-
城市具有环境界面多样、污染物迁移归趋过程复杂等特征,正面对着全球变暖和区域环境恶化的严峻挑战. 城市土地覆被正快速被人工不透水面(建筑屋顶、路面等)所取代,形成了“城市第二自然地理格局”[1]. 不透水面改变了城市水文、能量分布和非点源污染负载,是城市环境系统最重要的环境介质之一[2-3]. 多环芳烃(polycyclic aromatic hydrocarbons, PAHs)广泛分布于城市环境系统中,其具有的“致癌、致畸、致突变”效应和持续输入特征,对城市生态和居民健康构成了极大的威胁. 目前,关于城市环境系统中PAHs的研究多聚焦在大气气溶胶[4]、城市植被[5]、道路灰尘[6]、水体[7]和降水[8]等环境介质,并已检测出较高质量浓度水平的PAHs富集.
Gustafson等发现城市大气中半挥发性有机污染物质量浓度随温度的升高呈指数增加,认为污染物可能来源于被污染的路面[9]. Diamond等发现了典型不透水面(玻璃)表面有机膜存在的证据,认为玻璃可以吸附大气中半挥发性有机污染物[10]. 随后,Diamond等利用多介质逸度模型对城市环境系统中半挥发性有机污染物的迁移归趋过程进行了模拟,发现不透水面的存在增加了污染物在环境中的停留时间[11],认为不透水面是PAHs主要的“汇”[12],而汽车尾气和本地短距离传输的污染物是不透水面PAHs的主要来源[13]. 此外,不透水面的存在增强了PAHs在城市环境系统中的可迁移性,通过大气-不透水面-水体系统增加了水体中PAHs的含量,造成地表水的污染[14]. 玻璃表面已检测出较高质量浓度的有机污染物,如美国“911”恐怖袭击现场玻璃表面PAHs质量浓度高达154 μg·m-2[15],上海市金山工业区玻璃表面PAHs质量浓度达87.8 μg·m-2[16]. 当环境条件改变时,玻璃表面富集的PAHs又会释放到室内空气中,居民日常生活和工作与玻璃直接接触也较频繁,这样不可避免的暴露于PAHs风险之中. 基于此,本研究选择上海市公园绿地玻璃为研究介质,了解玻璃表面PAHs富集水平和组分特征,进一步对污染源进行分析,以期为城市多介质PAHs研究提供理论和数据支撑.
上海市公园绿地玻璃表面多环芳烃污染特征及源解析
Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai
-
摘要: 为研究上海市公园绿地玻璃表面多环芳烃(PAHs)的污染特征及污染源,利用气相色谱-质谱联用仪(GC-MS)对16种优控PAHs质量浓度进行了测定,对玻璃表面PAHs质量浓度的季节分布,组成特征和潜在污染源进行了分析. 此外,利用毒性当量因子(TEFs)对玻璃表面PAHs进行了毒性当量分析. 结果表明,玻璃表面PAHs面积归一化质量浓度在83.6—1689.6 ng·m−2之间,呈现夏季(599.7 ng·m−2)>秋季(533.1 ng·m−2)>春季(464.2 ng·m−2)>冬季(351.4 ng·m−2). PAHs组成特征季节差异明显,4环PAHs在春季(43%)和冬季(42%)的占比最高;而2+3环PAHs在秋季(57%)和夏季(46%)占比最高. BghiP与T-PAHs强相关性说明汽车尾气是玻璃表面PAHs的主要贡献源;异构体比值表明不同季节玻璃表面PAHs主要污染源相对稳定,即为汽车尾气和扬尘源(降尘和裸露表土). 质量归一化处理后的7种致癌性PAHs的质量浓度范围为58.3—1311.8 ng·g−1,TEQ的浓度在夏季(466.6 ng·g−1)>春季(361.0 ng·g−1)>秋季(262.9 ng·g−1)>冬季(214.6 ng·g−1). BaP、DahA和B[b+k]F是主要的致癌单体PAH,共计占TEQ浓度的80%—91%.Abstract: In order to study the pollution characteristics and pollution sources of polycyclic aromatic hydrocarbons (PAHs) on the glass surfaces in the Shanghai park green space, the mass concentrations of 16 types of PAHs were determined by gas chromatography-mass spectrometry (GC-MS), the seasonal distribution, composition characteristics and potential pollution sources of PAHs on the glass surface were analyzed. In addition, the toxic equivalent factors (TEFs) were used to analyze the toxic equivalents of PAHs on the glass surface. The results showed that the area-normalized mass concentrations of PAHs on the glass surface ranged from 83.6 to 1689.6 ng·m−2, with the following characteristics: summer (599.7 ng·m−2) > autumn (533.1 ng·m−2) > spring (464.2 ng·m−2) > winter (351.4 ng·m−2). The seasonal deviations in the PAH compositions were evident, such that the proportion of 4-ring PAHs was maximized in spring (43%) and winter (42%). In comparison, the amounts of 2+3 rings accounted for the highest proportion in autumn (57%) and summer (46%). The strong correlation between BghiP and T-PAHs indicated that automobile exhaust gases were the primary contributing source of PAHs on the glass surface. Furthermore, the isomer ratios indicated that the primary pollution sources, including automobile exhaust gases and dust sources (dust fall and exposed topsoil), were relatively unchanged in different seasons. The mass concentrations of seven carcinogenic PAHs after mass-normalization ranged from 58.3 ng·g−1 to 1311.8 ng·g−1, while the concentration of TEQ followed the order of summer (466.6 ng·g−1) > spring (361.0 ng·g−1) > autumn (262.9 ng·g−1) > winter (214.6 ng·g−1). BAP, DahA and B[b+k]F were the main carcinogenic monomers of PAHs, accounting for 80%—91% of the TEQ concentration.
