Processing math: 100%

漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚

张司雨, 董仕鹏, 高士祥, 卢坤. 漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚[J]. 环境化学, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
引用本文: 张司雨, 董仕鹏, 高士祥, 卢坤. 漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚[J]. 环境化学, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
ZHANG Siyu, DONG Shipeng, GAO Shixiang, LU Kun. Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system[J]. Environmental Chemistry, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
Citation: ZHANG Siyu, DONG Shipeng, GAO Shixiang, LU Kun. Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system[J]. Environmental Chemistry, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702

漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚

    通讯作者: Tel:(86)18530575037, E-mail:kunlu@nju.edu.cn
  • 基金项目:
    国家自然科学基金( 21906080 )和江苏省自然科学基金( BK20190318 )资助.

Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system

    Corresponding author: LU Kun, kunlu@nju.edu.cn
  • Fund Project: the National Natural Science Foundation of China(21906080) and National Science Foundation of Jiangsu Province (BK20190318).
  • 摘要: 本研究选取3-OH-BDE-7为典型的羟基化多溴联苯醚(OH-PBDEs),系统探究了3-OH-BDE-7在基于二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)的漆酶介体系统中的转化动力学过程,考察了ABTS投加量、漆酶投加量、pH值和温度以及天然有机质对酶介体系统介导3-OH-BDE-7转化过程的影响。结果表明,3-OH-BDE-7在单一漆酶体系下去除率较低,加入2.0 μmol·L−1ABTS后,3-OH-BDE-7去除率提高了约20倍。3-OH-BDE-7在漆酶介体系统的转化过程符合假一级动力学过程,其假一级动力学常数分别与ABTS投加量和漆酶投加量呈正相关。漆酶介体系统催化氧化3-OH-BDE-7的适宜pH值范围为3—8,适宜的温度范围为25—35 ℃。此外,天然有机质能够抑制3-OH-BDE-7在漆酶介体系统中的转化过程,主要原因归结于天然有机质能够与底物有机自由基发生反应,使得底物有机自由基重新回到初始状态。本研究不仅对认识羟基化多溴联苯醚在自然环境中的转化过程具有重要意义,而且为合理设计基于漆酶介体系统的废水处理工艺具有重要参考价值。
  • 减少废水中的氮化合物是改善水环境和水质的重要措施之一[1]。与传统硝化/反硝化工艺相比,短程硝化/厌氧氨氧化(partial nitrification/anaerobic ammonia oxidation, PN/A)工艺可以将脱氮需氧量降低50%,有机碳需求量降低100%,污泥产量降低90%[2-3]。因此,PN/A工艺被认为是最经济、最有前景的脱氮工艺[4]

    反应器内生物质的保留能力对厌氧氨氧化(Anammox)工艺的启动周期有着重要影响[5]。据报道,颗粒和生物膜污泥都具备良好的生物质截留能力[6-7],但已知这两种污泥形式分别单独运行时都会存在较长的启动时间[8-9]。生物膜系统形成周期短,但长期运行后载体上太厚的生物膜会导致生物质脱落并被水流冲刷[7]。Anammox颗粒污泥的形成是一个漫长的过程,但可以有效地拦截污泥流失并保持较高的生物量[10]。因此,生物膜和颗粒污泥的组合应用可能最大程度上保留反应器内生物质,从而实现PN/A的快速启动和功能菌的高效富集。然而,将好氧生物膜和厌氧颗粒相结合来启动PN/A工艺目前尚未见报道。。

    不同于传统的单阶段和两阶段PN/A反应器,在多级PN/A反应器中,交替的缺氧室和好氧室不仅为 (anaerobic ammonia oxidizing bacteria(AnAOB)和ammonia oxidizing bacteria(AOB)这2种功能细菌的同时生长和富集提供了空间条件,而且在缺氧区亚硝酸盐氮(NO2-N)和氨氮(NH4+-N)共存的环境有利于厌氧氨氧化菌的自然富集[7-8]。此外,实现PN/A工艺的关键不仅需要同时富集AOB和AnAOB,还必须尽可能抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)活性[11]。据报道,间歇曝气和pH控制等策略可以有效控制PN/A工艺中不同菌群的活性(富集AnAOB和AOB,抑制NOB)[12]。然而,具有间歇曝气、pH控制、多级反应器和生物膜/颗粒污泥系统等优点的组合PN/A反应器的运行策略仍需要研究。

