化学分布影响显著. 高分子量PAHs趋于富集在较细的颗粒物上. 例如与PM2.5-10结合的多是4环PAHs,占比高达35.8%,其次是5环和3环PAHs;而当粒度减少到PM1-2.5时,5环PAHs的比例从16.2%—27.2%增加到22%—29.5%,6环PAHs从6.1%—13.8%增加到10.1%—15.6%. 一般情况下,细小颗粒结合的有机物可以通过挥发或吸附转移到大的粒子中,但PAHs却不是如此,吸附在细小颗粒物中高分子量PAHs不太可能转移到粗颗粒物,反而低分子量PAHs更容易在粗细颗粒之间达到分配平衡,导致高分子量PAHs在细颗粒物相对富集[26].

    PAHs特征比值用来示踪其来源的原理是假设PAHs异构体在传输和迁移过程中被稀释程度类似,以保持异构体相对比值从源到受体不变[12]. 如图3所示,大部分PAHs特征比值在不同粒度的特征比率变化趋势并不显著,显示其在PAHs源解析的应用潜力. 但PM2.5-10中BaA/(BaA+Chr)(0.43—0.64)和InP/(InP+BghiP)(0.40—0.57)表现出一定的差异性,表明锅炉类型和大气污染控制设施对其有一定的影响.

    图 3  PM2.5-10,PM1-2.5和PM1中PAHs的特征分子比值
    Figure 3.  The diagnostic ratios for PM2.5-10, PM1-2.5 and PM1-bound PAHs

    然而一些研究表明,不同来源的PAHs的特征比值表现不一致,例如Rogge报道的柴油燃烧排气值为0.35—0.7[27],另一些研究报道燃煤、柴油燃烧和木材燃烧源InP/(InP+BghiP)值分别为0.56、0.37和0.62[28-29];还有研究发现不同木材燃烧排放PAHs的InP/(InP+BghiP)比值范围为0.42—0.51[30]. 这说明不同人为源PAHs特征比值具有源内变异性和源间相似性,可能会受到不同燃煤性质、锅炉类型和燃烧条件影响. 由此可见通过PAHs特征比值的方法来判断来源有一定的局限性. 但大多数PAHs特征比率的变化较小,一定程度上说明PAHs特征比值可应用于燃煤电厂排放PAHs的来源.

    原煤和烟气颗粒物中PAHs单体稳定同位素值(δ13C)分别为−26.5‰—−24.2‰和−30.4‰—−27.6‰,说明燃烧过程中PAHs同位素发生了分馏. 前人研究表明,煤热解产物中PAHs更加富集13C,此外,δ13C值随着热解温度的升高而降低,这主要是因为12C—12C化学键相较于13C—13C键的化学能垒较低从而更容易通过化学重排反应生成[31]. 因此粉煤炉高温燃烧条件下PAHs的分子结构重组更倾向于形成新的12C—12C化学键而非13C—12C键. 燃煤机组HPA-1、HPA-2排放的PAHs的δ13C同位素相对更重,说明更高的燃烧效率导致PAHs结构演变(缩合)程度更深. 没有证据表明烟气脱污过程(静电除尘和湿式脱硫)PAHs会发生显著分馏行为. 原煤与烟气颗粒物中δ13C值具有相似的变化趋势,即低分子量PAHs如Phe、Ant更易富集13C,而高分子量PAHs如BaP、InP、BghiP中13C含量则相对较低(表3),这表明粉煤炉燃烧过程烟气中的高分子量PAHs主要是通过化学重排反应产生的,而低分子量PAHs在一定程度上来自于原煤受热挥发.

    表 3  原料煤和烟气颗粒物中单体PAHs同位素(δ13C, ‰)组成
    Table 3.  Molecular isotopic compositions (δ13C, ‰) of individual PAHs in raw coal and particulate matters
    PAHs Coal HPA-1 HPA-2 HPA-3 HPB-1 HPB-2 HPC-1
    Phe −24.6 −27.8 −27.6 −28.1 −27.8 −28.2 −28.2
    Ant −24.2 −28.1 −27.8 −28.0 −28.0 −28.3 −28.2
    Fla −25.2 −28.4 −28.4 −28.4 −28.6 −28.5 −28.7
    Pyr −25.3 −28.3 −28.5 −28.5 −28.3 −28.4 −28.6
    BaA −25.4 −28.5 −28.3 −28.7 −28.5 −28.6 −28.7
    Chr −25.3 −28.6 −28.4 −28.6 −28.5 −28.5 −29.1
    BkF −25.4 −28.3 −28.2 −28.6 −28.7 −28.7 −29.3
    BaP −26.2 −29.0 −28.7 −29.5 −29.4 −29.4 −29.7
    InP −26.2 −29.2 −29.0 −29.9 −30.0 −30.1 −30.4
    BghiP −26.5 −29.5 −29.4 −30.0 −29.8 −30.0 −30.2
     | Show Table
    DownLoad: CSV

    通过与文献所报告的汽油或柴油排放、甘蔗和生物质燃烧的数据进行比较,发现不同来源PAHs单体同位素值具有显著差别,例如秸秆燃烧源(−25.4‰—−22.9‰)[32]、C3植物燃烧源(−28.8‰—−28.0‰)、C4植物燃烧源(−16.6‰—−15.8‰)[30]和燃煤源(−31.2‰—−22.0‰)[31],尽管存在一定的数据重叠. 但对于不同工艺过程产生PAHs的δ13C值难以进行有效的区分,例如煤气化过程中的BaA及BkF的δ13C值分别为−28.4‰、−28.8‰,而煤燃烧过程中芘的δ13C值为−28.7‰[31].

    PAHs的质量浓度与粉煤炉种类和燃烧条件并没有呈现显著的相关性. ESPs对气相PAHs的去除效率较低,WFGD系统能够有效去除高分子量PAHs. PAHs单体化合物在不同粒度之间表现出明显不同的富集和分离行为. 低分子量PAHs易在细颗粒物和粗颗粒物间平衡,高分子量PAHs因挥发和吸附慢而更易与细颗粒物结合. PAHs的特征比值对于示踪燃煤电厂源有一定的指示意义,但也受到大气污染控制设施的影响. 相比于特征比值法,PAHs单体同位素分析法由于其稳定性及不易被降解,可以有效追踪粉煤炉高温燃烧条件下PAHs的分子结构重组过程. 因此,PAHs单体同位素分析法对于区别不同人为源,如生物质燃烧、车辆尾气排放、煤炭燃烧等表现出较大的潜力,但对于工艺过程如炼焦、煤气化和煤炭燃烧尚难进行有效示踪.