-
Key words:
- urban park /
- glass surface /
- polycyclic aromatic hydrocarbons /
- pollution level /
- Shanghai.
-
表 1 公园绿地玻璃表面PAHs质量浓度水平(ng·m−2)
Table 1. Mass concentration level of PAHs on the glass surface of the park green space(ng·m−2)
PAHs YP LX HC PTS SJ LJ SS WJ Na 20.4—113.0 9.1—50.6 31.5—80.8 11.0—40.3 51.6—147.4 14.9—75.5 12.4—71.0 25.3—92.0 Acy 0.0—23.7 0.0—25.2 0.0—25.3 2.3—23.1 0.0—48.6 0.0—67.0 1.5—21.0 0.0—23.4 Ace 2.0—38.2 2.8—20.6 1.9—43.9 2.8—46.0 2.7—42.7 1.5—72.7 1.8—40.5 4.4—52.6 Fluo 20.4—35.1 6.3—26.1 9.8—29.1 5.3—28.0 23.4—49.9 5.2—63.6 5.3—19.2 11.9—28.8 Phe 71.3—121.9 56.3—78.9 56.7—116.8 27.2—118.2 106.0—152.9 11.6—176.5 31.6—74.1 107.7—128.9 An 2.5—12.5 1.4—7.9 2.5—10.8 2.5—10.1 11.3—22.0 1.5—29.9 2.5—7.9 8.8—12.9 Fl 48.1—147.7 18.4—35.9 28.2—43.8 23.2—37.2 93.4—199.4 13.3—98.7 41.7—55.4 25.0—141.5 Pyr 36.0—111.9 12.1—24.1 31.0—36.9 17.7—39.1 61.3—163.7 10.7—74.4 7.7—46.7 31.4—103.3 BaA 9.1—44.6 2.4—17.5 5.8—20.0 5.0—13.3 27.2—82.5 3.4—49.5 11.7—20.7 7.6—32.8 Chry 36.0—98.8 10.0—26.5 20.6—31.9 16.1—28.5 54.2—109.8 6.5—84.7 33.7—43.0 24.3—80.5 B[b+k]F 17.1—63.3 3.7—25.3 9.0—26.6 8.7—20.3 46.0—133.5 7.5—202.1 22.3—33.9 10.3—76.3 BaP 4.8—47.9 2.0—10.0 3.2—11.3 3.6—7.4 22.2—136.0 3.0—88.3 12.6—19.0 4.8—42.8 InP 0.0—32.8 2.1—13.3 3.9—9.8 3.6—10.0 25.3—63.8 2.7—266.1 11.4—16.9 6.6—38.1 DahA 0.0—9.9 1.2—5.7 1.2—5.0 1.2—5.8 5.2—18.1 0.6—91.1 2.9—5.6 4.3—12.2 BghiP 0.0—41.4 2.8—15.2 3.3—10.9 5.0—11.5 32.2—70.5 3.4—402.5 9.7—27.2 8.6—54.2 T-PAHs 298.7—731.5 131.9—332.7 223.9—470.3 125.4—431.0 662.3—1066.7 83.6—1689.6 221.1—431.8 388.1—662.4 -
[1] 许世远. 上海城市自然地理图集[M]. 北京: 中国地图出版社. 2004. XU S Y. Shanghai urban physical geography atlas[M]. Beijing: China map publishing house. 2004(in Chinese).