    本研究构建了由3个好氧反应柱和3个厌氧反应柱组成的新型多级好氧生物膜/厌氧颗粒反应器(multistage aerobic-biofilm/anaerobic-granular sludge reacto, MOBAPR),以同时促进AnAOB和AOB的富集。本研究的主要目的为:拟通过MOBAPR实现PN/A工艺的快速启动和高效运行;考察MOBAPR各反应柱的氮转化过程;探索不同MOBAPR柱中功能菌丰度的变化和微生物群落结构的差异;通过优化气液比(gas/liquid ratio, G/L),进一步提高PN/A工艺的脱氮效率(nitrogen removal efficiency, NRE)。

    接种物取自中国江西省赣州市白塔生活污水处理厂的剩余污泥(普通活性污泥)。在第1天分别向每个反应柱加入100 mL接种物,其活性污泥浓度(MLSS)大约为5 100 mg·L−1

    本研究采用模拟废水(含150 mg·L−1 NH4+-N),其改编自前人研究[13]。主要成分包括0.708 g·L−1 (NH4)2SO4,1.05 g·L−1 NaHCO3, 0.02 g·L−1 KH2PO4, 0.022 g·L−1 MgSO4,0.008 g·L−1 CaCl2,1.25 mg·L−1营养液I(5 g·L−1 EDTA、0.00625 g·L−1 FeSO4)和营养液II(15 g·L−1 EDTA、0.43 g·L−1 ZnSO4·7H2O、0.25 g·L−1 CuSO4·5H2O、0.19 g·L−1 NiCl2·6H2O、0.99 g·L−1 MnCl2·4H2O、0.24 g·L−1 CoCl2·6H2O、0.22 g·L−1 NaMoO4·2H2O、0.014 g·L−1 H3BO4)。

    MOBAPR的示意图如图1所示。该反应器由6个高30 cm、直径4.5 cm的有机玻璃柱相互串联构成,总有效容积为2.5 L。从进水到出水的6个反应柱(reaction column, Rc)分别标记为 Rc1、Rc2、Rc3、Rc4、Rc5和Rc6(隔室数量可根据出水水质增减)。在好氧反应柱(Rc1、Rc3和Rc5)中添加无纺布作为填料,并采用间歇曝气。厌氧隔室(Rc2、Rc4和Rc6)采用低速搅拌装置。当PN工艺成功启动后停止搅拌。曝气量由玻璃转子流量计调节,并采用自动断电定时器电路实现间歇曝气。根据之前的报道[14],由蠕动泵(Langer,BT101L,UK)、pH 控制器(WEIPRO,pH-2010B,China)和NaOH溶液组成的pH控制系统将MOBAPR中的pH保持在8.2~8.5。在每次曝气15 min后开始检测DO(dissolved oxygen)质量浓度。

    图 1  实验室规模的MOBAPR示意图
    Figure 1.  Schematic diagram of MOBAPR at lab-scale

    本研究在MOBAPR中依次启动PN和PN/A工艺。第I阶段(1~7 d),为快速恢复硝化细菌(AOB和NOB)的活性,在好氧区((Rc1、Rc3和Rc5)中连续曝气,并在厌氧区(Rc2、Rc4和Rc6)连续搅拌。此外,此阶段由于污泥处于悬浮状态,会随着进水流动,因此,启动污泥回流以保证反应器内充足的生物质含量。第II阶段(8~15 d)为抑制NOB,在好氧区中使用间歇曝气。第III阶段(16~60 d)好氧区微生物已成功挂膜生长,基本没有污泥流失,停止回流。此外,为进一步抑制NOB,第29天水力停留时间(hydraulic residence time, HRT)降低至8 h(16~28 d的HRT为12 h)。第IV阶段(61~86 d)为避免搅拌影响厌氧区AnAOB富集,厌氧区停止搅拌。第V阶段(87~110 d),调整曝气量以保证反应器内充足的NO2-N。各阶段运行参数详见表1。在第VI阶段(111~162 d),在进水NH4+-N为150 mg·L−1和好氧/厌氧时间为90 min/30 min条件下,分别调节曝气量和HRT来探讨不同G/L对NRE的影响。

    表 1  实验条件及操作参数
    Table 1.  Experimental conditions and operating parameters
    时期阶段时间/dHRT/h曝气量/(L·min−1)好氧(厌氧)时间/min好氧区DO/(mg·L−1)回流比/%
    适应期I1~7240.02好氧200
    PN 启动期II8~15120.0580/400.5±0.2100
    PN运行期III16~6012/80.0580/400.5±0.20
    PN/A 启动期IV61~8680.0890/300.0±0.20
    PN/A运行期V87~11060.1090/300.0±0.10
    气液调控期VI111~16290/300
      注:表中曝气量和DO值均为好氧区(Rc1、Rc3和Rc5)的平均值;“—”表示无法检测。
     | Show Table
    DownLoad: CSV