  • 图 1  草酸在不同pH溶液中的物种形式[42]

    Figure 1.  Species forms of oxalic acid in solutions of different pH

    图 2  草酸根在铁簇上的理论络合构型[46]

    Figure 2.  Optimized Ox surface complex geometries on iron clusters

    图 3  草酸在铁氧化物表面形成的络合物构型与诺氟沙星降解速率的相关性[40]

    Figure 3.  Correlation between Ox surface complex geometries on iron oxides and the degradation rate of norfloxacin

    图 4  草酸铁络合物分子内电荷转移过程

    Figure 4.  Intramolecular charge transfer processes of Fe-oxalate complex

    图 5  Fe(III)-草酸配合物光照下的反应历程示意图及反应方程式

    Figure 5.  Schematic diagram of the reaction course and reaction equation of Fe(III)-oxalate complexes under light

  • [1] ZHAO Z J, YAO L W, LI J, et al. Determination of interactions of ferrihydrite-humic acid-Pb (Ⅱ) system [J]. Environmental Science and Pollution Research, 2022, 29(15): 21561-21575. doi: 10.1007/s11356-021-17258-z
    [2] ZHAO X P, LI Z P, TANG W J, et al. Competitive kinetics of Ni(Ⅱ)/Co(Ⅱ) and Cr(VI)/P(Ⅴ) adsorption and desorption on goethite: A unified thermodynamically based model [J]. Journal of Hazardous Materials, 2022, 423: 127028. doi: 10.1016/j.jhazmat.2021.127028
    [3] 卜庆伟, 曹红梅, 贺小凡, 等. 交互作用对有机-矿质复合体吸附四环素的影响 [J]. 环境化学, 2020, 39(12): 3552-3561. doi: 10.7524/j.issn.0254-6108.2020042904

    BU Q W, CAO H M, HE X F, et al. The impact of interaction on organic-mineral complexes adsorb tetracycline [J]. Environmental Chemistry, 2020, 39(12): 3552-3561(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042904

    [4] QIU X R, DING L, ZHANG C, et al. Exposed facets mediated interaction of polystyrene nanoplastics (PSNPs) with iron oxides nanocrystal [J]. Journal of Hazardous Materials, 2022, 435: 128994. doi: 10.1016/j.jhazmat.2022.128994
    [5] GAO M S, SU Y, GAO J B, et al. Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe [J]. Chemosphere, 2022, 302: 134860. doi: 10.1016/j.chemosphere.2022.134860
    [6] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides [J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930
    [7] 朱剑锋, 王艳琼, 王红武. 铁氧化物促进微生物直接种间电子传递的机理及其研究现状 [J]. 环境化学, 2022, 41(6): 1856-1868. doi: 10.7524/j.issn.0254-6108.2021112501

    ZHU J F, WANG Y Q, WANG H W. A review on enhancement of direct interspecies electron transfer induced by iron oxides and its mechanism [J]. Environmental Chemistry, 2022, 41(6): 1856-1868(in Chinese). doi: 10.7524/j.issn.0254-6108.2021112501

    [8] WANG Y Q, LIU W, WANG T, et al. Arsenate adsorption onto Fe-TNTs prepared by a novel water-ethanol hydrothermal method: Mechanism and synergistic effect [J]. Journal of Colloid and Interface Science, 2015, 440: 253-262. doi: 10.1016/j.jcis.2014.10.036
    [9] REN H T, JI Z Y, WU S H, et al. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V) [J]. Chemosphere, 2018, 208: 294-302. doi: 10.1016/j.chemosphere.2018.05.187
    [10] QIN X P, LIU F, ZHAO L, et al. Adsorption of levofloxacin to goethite: Batch and column studies [J]. Environmental Engineering Science, 2016, 33(4): 235-241. doi: 10.1089/ees.2015.0379
    [11] YU B, JIA S Y, LIU Y, et al. Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate [J]. Journal of Hazardous Materials, 2013, 262: 701-708. doi: 10.1016/j.jhazmat.2013.09.010
    [12] ZHANG P, YANG X Y, ZHAO Z B, et al. One-step synthesis of flowerlike C/Fe2O3 nanosheet assembly with superior adsorption capacity and visible light photocatalytic performance for dye removal [J]. Carbon, 2017, 116: 59-67. doi: 10.1016/j.carbon.2017.01.087
    [13] WANG Y N, WANG J M, DENG R P, et al. Preparation and photocatalytic property of porous α-Fe2O3 nanoflowers [J]. Materials Research Bulletin, 2018, 107: 94-99. doi: 10.1016/j.materresbull.2018.07.013
    [14] WANG Y H, SHI H H, CUI K, et al. Hierarchical hematite/TiO2 nanorod arrays coupled with responsive mesoporous silica nanomaterial for highly sensitive photoelectrochemical sensing [J]. Biosensors and Bioelectronics, 2018, 117: 515-521. doi: 10.1016/j.bios.2018.06.030
    [15] SEO J H, CHOI K, NAM J, et al. Synergetic donor-donor codoping strategy for enhanced photoelectrochemical activity of hematite [J]. Applied Catalysis B:Environmental, 2020, 260: 118186. doi: 10.1016/j.apcatb.2019.118186
    [16] LI G, WANG C, YAN Y P, et al. Highly enhanced degradation of organic pollutants in hematite/sulfite/photo system [J]. Chemical Engineering Journal, 2020, 386: 124007. doi: 10.1016/j.cej.2019.124007
    [17] KEERTHANA S, YUVAKKUMAR R, RAVI G, et al. A strategy to enhance the photocatalytic efficiency of α-Fe2O3 [J]. Chemosphere, 2021, 270: 129498. doi: 10.1016/j.chemosphere.2020.129498
    [18] NGUYEN N T T, NGUYEN A Q K, KIM M S, et al. Effect of Fe3+ as an electron-transfer mediator on WO3-induced activation of peroxymonosulfate under visible light [J]. Chemical Engineering Journal, 2021, 411: 128529. doi: 10.1016/j.cej.2021.128529
    [19] THARANI K, JEGATHA CHRISTY A, SAGADEVAN S, et al. Photocatalytic and antibacterial performance of iron oxide nanoparticles formed by the combustion method [J]. Chemical Physics Letters, 2021, 771: 138524. doi: 10.1016/j.cplett.2021.138524
    [20] LAI C, SHI X X, LI L, et al. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review [J]. Science of the Total Environment, 2021, 775: 145850. doi: 10.1016/j.scitotenv.2021.145850
    [21] KIFLE G A, HUANG Y, XIANG M H, et al. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review [J]. Chemical Engineering Journal, 2022, 442: 136187. doi: 10.1016/j.cej.2022.136187
    [22] YOU Y Y, HUANG S B, CHEN M S, et al. Hematite/selenium disulfide hybrid catalyst for enhanced Fe(III)/Fe(II) redox cycling in advanced oxidation processes [J]. Journal of Hazardous Materials, 2022, 424: 127376. doi: 10.1016/j.jhazmat.2021.127376
    [23] LI F B, CHEN J J, LIU C S, et al. Effect of iron oxides and carboxylic acids on photochemical degradation of bisphenol A [J]. Biology and Fertility of Soils, 2006, 42(5): 409-417. doi: 10.1007/s00374-006-0084-7
    [24] LUO H W, ZENG Y F, CHENG Y, et al. Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection [J]. Science of the Total Environment, 2021, 799: 149506. doi: 10.1016/j.scitotenv.2021.149506
    [25] GAJOVIĆ A, SILVA A M T, SEGUNDO R A, et al. Tailoring the phase composition and morphology of Bi-doped goethite-hematite nanostructures and their catalytic activity in the degradation of an actual pesticide using a photo-Fenton-like process [J]. Applied Catalysis B:Environmental, 2011, 103(3/4): 351-361.
    [26] KHAGHANI S, GHANBARI D. Magnetic and photo-catalyst Fe3O4-Ag nanocomposite: Green preparation of silver and magnetite nanoparticles by garlic extract [J]. Journal of Materials Science:Materials in Electronics, 2017, 28(3): 2877-2886. doi: 10.1007/s10854-016-5872-8
    [27] REICHARD P U, KRETZSCHMAR R, KRAEMER S M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids [J]. Geochimica et Cosmochimica Acta, 2007, 71(23): 5635-5650. doi: 10.1016/j.gca.2006.12.022
    [28] JIN X H, LI X F, GUO C L, et al. Fate of oxalic-acid-intervened arsenic during Fe(Ⅱ)-induced transformation of As(Ⅴ)-bearing jarosite [J]. Science of the Total Environment, 2020, 719: 137311. doi: 10.1016/j.scitotenv.2020.137311
    [29] LAMY I, DJAFER M, TERCE M. Influence of oxalic acid on the adsorption of cadmium at the goethite surface [J]. Water, Air, and Soil Pollution, 1991, 57(1): 457-465.
    [30] FLYNN E D, CATALANO J G. Competitive and cooperative effects during nickel adsorption to iron oxides in the presence of oxalate [J]. Environmental Science & Technology, 2017, 51(17): 9792-9799.
    [31] LEE C H, KEENAN C R, SEDLAK D L. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen [J]. Environmental Science & Technology, 2008, 42(13): 4921-4926.
    [32] GONZÁLEZ A G, BIANCO A, BOUTORH J, et al. Influence of strong iron-binding ligands on cloud water oxidant capacity [J]. Science of the Total Environment, 2022, 829: 154642. doi: 10.1016/j.scitotenv.2022.154642
    [33] BATISTA A P S, COTTRELL B A, NOGUEIRA R F P. Photochemical transformation of antibiotics by excitation of Fe(Ⅲ)-complexes in aqueous medium [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 274: 50-56. doi: 10.1016/j.jphotochem.2013.09.017
    [34] POZDNYAKOV I, SHERIN P, BAZHIN N, et al. Fe(Ox)3]3- complex as a photodegradation agent at neutral pH: Advances and limitations [J]. Chemosphere, 2018, 195: 839-846. doi: 10.1016/j.chemosphere.2017.12.096
    [35] WAN D, ZUO J L, CHEN Y, et al. Photodegradation of amitriptyline in Fe(Ⅲ)-citrate-oxalate binary system: Synergistic effect and mechanism [J]. Chemosphere, 2018, 210: 224-231. doi: 10.1016/j.chemosphere.2018.07.006
    [36] WAN D, ZHANG G F, CHEN Y, et al. Photogeneration of hydroxyl radical in Fe(Ⅲ)-citrate-oxalate system for the degradation of fluconazole: Mechanism and products [J]. Environmental Science and Pollution Research, 2019, 26(9): 8640-8649. doi: 10.1007/s11356-019-04348-2
    [37] YAN R, YANG W J, YOU D, et al. Photoinduced evolution of optical properties and compositions of methoxyphenols by Fe(III)-carboxylates complexes in atmospheric aqueous phase [J]. Chemosphere, 2022, 295: 133860. doi: 10.1016/j.chemosphere.2022.133860
    [38] EROKHIN S E, SNYTNIKOVA O A, NOVIKOV M V, et al. Probing reactions between imipramine and hydroxyl radical with the photolysis of iron(III) oxalate: Implications for the indirect photooxidation of tricyclic antidepressants in waters [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2022, 422: 113559. doi: 10.1016/j.jphotochem.2021.113559
    [39] BI W L, DONG W B. The degradation of oxytetracycline with ferrous oxalate under different light irradiation [J]. Environmental Technology, 2021, 42(7): 1084-1091. doi: 10.1080/09593330.2019.1652698
    [40] HUANG M J, XIANG W, ZHOU T, et al. The critical role of the surface iron-oxalate complexing species in determining photochemical degradation of norfloxacin using different iron oxides [J]. Science of the Total Environment, 2019, 697: 134220. doi: 10.1016/j.scitotenv.2019.134220
    [41] 兰青, 莫家乐, 曹美苑. 铁-多羧基有机酸光化学体系研究进展 [J]. 生态环境学报, 2018, 27(10): 1972-1980.