[2] 孔锋, 王一飞, 方建, 等. 中国夏季极端降水空间格局及其对城市化的响应(1961—2010) [J]. 长江流域资源与环境, 2018, 27(5): 996-1010. doi: 10.11870/cjlyzyyhj201805007 KONG F, WANG Y F, FANG J, et al. Spatial pattern of summer extreme precipitation and its response to urbanization in China(1961-2010) [J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 996-1010(in Chinese). doi: 10.11870/cjlyzyyhj201805007
[3] 刘家宏, 骆卓然, 张永祥, 等. 城市化对河南省极端降水空间分布的影响 [J]. 水资源保护, 2022, 38(1): 100-105. doi: 10.3880/j.issn.1004-6933.2022.01.013 LIU J H, LUO Z R, ZHANG Y X, et al. Influence of urbanization on spatial distribution of extreme precipitation in Henan Province [J]. Water Resources Protection, 2022, 38(1): 100-105(in Chinese). doi: 10.3880/j.issn.1004-6933.2022.01.013
[4] WANG Q, LIU M, YU Y P, et al. Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai City, China [J]. Environmental Pollution, 2016, 218: 118-128. doi: 10.1016/j.envpol.2016.08.037 [5] YIN S, TAN H X, HUI N, et al. Polycyclic aromatic hydrocarbons in leaves of Cinnamomum camphora along the urban-rural gradient of a megacity: Distribution varies in concentration and potential toxicity [J]. Science of the Total Environment, 2020, 732: 139328. doi: 10.1016/j.scitotenv.2020.139328 [6] 冯精兰, 刘书卉, 申君慧, 等. 新乡市道路灰尘中PAHs的污染特征和来源解析 [J]. 环境化学, 2013, 32(4): 630-639. doi: 10.7524/j.issn.0254-6108.2013.04.014 FENG J L, LIU S H, SHEN J H, et al. Pollution characteristics and source appointment of polycyclic aromatic hydrocarbons(PAHs) in road dust from Xinxiang [J]. Environmental Chemistry, 2013, 32(4): 630-639(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.014
[7] 王建龙, 夏旭, 冯伟. 基于场降雨的北京某高架桥雨水径流中多环芳烃污染特征 [J]. 环境化学, 2020, 39(7): 1832-1838. doi: 10.7524/j.issn.0254-6108.2019051004 WANG J L, XIA X, FENG W. Pollution characteristics of polycyclic aromatic hydrocarbons in urban viaduct stormwater runoff based on event rainfall process [J]. Environmental Chemistry, 2020, 39(7): 1832-1838(in Chinese). doi: 10.7524/j.issn.0254-6108.2019051004
[8] 王喆, 卢丽, 裴建国. 城郊型地下河表层沉积物多环芳烃来源分析与生态风险评价 [J]. 环境化学, 2020, 39(10): 2733-2741. doi: 10.7524/j.issn.0254-6108.2019071206 WANG Z, LU L, PEI J G. Source analysis and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from suburban type underground river [J]. Environmental Chemistry, 2020, 39(10): 2733-2741(in Chinese). doi: 10.7524/j.issn.0254-6108.2019071206
[9] GUSTAFSON K E, DICKHUT R M. Particle/gas concentrations and distributions of PAHs in the atmosphere of southern Chesapeake Bay [J]. Environmental Science & Technology, 1997, 31(1): 140-147. [10] DIAMOND M L, GINGRICH S E, FERTUCK K, et al. Evidence for organic film on an impervious urban surface: Characterization and potential teratogenic effects [J]. Environmental Science & Technology, 2000, 34(14): 2900-2908. [11] DIAMOND M L, PRIEMER D A, LAW N L. Developing a multimedia model of chemical dynamics in an urban area [J]. Chemosphere, 2001, 44(7): 1655-1667. doi: 10.1016/S0045-6535(00)00509-9 [12] YU Y P, YANG Y, LIU M, et al. PAHs in organic film on glass window surfaces from central Shanghai, China: Distribution, sources and risk assessment [J]. Environmental Geochemistry and Health, 2014, 36(4): 665-675. doi: 10.1007/s10653-013-9588-x [13] LAW N L, DIAMOND M L. The role of organic films and the effect on hydrophobic organic compounds in urban areas: An hypothesis [J]. Chemosphere, 1998, 36(12): 2607-2620. doi: 10.1016/S0045-6535(97)10222-3 [14] HUANG Y P, SUN X, LIU M, et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China [J]. Chemosphere, 2019, 217: 298-307. doi: 10.1016/j.chemosphere.2018.10.172 [15] GINGRICH S E, DIAMOND M L, STERN G A, et al. Atmospherically derived organic surface films along an urban-rural gradient [J]. Environmental Science & Technology, 2001, 35(20): 4031-4037. [16] 于英鹏, 杨毅, 刘敏, 等. 上海工业区玻璃表面多环芳烃分布特征与溯源 [J]. 中国环境科学, 2014, 34(1): 219-224. YU Y P, YANG Y, LIU M, et al. Distribution and sources of polycyclic aromatic hydrocarbons(PAHs) on glass surface of industrial zone in Shanghai [J]. China Environmental Science, 2014, 34(1): 219-224(in Chinese).