    实验中反应器内NH4+-N、NO2-N、NO3-N的检测分析均根据《水和废水检验标准方法》中制定的方案,使用实验室规模的紫外/可见分光光度计(SQ2800,意大利UNICO)进行测定,包括纳氏试剂分光光度法(NH4+-N)(1-萘基)-乙二胺分光光度法(NO2-N)和氨基磺酸紫外分光光度法(NO3-N)。此外,为了更好地揭示MOBAPR中PN/A过程的氮转化机理,每天对各反应柱的氮质量浓度进行检测,并分析其亚硝酸盐积累率(nitrite accumulation rate, NAR)、氨氮去除率(ammonia nitrogen removal rate, ANR)、氮去除率(NRE)、氮负荷率(nitrogen load rate, NLR)和氮去除负荷(nitrogen removal load rate, NRR)[13-14]

    为探索MOBAPR中不同阶段微生物群落的演变,阐明连续多阶段PN/A过程中所涉及的生物学机制,分别对接种物、第56天(阶段III)和第110天(阶段V)的泥样进行微生物功能菌群分析。接种物命名为A0,第III阶段在Rc1~Rc6收集的污泥样品分别命名为A1、A2、A3、A4、A5和A6,第V阶段分别命名为B1、B2、B3、B4、B5和B6。这些样本保存在−20 ℃,直到提取DNA结束。

    在成功提取样本内微生物的DNA后,使用16S rRNA基因的通用扩增引物进行PCR扩增,并且PCR产物使用 AxyPrep™ DNA凝胶提取试剂盒(Axygen Biosciences,Union City,USA)按照制造商的说明进行纯化。然后通过Illumina MiSeq测序平台(PE300)对样品高通量测序,并得到原始测序序列。为了解样本测序结果中的菌种、菌属、物种功能等信息,将在Miseq测序得到的原始序列数据利用cutadapt(version 1.18)和PRINSEQ(version 0.20.4)软件进行去除引物接头序列、拼接、识别的处理以得到各样本的有效数据。然后利用Usearch(version 11.0.667)按照97%相似性对非重复序列(不含单序列)进行OTU聚类。然后利用RDP classifier(version 2.12)等软件进行OTU物种分类,并根据得到的OTU序列进行微生物菌群分析与功能预测。

    由于在第V阶段DO值较低,MOBAPR的性能无法通过DO来进行控制。因此,在第VI(111~162 d),阶段,为了代替DO控制(当DO低至无法控制),本研究提出了一种新型控制参数—气液比(式(1))。分别在2、4、6和8 h的HRT条件下调控曝气量(0.05、0.1、0.15和0.2 L·min−1),从而得到G/L比为2.4、4.8、7.2、9.6、4.4、19.2、21.6、28.8和38.4。并且在每次操作条件调整后,MOBAPR连续运行3~4 d。此外,利用高斯模型预测了G/L与NRE之间的相关性(式(1))。

    q=60tvV (1)

    式中:q为G/L值;t为HRT,h;v为曝气速率,L·min−1V为MOBAPR的总有效容积,L。

    1)接种物驯化。阶段I(1~7 d)在进水NH4+-N为150 mg·L−1、曝气速率为0.02 L·min−1、DO为2~4 mg·L−1和HRT 24 h的条件下运行MOBAPR。如图2所示,出水NO3-N由64.03 mg·L−1增加到122.71 mg·L−1。这说明在被重新接种后,硝化细菌(AOB和NOB)的活性在高DO水平下得到了快速恢复。此外,在阶段I中NRE大多低于零(图2(c))。这可能是一些细菌(主要是异养菌)不能适应无碳源下的MOBAPR,细菌死亡后细胞溶解释放出额外的氮源到反应器内。