    LAN Q, MO J L, CAO M Y. Research progress on the photochemistry system of the Fe-organic acids with multi-carboxyls: A review [J]. Ecology and Environmental Sciences, 2018, 27(10): 1972-1980(in Chinese).

    [42] ZHAN G M, FANG Y M, ZHANG M, et al. Oxalate promoted iron dissolution of hematite via proton coupled electron transfer [J]. Environmental Science:Nano, 2022, 9(5): 1770-1779. doi: 10.1039/D1EN01190A
    [43] YAO Q, GUO C L, LI X F, et al. Synergy of oxalic acid and sunlight triggered Cr(III)-bearing Schwertmannite transformation: Reaction mechanism, Cr and C spatial distribution and speciation on the nano scale [J]. Geochimica et Cosmochimica Acta, 2022, 329: 70-86. doi: 10.1016/j.gca.2022.05.018
    [44] BHANDARI N, HAUSNER D B, KUBICKI J D, et al. Photodissolution of ferrihydrite in the presence of oxalic acid: An In situ ATR-FTIR/DFT study [J]. Langmuir, 2010, 26(21): 16246-16253. doi: 10.1021/la101357y
    [45] BOROWSKI S C, BISWAKARMA J, KANG K, et al. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments [J]. Geochimica et Cosmochimica Acta, 2018, 226: 244-262. doi: 10.1016/j.gca.2018.01.024
    [46] XU T Y, ZHU R L, SHANG H, et al. Photochemical behavior of ferrihydrite-oxalate system: Interfacial reaction mechanism and charge transfer process [J]. Water Research, 2019, 159: 10-19. doi: 10.1016/j.watres.2019.04.055
    [47] KUBICKI J D, TUNEGA D, KRAEMER S. A density functional theory investigation of oxalate and Fe(II) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution [J]. Chemical Geology, 2017, 464: 14-22. doi: 10.1016/j.chemgeo.2016.08.010
    [48] LI F Y, KOOPAL L, TAN W F. Roles of different types of oxalate surface complexes in dissolution process of ferrihydrite aggregates [J]. Scientific Reports, 2018, 8: 2060. doi: 10.1038/s41598-018-20401-5
    [49] VOELZ J L, JOHNSON N W, CHUN C L, et al. Quantitative dissolution of environmentally accessible iron residing in iron-rich minerals: A review [J]. ACS Earth and Space Chemistry, 2019, 3(8): 1371-1392. doi: 10.1021/acsearthspacechem.9b00012
    [50] WANG Z Z, FU H B, ZHANG L W, et al. Ligand-promoted photoreductive dissolution of goethite by atmospheric low-molecular dicarboxylates [J]. The Journal of Physical Chemistry. A, 2017, 121(8): 1647-1656. doi: 10.1021/acs.jpca.6b09160
    [51] 黄荃莅, 黄魁, 卢远桓, 等. 草酸浸出和太阳光催化回收赤泥中的铁和铝 [J]. 环境工程, 2021, 39(12): 199-205.