[17] TSAI P J, SHIH T S, CHEN H L, et al. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers [J]. Atmospheric Environment, 2004, 38(2): 333-343. doi: 10.1016/j.atmosenv.2003.08.038 [18] PAN S H, LI J, LIN T, et al. Polycyclic aromatic hydrocarbons on indoor/outdoor glass window surfaces in Guangzhou and Hongkong, South China [J]. Environmental Pollution, 2012, 169: 190-195. doi: 10.1016/j.envpol.2012.03.015 [19] LIU Q T, CHEN R, MCCARRY B E, et al. Characterization of polar organic compounds in the organic film on indoor and outdoor glass windows [J]. Environmental Science & Technology, 2003, 37(11): 2340-2349. [20] BUTT C M, DIAMOND M L, TRUONG J, et al. Semivolatile organic compounds in window films from lower Manhattan after the September 11th World Trade Center attacks [J]. Environmental Science & Technology, 2004, 38(13): 3514-3524. [21] LIU M, CHENG S B, OU D N, et al. Characterization, identification of road dust PAHs in central Shanghai areas, China [J]. Atmospheric Environment, 2007, 41(38): 8785-8795. doi: 10.1016/j.atmosenv.2007.07.059 [22] ALAM M S, DELGADO-SABORIT J M, STARK C, et al. Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories [J]. Atmospheric Chemistry and Physics, 2014, 14(5): 2467-2477. doi: 10.5194/acp-14-2467-2014 [23] 朱利中, 王静, 杜烨, 许青青. 汽车尾气中多环芳烃(PAHs)成分谱图研究 [J]. 环境科学, 2003, 24(3): 26-29. doi: 10.3321/j.issn:0250-3301.2003.03.005 ZHU L Z, WANG J, DU Y, et al. Research on PAHs fingerprints of vehicle discharges [J]. Chinese Journal of Environmental Science, 2003, 24(3): 26-29(in Chinese). doi: 10.3321/j.issn:0250-3301.2003.03.005
[24] 朱利中, 王静, 江斌焕. 厨房空气中PAHs污染特征及来源初探 [J]. 中国环境科学, 2002, 22(2): 142-145. doi: 10.3321/j.issn:1000-6923.2002.02.011 ZHU L Z, WANG J, JIANG B H. Prelimilary exploration of features and sources of PAHs pollution in air of kitchen [J]. China Environmental Science, 2002, 22(2): 142-145(in Chinese). doi: 10.3321/j.issn:1000-6923.2002.02.011
[25] 朱先磊, 刘维立, 卢妍妍, 等. 民用燃煤、焦化厂和石油沥青工业多环芳烃源成分谱的比较研究 [J]. 环境科学学报, 2002, 22(2): 199-203. doi: 10.3321/j.issn:0253-2468.2002.02.014 ZHU X L, LIU W L, LU Y Y, et al. A Comparison of PAHs source profiles of domestic coal combustion, coke plant and petroleum asphalt industry [J]. Acta Scientiae Circumstantiae, 2002, 22(2): 199-203(in Chinese). doi: 10.3321/j.issn:0253-2468.2002.02.014
[26] 于英鹏, 刘敏. 上海市多环芳烃潜在污染源成分谱特征初探 [J]. 科学技术与工程, 2017, 17(11): 131-136. YU Y P, LIU M. Preliminary study of the component spectrum of polycyclic aromatic hydrocarbons(PAHs) in Shanghai [J]. Science Technology and Engineering, 2017, 17(11): 131-136(in Chinese).
[27] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5 [28] YUNKER M B, SNOWDON L R, MACDONALD R W, et al. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas [J]. Environmental Science & Technology, 1996, 30(4): 1310-1320. [29] 蒋煜峰. 上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究[D]. 上海: 上海大学, 2009. JIANG Y F. Preliminary study on composition, distribution and source identification of persistent organic pollutants in soil of Shanghai[D]. Shanghai: Shanghai University, 2009(in Chinese).
[30] 刘营, 刘敏, 杨毅, 等. 上海市中心城区樟树叶片中多环芳烃的分布及来源辨析 [J]. 中国环境科学, 2014, 34(7): 1855-1862. LIU Y, LIU M, YANG Y, et al. Distribution and source apportionment of polycyclic aromatic hydrocarbons in Cinnamomum Camphora leaves in Shanghai urban area [J]. China Environmental Science, 2014, 34(7): 1855-1862(in Chinese).