    图 2  MOBAPR中的氮的变化
    Figure 2.  Variation of nitrogen in MOBAPR in MOBAPR

    2) PN工艺的启动。在阶段II(8~15 d),MOBAPR的pH为8.3,好氧区平均溶解氧为0.5 mg·L−1,间歇曝气(好氧/厌氧时间为80 min /40 min)。结果表明,NO2-N由0 mg·L−1增加到106.89 mg·L−1(图2(b)),NO3-N由122.71 mg·L−1减少到20.92 mg·L−1(图2(d)),这表明NOB被有效抑制的同时AOB成功富集。因此,此阶段PN工艺在MOBAPR成功启动。此外,PN工艺中的NO2-N稳定供应是实现Anammox工艺的前提[15],其关键是高效稳定地抑制反应器中的NOB 活性[14]。有研究表明,控制pH和间歇曝气是抑制NOB活性的重要手段[13]。因此,将以上2种抑制策略的结合是实现PN过程快速启动的关键。

    在阶段III(16~60 d),出水NO3-N逐渐增加,第16~28天处于较高水平(30~46 mg·L−1)。因此,要实现PN过程的稳定运行,需要对控制条件进行调整。在第17天好氧区在已经形成稳定生物膜结构后,MOBAPR停止回流。结果NAR短暂升至81%,然后逐渐下降(图2(b))。在第20~28天,出水NO3-N相对稳定(30~41 mg·L−1),说明综合控制策略仍能有效抑制NOB活性。第29天,HRT由12 h缩短到8 h,出水NO3-N由29.2mg·L−1逐渐降至16.7 mg·L−1,NAR也增加到90%。因此,HRT是影响PN工艺稳定性的重要参数,HRT过长会产生额外的NO3-N。

    随着PN过程成功启动和AOB被富集积累[16-17],反应器中DO被AOB大量消耗,这导致厌氧区室中的DO质量浓度降低至0.2 mg·L−1左右,从而为厌氧菌提供了适宜的生长环境。由图2(c)可知,NRE由5.51%逐渐增加到25.52%。这表明AnAOB可能在此阶段自然富集。有研究表明,AOB是从微需氧甚至厌氧的祖先进化而来的,在亚硝酸氧化还原酶(NXR)和其他反射蛋白的形式上与AnAOB高度相似[18]。MIAO等的研究结果同样表明接种硝化污泥可以缩短Anammox的启动时间[19]。因此,基于PN工艺,AnAOB可能更容易富集。此外,高通量测序结果表明阶段III中AnAOB的增加。

    3)PN/A工艺的启动与运行。有研究[20]表明,较大污泥絮凝物中的AnAOB具有更高的活性。厌氧区中污泥絮体的生长可能会受到搅拌的限制,从而抑制AnAOB的活性[20]。因此,在阶段IV(61~86 d)停止搅拌以增加AnAOB的活性。并且有研究表明,NO2-N质量浓度越高越有利于Anammox的积累[21]。因此,延长好氧区的相对曝气时间以进一步增加反应器中NO2-N质量浓度。在第IV阶段,厌氧区中停止搅拌,并且好氧区中好氧/厌氧时间从80 min/40 min变为90 min/30 min。在第61天后,MOBAPR的TN质量浓度逐渐下降,由126.96 mg·L−1(第61天)降低至(32.79±6.21) mg·L−1(77~86 d),NRE也从21.5%迅速增加到(78.86±4.6)%(图2(c))。这表明在本研究采用的操作策略下,61 d内成功实现PN/A工艺的快速启动。

    此外,随着AnAOB成功富集,MOBAPR中脱氮速率增加,导致进水中大部分的NH4+-N在Rc1~Rc4中已经被去除,而Rc5和Rc6中功能微生物缺乏营养物质。因此,有必要适当缩短HRT以保证MOBAPR中功能微生物的进一步富集。在阶段V(87~110 d),HRT由8 h缩短至6 h。此阶段反应稳定后(102~110 d),出水NO2-N、NO3-N和NH4+-N质量浓度分别为(0.63±0.50)、(16.72±1.78)和(8.29±6.65) mg·L−1。其中,出水NO3-N质量浓度(NO3-N产生/NH4+-N去除=0.12)与Anammox的NO3-N理论产生值(NO3-N产生/NH4+-N去除=0.11)接近,这表明NOB被稳定抑制[21]。此外,PN/A工艺的NRE、ANR和NRR分别为(83.41±2.45)%、(97±3.61)%和(0.41±0.09) kg·(m3·d)−1(图2)。这表明该操作策略可用于MOBAPR,以实现PN/A过程的长期高效稳定运行。