    HUANG Q L, HUANG K, LU Y H, et al. Recovery of iron and aluminum from red mud by oxalic acid leaching and solar photocatalysis [J]. Environmental Engineering, 2021, 39(12): 199-205(in Chinese).

    [52] SIFFERT C, SULZBERGER B. Light-induced dissolution of hematite in the presence of oxalate. A case study [J]. Langmuir, 1991, 7(8): 1627-1634. doi: 10.1021/la00056a014
    [53] LAN Q, LI F B, LIU C S, et al. Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination [J]. Environmental Science & Technology, 2008, 42(21): 7918-7923.
    [54] LAN Q, LI F B, SUN C X, et al. Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination [J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 64-70.
    [55] MAZELLIER P, SULZBERGER B. Diuron degradation in irradiated, heterogeneous iron/oxalate systems: The rate-determining step [J]. Environmental Science & Technology, 2001, 35(16): 3314-3320.
    [56] HUANG M J, ZHOU T, WU X H, et al. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/oxalate) and the interfacial reaction mechanism [J]. Water Research, 2017, 119: 47-56. doi: 10.1016/j.watres.2017.03.008
    [57] WANG Z H, XIAO D X, LIU J S. Diverse redox chemistry of photo/ferrioxalate system [J]. RSC Advances, 2014, 4(84): 44654-44658. doi: 10.1039/C4RA07153K
    [58] 兰青, 叶志钧, 陈熠熠, 等. 异相草酸铁光降解五氯酚过程中的铁物种分配 [J]. 环境化学, 2017, 36(2): 336-344. doi: 10.7524/j.issn.0254-6108.2017.02.2016040506

    LAN Q, YE Z J, CHEN Y Y, et al. Distribution of Fe species during the photodegradation of pentachlorophenol in heterogeneous Fe-oxalate system [J]. Environmental Chemistry, 2017, 36(2): 336-344(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016040506

    [59] CHEN Y, WU F, LIN Y X, et al. Photodegradation of glyphosate in the ferrioxalate system [J]. Journal of Hazardous Materials, 2007, 148(1/2): 360-365.
    [60] FAUST B C, ZEPP R G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters [J]. Environmental Science & Technology, 1993, 27(12): 2517-2522.
    [61] PANIAS D, TAXIARCHOU M, DOUNI I, et al. Thermodynamic analysis of the reactions of iron oxides: Dissolution in oxalic acid [J]. Canadian Metallurgical Quarterly, 1996, 35(4): 363-373. doi: 10.1179/cmq.1996.35.4.363
    [62] XIAO D X, GUO Y G, LOU X Y, et al. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction [J]. Chemosphere, 2014, 103: 354-358. doi: 10.1016/j.chemosphere.2013.11.069
    [63] SERAGHNI N, DEKKICHE B A, BELATTAR S, et al. Role of Fe(III) and oxalic acid in the photo-Fenton system for 3-methylphenol degradation in aqueous solution under natural and artificial light [J]. Int J Chem React Eng, 2018, 16(9): 20170211. doi: 10.1515/ijcre-2017-0211
    [64] CHEN J, ZHANG H, TOMOV I V, et al. Electron transfer mechanism and photochemistry of ferrioxalate induced by excitation in the charge transfer band [J]. Inorganic Chemistry, 2008, 47(6): 2024-2032. doi: 10.1021/ic7016566
    [65] MANGIANTE D M, SCHALLER R D, ZARZYCKI P, et al. Mechanism of ferric oxalate photolysis [J]. ACS Earth and Space Chemistry, 2017, 1(5): 270-276. doi: 10.1021/acsearthspacechem.7b00026
    [66] LI F B, LI X Z, LIU C S, et al. Effect of oxalate on photodegradation of bisphenol A at the interface of different iron oxides [J]. Industrial & Engineering Chemistry Research, 2007, 46(3): 781-787.
    [67] XU T Y, FANG Y M, TONG T Y, et al. Environmental photochemistry in hematite-oxalate system: Fe(III)-Oxalate complex photolysis and ROS generation [J]. Applied Catalysis B:Environmental, 2021, 283: 119645. doi: 10.1016/j.apcatb.2020.119645
    [68] WU B D, ZHANG G Y, ZHANG L, et al. Key factors in the ligand effects on the photo redox cycling of aqueous iron species [J]. Geochimica et Cosmochimica Acta, 2020, 281: 1-11. doi: 10.1016/j.gca.2020.05.004
    [69] KRIBÉCHE M E A, SEHILI T, LESAGE G, et al. Insight into photochemical oxidation of Fenuron in water using iron oxide and oxalate: The roles of the dissolved oxygen [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 329: 120-129. doi: 10.1016/j.jphotochem.2016.06.021
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.3 %DOWNLOAD: 5.3 %HTML全文: 94.1 %HTML全文: 94.1 %摘要: 0.6 %摘要: 0.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.5 %其他: 99.5 %北京: 0.2 %北京: 0.2 %天津: 0.1 %天津: 0.1 %张家口: 0.1 %张家口: 0.1 %其他北京天津张家口Highcharts.com
图( 5)
计量
  • 文章访问数:  4863
  • HTML全文浏览数:  4863
  • PDF下载数:  151
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-24
  • 录用日期:  2022-10-14
  • 刊出日期:  2024-02-27
陈婷, 陈振华, 徐天缘. 草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展[J]. 环境化学, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
引用本文: 陈婷, 陈振华, 徐天缘. 草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展[J]. 环境化学, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
CHEN Ting, CHEN Zhenhua, XU Tianyuan. Environmental photochemical behaviors of iron minerals and oxalate and reactive oxygen species generation: A review[J]. Environmental Chemistry, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401
Citation: CHEN Ting, CHEN Zhenhua, XU Tianyuan. Environmental photochemical behaviors of iron minerals and oxalate and reactive oxygen species generation: A review[J]. Environmental Chemistry, 2024, 43(2): 405-415. doi: 10.7524/j.issn.0254-6108.2022072401

草酸与铁氧化物相互作用及光化学活化分子氧过程的研究进展

    通讯作者: E-mail:xutianyuan@cumt.edu.cn
  • 1. 中国矿业大学国家煤加工与洁净化工程技术研究中心,徐州,221116
  • 2. 中国矿业大学资源与地球科学学院,徐州,221116
基金项目:
国家自然科学基金 ( 22176212,21806050)资助.

摘要: 草酸与铁氧化物共存于自然环境中,二者之间的相互作用及光化学行为强烈影响着分子氧的活化. 而分子氧活化影响共存体系中污染物的迁移与转化,是发展绿色污染控制氧化技术的关键. 因此,探讨草酸与铁氧化物之间的相互作用与光化学活化分子氧是目前的研究热点之一. 本文系统总结了近年来围绕草酸与铁氧化物相互作用以及草酸诱导铁氧化物活化分子氧的研究成果,论述了草酸在铁氧化表面的吸附与转化特性、草酸铁络合物光化学过程以及活性氧产生与转移途径,同时探讨了上述过程对环境污染物降解的影响,借此加深理解草酸诱导铁氧化物环境光化学行为与活化分子氧原理,并对今后的研究发展方向提出了展望,以期为利用天然铁氧化物和有机质发展原位环境修复技术提供依据.

English Abstract

  • 由于人类活动干扰和自然过程导致大量污染物进入自然水体,所造成的环境污染已严重威胁生态安全、人类健康以及经济发展等. 而自然水体中污染物的迁移、转化以及生物可利用性强烈受到矿物水界面的地球化学过程(如吸附、沉淀、溶解以及多相催化等)影响[1-2]. 因此,通过调控矿物与环境污染物的地球化学过程以此强化矿物对环境污染物的净化能力,被认为是解决自然水体污染的有效途径之一[3-4].

    铁的氢氧化物(羟基氧化铁)和氧化物(以下简称铁氧化物)在地表环境中分布广泛、资源丰富、价格低廉并具有大的比表面积、活跃氧化还原性以及电子输运能力,且与环境相容性好,是环境自净化的重要贡献者[5-7]. 在黑暗环境中,铁氧化物可通过化学吸附和静电引力吸附去除环境中的污染物,污染物的吸附量取决于铁氧化物的表面性质,如比表面积、表面羟基密度、表面电荷等,所涉及的吸附机制主要包括静电引力、配体交换、疏水作用、熵效应、氢键结合、离子架桥等[6, 8-10]. 例如,铁氧化物对砷(As)具有良好的亲和力,是自然环境中一种最重要的固定砷的吸附剂[5, 9]. Yu等的研究表明水铁矿依靠自身大的比表面积和高的活性羟基密度对As(V)有很好的吸附能力,吸附容量高达160 mg·g−1[11]. 而在光照条件下,具有半导体性质的铁氧化物(如针铁矿、赤铁矿)被光激发产生光生电子与空穴,其中光生电子转移至分子氧后可以形成O2·−,O2·−可以继续得电子和质子生成H2O2,H2O2又进一步发生反应生成·OH,所产生的活性氧物种可使有机污染物降解甚至矿化. 铁氧化物光催化降解有机污染物己被广泛研究[12-22]. 李芳柏教授团队[23]发现,土壤中的纤铁氧化物、磁赤铁矿、赤铁矿在紫外光与可见光下辐射下均可降解双酚A. 另一方面,光(<580 nm)的引入可以促使Fe(Ⅲ)光解还原成Fe(Ⅱ),而Fe(Ⅱ)在一定程度上可以通过活化分子氧产生活性氧物种[24]. 两种途径所产生的H2O2与Fe(Ⅱ)构成Fenton反应,可产生强氧化性的·OH. 虽然铁氧化物具有一定的光化学活性,但众多研究结果显示其光化学活性却很低[25- 26].

    自然环境中天然有机物(如草酸、腐殖酸等)常与铁氧化物共存于自然水体和土壤,能与其结合形成可溶性络合物. 其中,草酸主要来自植物根系、根系周围微生物和真菌的分泌物,或者酚类物质的降解中间产物,自然水体中草酸浓度一般在2.5 × 10−5 mol·L−1 到4.0 × 10−3 mol·L−1之间[27]. 在暗黑环境中,草酸的存在会在一定程度上影响着铁氧化物的化学吸附和静电引力吸附能力[28]. 这是因为草酸与污染物之间存在竞争或者协同吸附,而具体的作用方式与污染物的类型以及草酸浓度有关. Lamy等[29]发现,草酸的存在能促进针铁矿对Cd的吸附,主要是由于草酸在针铁矿与Cd之间担任“架桥”角色. Flynn等[30]运用EXAFS 和ATR-FTIR分析发现草酸与Ni2+可在针铁矿和赤铁矿表面形成三元络合物,而溶解态草酸与Ni2+较容易形成二元络合物,导致针铁矿和赤铁矿吸附Ni2+的效果下降. 由此可见,草酸与铁氧化物之间的相互作用会强烈地影响着环境中的污染物迁移转化,反之亦然. 当引入光照后,光照可为草酸与铁氧化物之间的电子转移过程提供额外的光化学途径,能显著促进草酸-铁氧化物光化学体系中活性氧(O2·−、·OH、H2O2等)的生成,进而提高体系中污染物的降解效率.

    目前,铁离子与草酸光化学过程研究介质涉及水体、土壤、空气等,这些研究均表明不同介质中共存的Fe(Ⅲ)与草酸均能在光源照射下活化分子氧产生活性氧物种[23, 31-32]. 铁(Ⅲ)-羧酸盐光化学体系已被证明可诱导多种持久性污染物的光降解,包括含氯除草剂、肥料、双酚、药物等[33-38]. 与此同时,自然光下草酸铁体系的有效光降解能力也已得到证明[39]. 由此,利用天然存在的草酸强化铁氧化物净化环境污染物的能力,被认为可为发展原位环境修复技术提供新契机. 近年来,针对草酸-铁氧化物光化学体系中草酸在铁氧化物表面上的吸附/溶出行为与污染物降解效率、动力学以及途径之间的相关性进行了大量报道. 已涉及的铁氧化物包括针铁矿、纤铁氧化物、赤铁矿、磁赤铁矿和磁铁矿等[26-27, 29-30],而不同结构的铁氧化物光化学活性差异巨大. Huang等[40]通过研究草酸与不同铁氧化物,如赤铁矿、针铁矿、磁铁矿以及磁赤铁矿,与草酸发生光化学反应原位产生活性氧物种降解诺氟沙星. 研究结果发现不同铁氧化物体系诺氟沙星的降解效率不同,其中针铁矿的效果最高,其次为赤铁矿,而磁铁矿与磁赤铁矿光化学效果接近.

    对于草酸与铁氧化物的相互作用及光化学过程而言,主要包含以下几个重要过程:(1) 草酸在铁氧化物表面吸附,形成具有高光化学活性的Fe(Ⅲ)-草酸配合物;(2) Fe(Ⅲ)-草酸配合物在光照下,吸收光子,发生光生电荷转移及光分解;(3) 光解产物促进分子氧活化,产生活性氧物种;(4) 活性氧物种降解污染物. 因此,草酸-铁氧化物体系污染物去除效率取决于体系中活性氧的物种形式与含量,而其的产生与转化途径受控于草酸在铁氧化物表面的吸附与转化特性,即草酸与铁氧化物相互作用.

    本文综合论述了草酸与铁氧化物相互作用过程含草酸在铁氧化物表面吸附过程和草酸诱导铁氧化物溶出过程、铁氧化物表面和溶于液相中的草酸铁络合物光分解过程以及活化分子氧过程以及各个过程对体系中污染物降解的影响,并对其未来研究方向和应用前景进行了总结与展望.

    • 相对于草酸铁均相体系而言,草酸与铁氧化物的异相体系需先进行一个“吸附”过程,再进入光诱导反应阶段,即草酸需先吸附于铁氧化物表面,继而溶解络合形成草酸铁配体[41]. 由于草酸在铁氧化物表面的吸附配位构型制约着体系中表面光生电子的生成和传递效率,同时还影响着溶解于液相中的草酸铁配合物形式. 因此,要深入研究草酸与铁氧化物的相互作用及其环境光化学效应,首先要明确草酸在铁氧化物表面的吸附配位构型.