    有趣的是,在第IV和第V阶段(曝气量分别为0.08 L·min−1和0.10 L·min−1),所测得DO质量浓度接近0。有研究[14]表明,当AOB的耗氧速率高于曝气效率,反应器曝气后的DO质量浓度仍会保持在较低水平。因此,在MOBAPR中非曝气后,好氧区的曝气会被AOB等好氧细菌及时转化,从而维持反应器内低DO水平。此外,在MOBAPR中,AOB的富集是AnAOB快速启动的关键。AOB不仅可以为AnAOB创造环境,还提供营养物质。然而AOB主要在好氧区活性较高。因此,在整个启动期间,基本不对厌氧区进行直接调控(搅拌停止后)。

    为了探索MOBAPR中微生物群落的变化规律,对接种物、第56天(第III阶段末期)和第110天(第V阶段)末期采集的污泥样品进行微生物群落进行分析。其中PA1为接种物A0,PA2为第III阶段各反应柱(A1、A2、A3、A4、A5和A6)内微生物丰度的平均值,PA3为第V阶段(B1、B2、B3、B4、B5和B6)微生物丰度的平均值。高通量测序得到的优质细菌序列被划分为不同的分类类别(门和属),结果如图3(a)和图3(b)所示。Proteobacteria包括具有硝化反硝化功能的细菌[16],是门水平上的主要细菌(图3(a))。Proteobacteria在接种物中的丰度为68.15%,而在阶段III和阶段V后分别下降到44.68%和40.39%(图3(a))。这表明在变形菌门中许多异养硝化或反硝化细菌由于有机物的缺乏而被淘汰。有研究表明,Planctomycete门中不仅拥有一些专性好氧菌,还包含了所有已知的AnAOB[2]。接种物(PA1)中的Planctomycete相对丰度接近第III阶段(PA2),分别为4.07%和3.71%。而到了第V阶段(PA3),Planctomycete丰度达到10.85%,这表明Planctomycete主要在第III阶段后被富集。此外,在属水平上PA1的Candidatus Kuenenia的相对丰度极低,约0.05%(图3(b))。这表明在接种物中几乎不含AnAOB。与接种物(PA1)相比,PA2和PA3中ArmmonadetesChloroflexi的丰度显著增加(图3(a))。有研究表明,在ArmarmadetesChloroflexi中的许多细菌含有与氮代谢相关的功能基因(NarNirKNos)[22]。因此,ArmatimonadetesChloroflexi可能含有多种AOB和AnAOB协同细菌,为PN/A工艺的启动和运行做出了贡献。

    图 3  第I、第III和第V阶段微生物群落系统发育分析
    Figure 3.  Phylogenetic analysis of the microbial community at stage I, stage III and stage V

    图3(b)反映了PN/A工艺中所有样品在属水平上的微生物群落。在第III阶段Nitrosomonas的丰度由1.49%增加到28.20%(图3(b)),证实了该操作策略可以成功富集AOB。并且,16s结果表明Candidatus Kuenenia是MOBAPR中主要的AnAOB,其由接种物PA1(0.05%)增长到2.97%。这表明随着PN工艺的长期运行,此阶段(第56天)AnAOB开始富集。在第V阶段,PN/A工艺启动成功并长期运行后,Nitrosomonas (27.09%)和Candidatus Kuenenia(9.99%)的丰度得到了较高程度富集,这表明AOB和AnAOB在MOBAPR中可以同时富集。因此,通过第IV和第V阶段的综合运行策略,AOB和AnAOB作为优势菌被富集,并形成细菌协同关系完成脱氮。此外,NOB的主要菌属NitrobacterNitrospiraNitrospina等可能由于含量太低(<0.1),均未被检测到。

    1)氮转化途径分析。为了更深入地了解MOBAPR各反应柱内PN/A工艺的氮转化过程,对PN (阶段III)和PN/A 工艺(阶段V)长期运行阶段分别进行测试分析,结果如图4所示。在第III阶段,出水NO2-N质量浓度从Rc1到Rc6逐渐增加,NH4+-N相应降低(图4(a))。这表明各反应柱内均参与到氨氧化过程中。每个反应柱内都含有NH4+-N和NO2-N (图4(a)),这为AnAOB的富集提供了必要条件。并且由于氨氧化过程需要氧气参与,好氧区(Rc1、Rc3和Rc5)内的ANR显著高于厌氧区(Rc2、Rc4和Rc6)(图4(c))。此外,NO3-N浓度一直处于较低水平(<10 mg·L−1)(图4(a)),这表明通过本研究采用的操作策略,NOB活性长期受到有效抑制。在这一阶段,MOBAPR的平均氮损失约为30 mg·L−1(图4(a)),证实了反硝化细菌或AnAOB的增加。特别是Rc1、Rc3和Rc5中NRE的增加也显著高于Rc2、Rc4和Rc6(图4(e)),说明好氧区内氮损失主要是反硝化细菌或AnAOB造成的。