    • 草酸根在溶液中存在电离平衡,平衡常数为 pKa1 = 1.17和 pKa2 = 4.15,分别对应有3个物种,即H2C2O4、HC2O4和C2O42−. 草酸根物种形式对 pH 值有高度的依赖性,其关系如图1所示.

      在自然水体中草酸多以阴离子形式存在,而在自然界中铁氧化物的表面大多都带正电荷,因此草酸可以很容易通过静电引力吸附到带正电的铁氧化物表面[43]. 草酸可以在铁氧化物表面上形成多种不同的络合构型 [44-45],包括氢键结合的外核络合物(草酸的H原子键合到与Fe原子相连的OH基)和几种内核络合物,例如单核双齿(草酸的2个O原子与1个Fe原子结合)、单齿单核(草酸的1个O原子与1个Fe原子结合)和双核双齿(草酸的两个O原子分别与1个Fe原子结合)[46],如图2. 利用傅立叶变换衰减全反射红外光谱法(ATR-FTIR)与DFT 计算可确定草酸在铁氧化物表面的吸附配位构型. 前人对草酸在铁氧化物表面吸附与溶出行为的研究主要聚焦于利用傅立叶变换衰减全反射红外光谱法(ATR-FTIR)分析草酸诱导铁氧化物溶解行为,并结合密度泛函理论(DFT)计算的方式探讨草酸在铁氧化物表面的吸附络合构型.

      草酸在铁氧化物表面的络合构型与体系溶液的pH有关. Borowski [45]等采用ATR-FTIR结合DFT理论计算的方式研究了不同pH下草酸在纤铁氧化物表面的络合构型. 研究结果显示,草酸在纤铁氧化物表面可形成3种络合构型,分别为外核氢键构型,和单核双齿以及双核双齿的内核构型. 在pH 6时,主要形成的是外层络合物,而随着pH的下降,络合物逐渐以单核双齿的内层络合物为主. Bhandari [44]等采用ATR-FTIR/DFT手段发现草酸以单核双齿的形式吸附在水铁矿表面. Kubicki等[47]同样也发现草酸是以单核双齿的形式吸附在针铁矿表面. 目前的研究结果认为,草酸在铁氧化物如赤铁矿、针铁矿、水铁矿、纤铁氧化物表面均以单核双齿的形式存在. 与此同时,草酸在同种铁氧化物表面的吸附络合构型也受草酸与铁含量的比值影响. 在pH 4.5条件下草酸含量相对较低时(草酸/Fe < 0.1),水铁矿表面吸附态的草酸呈双核双齿构型;而当草酸含量增加时(草酸/Fe ≥ 0.1),水铁矿表面的双核双齿草酸铁络合物被单核双齿构型和氢键外层络合构型络合物替代[48].

      络合构型的不同影响着草酸诱导铁氧化物溶解速率和体系中污染物的降解效率. 如纤铁氧化物的溶解速率与表面形成的单核双齿络合物含量呈正比关系,而不是草酸的总浓度[45]. 在紫外线下(365 nm),单核双齿的光分解速率高于双核双齿和外核氢键络合物,这也意味着单核双齿络合物的草酸-铁氧化物体系污染物的降解效果更好. 图3所示为草酸吸附在针铁矿、赤铁矿、磁铁矿以及磁赤铁矿表面所形成的草酸铁络合物构型与体系中诺氟沙星降解效率之间的关系[40]. 从图3可以看出,诺氟沙星的降解效率于铁氧化物表面的单核双齿构型的内核络合物的含量呈正相关,而与双核双齿构型的内核络合物以及外圈构型的络合物相关性不大. 由此可见,通过调控草酸在铁氧化物表面的吸附络合构型可以提高体系催化降解污染物的能力.

      值得关注的是利用现代先进谱学技术考察不同体系中铁氧化物吸附草酸后光照下的光生电荷转移过程,分析光生电荷动力学,揭示光照下草酸在铁氧化物表面不同配位构型对吸光行为以及光生电荷转移的影响;同时结合理论计算揭示草酸修饰前后电子排布与Fe—O键变化,阐明草酸-铁氧化物光化学体系光驱动电荷转移机制. 在此基础上结合草酸在铁氧化物表面的吸附与转化特性,深入揭示草酸-铁氧化物光化学体系界面反应过程具有一定研究意义.

    • 铁氧化物的光化学溶解被认为是维持人体生物铁和海洋浮游植物的生长不可替代的重要途径,铁氧化物的溶解与生物地球化学循环与环境污染修复等息息相关[42, 49]. 铁氧化物表面的Fe(Ⅲ)在光激发下,可能会发生轻微的光还原转化为Fe(Ⅱ),并参与活性氧物种的生成. 而有草酸存在时,铁氧化物的铁浸出显著提高[50-51].

      对于草酸-铁氧化物体系而言,草酸的络合作用可以促使草酸铁络合物通过非还原溶解或还原溶解的形式从铁氧化物表面脱落[27, 52]. 其中,非还原溶解是指吸附在铁氧化物表面后所形成的草酸铁络合物进入到液相中,铁的价态未发生变化,过程如公式(1)所示:

      这一过程具有较高的反应能,低温下进行缓慢. 在光照的条件下,铁氧化物表面的Fe(Ⅲ)-Ox络合物发生光敏反应弱化了Fe(Ⅲ)—O键,部分以Fe(Ⅲ)-Ox络合物的形式溶解进入液相.

      还原溶解过程是吸附在铁氧化物表面的草酸铁络合物在光的激发下发生了配体至金属的电荷转移过程(LMCT),即草酸转移一个电子给Fe(Ⅲ)使其还原为Fe(Ⅱ),草酸则发生氧化过程分解了CO2和CO2·−. 由于Fe(Ⅱ)与O之间的作用力很弱,因此铁氧化物表面的Fe(Ⅱ)会倾向于溶解至液相中.

      影响溶解机制最主要的因素有pH、温度和光照[52]. 由于草酸铁高的光化学活性,光照能为电子转移过程提供额外的光化学途径,使其可以大大促进公式(2)的反应过程,从而加快铁氧化物的光还原溶解. 在光照辐射下,草酸诱导铁氧化物溶解过程的主导反应是光化学反应而非热力学反应,光的催化作用克服了电子转移所需的活化能,且光入射波长对赤铁矿的光还原溶解影响很大[52].

      草酸-铁氧化物光化学体系中有机污染物的去除效率与铁氧化物吸附草酸能力以及草酸诱导铁溶出量均呈正相关,即草酸吸附量越大、铁离子浸出量越高,则体系中污染物去除效果越好[53-54]. 液相中的铁离子主要来源于铁氧化物表面草酸铁配体的光还原溶解(Fe2+)和非还原溶解(Fe3+). 而草酸诱导铁氧化物表面铁离子溶出方式的不同造成了体系中污染物降解的决速步骤不一致. 部分研究者认为污染物的降解速率由铁氧化物光化学还原溶解至液相的Fe2+含量决定. Mazellier和Sulzberger[55]在研究针铁矿(α-FeOOH)与草酸异相光化学体系降解农药阿特拉津的时候发现,针铁矿光还原生成溶解态Fe(Ⅱ)的速率及草酸作为电子供体决定了阿特拉津在此类异相体系中的动力学. 而也有研究者认为,非还原溶解于液相中的草酸铁络合物的光还原过程才是污染物降解的关键. Huang等[56]发现,适当的延长草酸-磁铁矿体系预吸附时间,溶于液相中的草酸铁络合物含量增加,促使体系中诺氟沙星去除率提高. 当预吸附时间为120 min时,光照1 h后,诺氟沙星去除速率由0.0036 min−1提高至0.0398 min−1. 因此,适当的延长预吸附时间是提高污染物降解效率的一种有效手段.

      目前判断草酸诱导铁氧化物溶出的方式主要是根据浸入到溶液中铁离子的价态. 溶液中的 Fe(Ⅱ)或表面结合的Fe(Ⅱ)可以在LMCT过程中直接产生,也可能来源于铁氧化物表面Fe(Ⅱ)的溶解释放或溶液中Fe(Ⅱ)被重新吸附回铁氧化物表面. 因此,单靠鉴别铁离子价态的方式判断草酸诱导铁氧化物溶出方式并不准确,需要结合其他的手段原位深入研究铁溶出过程. 此外,影响草酸诱导铁氧化物溶出方式如铁溶出与吸附络合构型、铁氧化物的晶体结构之间的内在联系,目前尚未解决,还需进一步研究.

    • 不同形式的草酸铁配体的光化学活性存在巨大差异[57, 58],如,Fe(C2O4+、Fe(C2O42−、Fe(C2O433−在254 nm 波长光辐射下量子产率分别为0、1.18和1.60,在436 nm下量子产率分别降低至0、1.0和0.6[59- 60]. 目前,草酸-铁氧化物光化学体系液相中草酸铁配体的形式主要根据Panias等[61]通过研究纯铁氧化物吸附草酸的热力学过程推导出的公式来确定. Lan等[53]报道磁赤铁矿(γ-Fe2O3)和草酸盐的紫外光照体系降解五氯苯酚(PCP)时根据体系中草酸浓度变化以及Fe2+和Fe3+随时间变化情况,结合Panias推算出来的公式计算出了各草酸铁络合物在反应过程中的比例变化. 结果显示不同初始草酸浓度体系,Fe(C2O42−和Fe(C2O433−均是主要的草酸铁络合物物种,而在草酸初始浓度为0.8 mmol·L−1时,Fe(C2O42−是主导的草酸铁络合物物种.

      但是该计算方法忽略了光照对草酸诱导铁氧化物表面铁离子溶出过程的影响,难以真实地反映出草酸-铁氧化物光化学体系液相中草酸铁配体的形式. 近年来,随着谱学分析技术在金属配合物化学性质研究中的应用,可以清晰得到不同配合物结构形式的光学谱图[45],尤其是通过引入计算模拟方法,可以深层次分析液相羧酸铁配合物的结构特性[24],如表面增强拉曼光谱法(SERS)和高效液相色谱-电喷雾质谱(HPLC-ESI-MS)[62]. 研究者采用ATR-FTIR与DFT理论相结合的手段、联合SERS和HPLC-ESI-MS技术研究水铁矿-草酸体系界面反应过程,发现草酸吸附在水铁矿表面后形成了单核双齿络合物,而后该单核双齿络合物以Fe(C2O4+的形式非还原溶解于液相中,并快速的转化为Fe(C2O42. 而进入液相中Fe(C2O42络合物则通过配体至金属电荷转移过程(LCMT)快速光解,其光分解速率远高于均相体系的络合物Fe(C2O433–[46].

      草酸铁配体形式与pH、Fe(Ⅲ)与草酸盐含量比例有关[62]. 研究发现在pH小于3时,Fe(C2O4+是唯一优势物种,对污染物的降解速度有负面影响;而在pH值为3和5时,以Fe(C2O42−和Fe(C2O433−两种主要形式并存,此时污染物的降解速率显著提升[63]. 因此,有望通过合理调控pH以及铁氧化物与草酸盐含量的比例来控制体系中草酸铁物种的形式强化草酸-铁氧化物体系的光化学性能.

    • 目前关于草酸铁均相体系中Fe(Ⅲ)-Ox络合物光化学分解途径有两种[57, 64-65]. 一种为分子内的配体至金属电荷转移过程(LMCT),Fe(Ⅲ)-Ox络合物在100 ps内迅速分解为Fe(Ⅱ)、CO2 和CO2·−图4a, b, c). 另一种分解途径为光离解过程,该过程中涉及Fe—O键的断裂,但是草酸不转移电子给Fe(Ⅲ),电子全部用于生成CO2·−. 因此该过程中Fe(Ⅲ)-Ox络合物在100 ps内迅速分解的产物为Fe(Ⅲ) + 2CO2·−图4d). 尽管该两种过程还存在争议,但是基于大部分报道的草酸铁光化学体系中产生了Fe(Ⅱ),目前普遍更接受草酸铁络合物的光分解遵循LMCT机理[40, 54, 57],具体过程如公式(2—5)所示.

      这一过程为诱导阶段,溶解速率相对缓慢. 而随着溶液中Fe(Ⅱ)离子的积累,铁氧化物溶解速率加快,进入了自发溶解阶段,过程如公式(6—9)所示.

      首先溶液中的Fe(Ⅱ)或Fe(Ⅱ)-Ox络合物重新被吸附回到铁氧化物表面,并在表面架桥形成Fe(Ⅲ)-C2O42−-Fe(Ⅱ)络合物;随后,Fe(Ⅲ)-C2O42−-Fe(Ⅱ)络合物中外层的Fe(Ⅱ)自发转移到电子至Fe(Ⅲ)[52, 56],产生Fe(Ⅱ)-C2O42−-Fe(Ⅲ)络合物;外层的C2O42−-Fe(Ⅲ)络合物不稳定会被重新释放溶解于水体中.

      在异相铁氧化物-草酸体系中,铁氧化物表面所吸附的草酸铁配体(吸附态)与溶液中的草酸铁配体(溶解态)均参与了整个光催化过程,对目标污染物的降解均有贡献[56, 66]. 但是较少有研究很好的区分异相和均相光化学反应过程对污染物去除的贡献,最常用的手段之一是通过对比研究相同溶解态铁离子含量的均异体系中光化学去除污染物性能的差异性. Li等[66]发现当异相体系(1 g·L−1铁氧化物+1.2 mmol·L−1草酸)与均相体系(0.75 mmol·L−1 Fe3+ +1.2 mmol·L−1草酸)中的溶解态Fe(Ⅲ)浓度相近时,365 nm紫外光照射40 min后,双酚A在异相铁氧化物体系的降解率(84.0%)明显高于其在均相体系中的降解率(58.8%),这说明,固体表面所发生的草酸铁的LMCT反应显著影响整个体系的动力学. 研究者发现,通过引入预吸附的手段可以区分均相/异相反应对污染物去除的贡献,且非还原溶解液相中草酸铁络合物的LMCT光分解制约着体系中有机污染物的去除速率[56]. 预吸附时间越长,则非还原溶入液相的草酸铁络合物含量越高,体系中有机污染物的去除速率也越快.