    图 4  PN工艺(阶段III)和PN/A过程(阶段V)各反应柱内的氮转化途径
    Figure 4.  The nitrogen conversion pathways in the reactor after the PN process (stage III) and PN/A process (stage V)

    在第V阶段,由于进水中的氨(150 mg·L−1)通过前4个反应柱被PN/A完全转化,最后2个反应柱(Rc5和Rc6)在此阶段被废弃。模拟废水在流经Rc4后被排出。如图4(b)所示,在此阶段出水NH4+-N降至较低水平。这表明经过长期运行,PN/A工艺的NRE有所提高。此外,由图4(d)可以看出,大部分氨氧化过程基本在Rc1完成,而在Rc4之后脱氮量达到最高(图4(f))。此外,在第V阶段各反应柱内NO2-N含量低于阶段III(图4(a)),这表明由AOB产生的NO2-N被AnAOB快速利用,即AnAOB与AOB之间形成了良好的协同脱氮效果。Rc1和Rc3中NRE和ANR均显著增加(图4(f)),因此,PN和Anammox过程主要在好氧室中进行。这是由于在好氧区内形成了内层为AnAOB和外层AOB的微生物生物膜协同脱氮系统。依赖于外部的AOB提供的NO2-N,内部的厌氧微生物将剩余的氨转化为氮。其中,由图4(f)可知,厌氧区(Rc2和Rc4)中NRE的增加远低于好氧区(Rc1和Rc3),并且厌氧区的出水NO2-N几乎为0(图4(b))。因此,NO2-N的缺乏可能限制了厌氧区的NRE。此外,在MOBAPR的好氧室中添加填料形成生物膜系统,不仅有效避免了DO对AnAOB的抑制,而且还有利于AnAOB的富集。在此阶段稳定的生物膜和颗粒污泥系统分别在好氧区和厌氧区形成。一方面,在好氧区的生物膜系统中形成了分层分布的好氧外层和厌氧内层。AnAOB在厌氧环境的生物膜内层得到富集,并与外层AOB协同脱氮。另一方面,AOB产生的大部分NO2-N被生物膜内层的AnAOB利用,剩余少量NO2-N流出并被位于厌氧区的AnAOB颗粒污泥消耗。此阶段在好氧区的脱氮方式与单阶段PN/A工艺相似,而厌氧区脱氮方式与两阶段PN/A工艺相似。因此,生物膜和颗粒污泥结构成功将单阶段与两阶段PN/A工艺的优势结合在一起,不仅具备两阶段PN/A更快的启动速度,还具备单阶段PN/A的更高效的反应速率。

    2)各反应柱中AOB和AnAOB的动态分析。为了探究在PN工艺和PN/A工艺长期运行过程中,MOBAPR中不同反应柱内微生物群落的差异,对接种污泥、阶段III和阶段V获得的污泥样品进行高通量测序。其中,接种污泥样品命名为A0,在第56天(阶段III)Rc1、Rc2、Rc3、Rc4、Rc5和Rc6采集的样品分别命名为A1、A2、A3、A4、A5和A6,在第110天(阶段V)采集的样品命名为B1、B2、B3、B4、B5和B6。高通量测序得到的相关参数如表2所示。厌氧区中的Simpson指数明显低于好氧区(表2),这说明好氧区的物种富集程度是高于厌氧区的,Shannon指数也得到了类似的结论。每个污泥样品的覆盖率超过99.70%(表2),说明高通量测序基本代表了污泥样品的实际微生物群落结构。

    表 2  微生物多样性分析
    Table 2.  Microbial diversity analysis
    阶段样品序列数丰富度OTU数多样性覆盖率/%
    Ace指数Chao1指数Simpson指数Shannon指数
    IA052 844913.5933.68410.074.2799.8
    IIIA157 0368868637240.113.4899.7
    A264 4511 006.41 024.18770.054.1399.7
    A370 746891932.17510.163.0599.7
    A454 252949.5953.58010.083.7899.7
    A559 513899.5902.37860.183.1399.7
    A652 884962.51 003.18420.073.9999.7
    VB161 553844.7837.26660.123.2199.7
    B264 627892.2896.57420.093.5799.7
    B375 032845.7863.16920.113.299.8
    B462 284900.8909.77640.063.8699.7
    B562 838853.38527030.212.8499.7
    B659 777984.91 014.68510.133.6499.7
      注:A1、A3、A5、B1、B3和B5是来自好氧区的污泥样品;A2、A4、A6、B2、B4和B6是来自厌氧区的污泥样品。
     | Show Table
    DownLoad: CSV