      近年来,随着原位谱学分析技术在固液界面有机配体化学性质研究中的应用,可以原位清晰观察配体含量在光反应过程中的变化. 比如,原位ATR-FTIR技术在红外光谱仪样品室加装一个含原位池的漫反射装置,能成功规避光照对红外信号的干扰,可以在光照下有效观察固体表面吸附物种变化以及光反应中间产物的生成,结合XPS等手段分析铁氧化物铁元素价态变化,可以直观草酸在铁氧化物表面光分解等界面反应过程. Xu等[62, 67]采用ATR-FTIR的手段原位观察了草酸在水铁矿、赤铁矿表面吸附后在可见光辐射下的FTIR波谱变化,并结合反应前后的Fe 2p3/2 XPS谱变化,发现草酸在水铁矿表面难以分解,而在赤铁矿表面可以通过光解离途径进行分解. 此外,通过吸附一段后时间分离固液的方法发现水铁矿体系的液相草酸铁络合物是通过典型的LMCT过程分解,而赤铁矿体系中液相草酸铁络合物同样是通过光解离途径分解. 总体而言,对于不同结构性质的铁氧化物,与草酸构成的光化学体系中的界面反应过程不同.

      总体而言,铁氧化物-草酸光化学体系中的界面反应过程强烈依赖铁氧化物的结构性质,而相关的研究尚不能清晰阐明二者之间的内在联系. 这主要是由于现有的研究手段难以从原子层面深入分析,其次体系太复杂,影响因素太多,比如常规的pH、铁氧化物晶面效应、共存体系常规阴阳离子干扰、金属掺杂铁氧化物等等因素.

    • 在活性氧物种(ROS)的形成过程中,分子氧在其中起着重要的作用[68]. 研究者发现,在脱氧条件下体系中无过氧化氢(H2O2)生成,难以产生有效的活性氧物种,360 min后非草隆仅为22%的轻微降解;而自由曝气条件下,非草隆在180 min内能够实现完全降解,且降解产物的毒性明显降低;强制曝气时非草隆在120 min即可完全降解[69]. 通常认为草酸-铁氧化物光化学体系中活性氧物种的生成主要有3个阶段,分别为铁氧化物表面与液相中的草酸铁配体光分解产生CO2·−、活化分子氧生成活性氧物种(O2·−、H2O2),以及光还原产生的Fe(Ⅱ)或Fe(Ⅱ)−草酸络合物与H2O2发生Fenton反应产生·OH,反应历程如图5所示.

      通常而言,因·OH具有较高的氧化能力(氧化电位为2.8 eV),污染物的降解效率主要取决于整个过程中产生的·OH 的数量. 前人均认为·OH是通过两步法生成的,即为O2·−→H2O2→·OH [55, 69]. 活化分子氧产生的O2·−进一步与H+/OH反应产生H2O2,而后H2O2与Fe(Ⅱ)进行Fenton反应产生·OH(两步法过程). 因此在已报道的铁氧化物-草酸光化学体系,研究者不仅探讨了·OH产生过程,同时也定量分析了H2O2浓度. 例如,紫外光辐射下草酸浓度为1 mmol·L−1时,磁铁矿-草酸体系中H2O2浓度最高浓度为45 μmol·L−1 [56]. 而在磁赤铁矿-草酸-UV体系[53]和赤铁矿-草酸-UV体系[69]中,H2O2浓度分别为2 mg·L−1 (58.8 μmol·L−1) 和4 mg·L−1 (117.6 μmol·L−1). 然而,水铁矿-草酸体系H2O2抑制剂CAT对·OH 的产生几乎无影响. 与此同时,在整个光化学过程中,几乎检测不到 H2O2, 表明·OH并不是来自于Fe(Ⅱ)与H2O2组成的Fenton反应过程. 然而Fe(Ⅱ)却显著影响着·OH的生成. 因此,草酸-水铁矿体系O2·−和Fe(Ⅱ)可一步产生·OH,无需通过先产生中间产物H2O2. 与两步法相比,草酸-水铁矿体系中一步法·OH的产生量远高于均相体系的两步法,因此可更快速有效地降解水体中污染物.

      此外,草酸铁络合物光分解途径的不一样也会显著影响体系中活性氧物种的产生. 如上文中介绍,理论上一个Fe(Ⅲ)-Ox分子通过光解离和LMCT途径分解可分别产生一个和两个CO2·−自由基[64- 65]. 因此,光解离过程中的O2·−产生量应高于分子内LMCT过程中的产生量. Xu等[67]采用EPR技术分析了赤铁矿-草酸光化学体系和同异相体系光反应和暗反应最高溶解铁离子含量相同的均相铁离子-草酸均相光化学体系中·OH和O2·−产生情况,发现遵循光分解途径的异相体系不管是·OH还是O2·−含量均高于均相体系. 更多的活性氧物种生成量指示着污染物降解效率的提高,这在一定程度上表现出光分解途径的优越性.

      草酸-铁氧化物光化学体系中ROS的产生与转化是污染物降解的关键,如何调控ROS的产生过程来提高污染物降解效率是目前的研究重点与热点. 然而,ROS的产生途径与草酸铁类型、浓度以及铁氧化物的结构性质之间的内在联系尚不明晰,还需进一步探索.

    • 铁氧化物与草酸之间的协同光化学作用强烈影响着环境中污染物的迁移与转化,使其在环境领域备受关注. 而在草酸-铁氧化物体系优异的污染物降解效果得到证实之后,其光化学体系应用于环境修复的前景发现之余,深刻明晰该体系光化学反应过程及内在机制显得尤为重要. 草酸与铁氧化物表面的铁络合形成高光化学活性草酸铁配体,光辐射下可通过活化分子氧促使生成活性氧物种,进而提高体系中污染物的降解效率. 然而,分子氧活化效率除了受氧含量制约之外,还受控于草酸在铁氧化物表面上的吸附/溶出、电子转移以及氧化还原过程. 本文系统总结了光照下草酸在铁氧化物表面的吸附与转化特性、草酸铁络合物光分解以及光化学活化分子氧途径,这些成果为有机污染物的控制和原位环境修复奠定理论基础和提供技术支持. 然而由于体系的复杂性,光子被吸收后发生的光生电荷转移及铁溶出过程研究不够深入,草酸铁络合物结构性质与界面光化学分解之间的联系仍待进一步探索,有关草酸-铁氧化物体系光驱动电荷过程尚未揭示,草酸与铁氧化物界面反应机制及其环境效应仍需进一步研究讨论. 未来随着相关的环境光化学过程与机理被阐明,研发自然界中广泛存在的铁氧化物和天然小分子酸相结合的绿色、环境友好的污染控制技术,采用少量干预增强环境自净取得环境效益,将成为解决自然水体污染的有效途径之一,也是未来研发污染物控制技术的新方向.

    参考文献 (69)

返回顶部

目录

/

返回文章
返回