    为深入了解好氧生物膜/厌氧颗粒污泥的微生物分布情况,在阶段III和阶段V,从MOBAPR中的6个反应柱中获得的污泥样品进行了微生物群落分析。PN工艺启动并长期运行后,A1、A3和A5中亚硝基单胞菌(Nitrosomonas)的相对丰度分别从1.49%提高到30.99%、39.77%和40.74%,A2、A4和A6中亚硝基单胞菌的相对丰度分别从1.49%提高到11.42%、22.25%和22.15%(图5(c)),这证实了AOB在每个隔间中都被富集。厌氧区中AOB的富集与好氧区出水的DO有关。因此,厌氧区的AOB丰度明显低于好氧区(图5(c))。此外,在A1、A2、A3、A4、A5和A6中,AnAOB(Candidatus Kuenenia)的丰度分别由0.05%提高到0.16%、5.25%、0.56%、5.87%、0.39%和5.06%(图5(c)),这表明AnAOB已经开始富集。AOB不仅通过消耗溶解氧为AnAOB创造厌氧环境还为AnAOB提供必需的基质(NO2-N)。因此,此阶段Nitrosomonas富集可能为Anammox的启动奠定了基础。

    图 5  PN和PN/A(阶段III和阶段V)稳定运行后各反应柱内微生物群落结构
    Figure 5.  The microbial community structure in each reaction column of PN and PN/A (Stage III and Stage V) under stable operation conditions

    在PN/A工艺成功启动和运行后(第V阶段),B1、B2、B3和B4中Candidatus Kuenenia的丰度分别增加到12.67%、19.07%、12.41%和11.43%(图5(a))。由于Rc5和Rc6中NO2-N的缺乏,B5和B6中Candidatus Kuenenia的丰度较低(分别为0.24%和2.29%)。在各反应柱中,NitrosomonasCandidatus Kuenenia都得到了较高水平的积累(图5(b))。这证实了微生物之间协同脱氮系统的存在。有趣的是,Candidatus Kuenenia不仅被富集在厌氧区,而且在好氧区中也有较高的丰度,这表明好氧区已形成分层分布的生物膜系统。此外,在PN/A工艺的长期运行阶段,未分类菌数量较多(图5(c))。有研究表明,PN/A工艺微生物群落由各种功能菌和协作菌共同组成的[14]。因此,在演替过程中会出现一些未分类协作菌以促进功能菌更好的富集。

    在第V阶段,MOBAPR中的DO值接近于零。一方面,不能通过控制DO值来进一步优化反应器性能;另一方面,不能人为直接调控DO值,即只能通过曝气量或流量等来间接调控DO值。因此,在PN/A工艺在运行过程中,DO控制会存在一定的滞后性。此外,在此阶段发现曝气速率越高,厌氧菌活性会降低;而曝气速率越低,厌氧菌的氮转化性能同样会将低。因此,在MOBAPR中提供合适的曝气量非常重要。

    第2.1节和2.2节中的结果表明可通过缩短HRT将MOBAPR的NRE进一步提高,但好氧区中AOB的需氧量随着进水氨氮浓度的增加而增加。因此,本研究通过控制G/L,一方面可以为MOBAPR中的功能微生物提供稳定适宜的NO2-N/NH4+-N,从而促进MOBAPR的总氮去除率;另一方面,直接调控反应器参数(代替DO控制),从而简化操作。为探讨G/L对总氮去除率的影响,通过调节曝气量和HRT,在进水NH4+-N为150 mg·L−1,好氧/厌氧时间为90 min/30 min条件下,G/L参数分别设置为2.4、4.8、7.2、9.6、14.4、19.2、21.6、28.8和38.4。用高斯模型对得到的NRE和相应的G/L进行拟合(极点拟合)以得出最适G/L,拟合结果如图6所示。可以看出,PN/A工艺的NRE在G/L为0~19.2时增大,而在G/L为21.6~38.4时减小。高斯模型的相关系数(R2)为0.992 2(图6(b)),说明该模型较好地描述了NRE与G/L之间的关系。模型拟合结果表明,当G/L比值参数为20~30时,NRE可达到较高水平。

    图 6  G/L对MOBAPR氮去除和氮转化的影响
    Figure 6.  Effect of G/L on nitrogen removal and nitrogen conversion in MOBAPR

    1)本研究构建了厌氧和好氧区共存、悬浮污泥系统与生物膜系统相结合的MOBAPR。

    2)在MOBAPR中15天内成功启动PN工艺,PN/A工艺在61天内成功启动。在运行阶段,PN工艺的NAR为(87.35±2.7)%,PN/A工艺的NRE为(83.41±2.45)%。

    3)高通量测序结果表明,Nitrosomonas(27.09%)和Candidatus Kuenenia(9.99%)在厌氧区和好氧区被同时富集。在长期运行阶段,PN工艺的NAR为(87.35±2.7)%,PN/A工艺的NRE为(83.41±2.45)%。

    4)在DO低至无法控制时,G/L可能是一种可以代替DO控制的重要策略,并且高斯模型拟合结果表明,当G/L比值参数为20~30时,NRE可达到较高水平。

  • 图 1  (A)3-OH-BDE-7在不同浓度漆酶(无ABTS)下的去除率;(B)3-OH-BDE-7在不同反应条件下(只有ABTS、只有漆酶和漆酶+ABTS)的去除率;(C)漆酶在有无ABTS介体条件下催化氧化3-OH-BDE-7的假一级动力学拟合曲线实验条件:[Laccase]0=0.1 U·mL−1、[ABTS]=2.0 μmol·L−1

    Figure 1.  (A)The removal of 3-OH-BDE-7 mediated by Laccase with different dosage; (B)3-OH-BDE-7 removal efficiencies at various reaction conditions (only ABTS, only Laccase and Laccase-ABTS); (C)Pseudo first-order rate plots for 3-OH-BDE-7 removal mediated by Laccase with and without the presence of ABTS Experimental condition: [Laccase]0=0.1 U·mL−1, [ABTS]=2.0 μmol·L−1

    图 2  漆酶直接(A)和间接(B)催化氧化反应示意图

    Figure 2.  Schematic diagram of direct and indirect catalytic oxidation reaction by laccase

    图 3  (A)ABTS投加浓度对LMS系统催化氧化3-OH-BDE-7的影响。(B)LMS在不同ABTS投加量条件下催化氧化3-OH-BDE-7的假一级动力学拟合曲线。(C)假一级动力学常数与ABTS投加量之间的关系

    Figure 3.  (A)Influence of ABTS dosage on the removal of 3-OH-BDE-7. (B)Pseudo first-order rate plots for 3-OH-BDE-7 removal at different ABTS dosages. (C)Relationship between pseudo first-order rate constants and ABTS dosage

    图 4  (A)LMS在不同漆酶投加量条件下催化氧化3-OH-BDE-7的假一级动力学拟合曲线;(B)假一级动力学常数与漆酶投加量之间的关系

    Figure 4.  (A)Pseudo first-order rate plots for 3-OH-BDE-7 removal at different Laccase dosages; (B)Relationship between pseudo first-order rate constants and ABTS dosage

    图 5  (A)溶液pH对LMS系统催化氧化3-OH-BDE-7的影响, (B)溶液pH对漆酶活性的影响,(C)温度对LMS系统催化氧化3-OH-BDE-7的影响, (D)温度对漆酶活性的影响

    Figure 5.  (A)Influence of solution pH on the removal of 3-OH-BDE-7, (B)Influence of solution pH on the activity of Laccase ,(C)Influence of temperature on the removal of 3-OH-BDE-7, (D)Influence of temperature on the activity of Laccase

    图 6  (A)不同浓度NOM对LMS催化氧化3-OH-BDE-7的影响; (B)LMS在不同NOM投加量条件下催化氧化3-OH-BDE-7的假一级动力学拟合曲线; (C)NOM对漆酶活性的影响; (D)不同浓度NOM分别LMS下随时间的吸光度变化; (E)NOM的吸附作用对3-OH-BDE-7去除率的影响; (F)假一级动力学常数与NOM投加量之间的关系

    Figure 6.  (A)Influence of NOM dosage on the removal of 3-OH-BDE-7;(B)Pseudo first-order rate plots for 3-OH-BDE-7 removal at different NOM dosages; (C)Influence of NOM on the activity of laccase;(D)Time based UV absorbance of NOM treated by LMS;(E)The effect of NOM adsorption on the removal of 3-OH-BDE-7 mediated by LMS;(F)Relationship between pseudo first-order rate constants and NOM dosage

    图 7  (A)3-OH-BDE-7及其转化产物的LC-MS分析结果. (B)3-OH-BDE-7在漆酶/ABTS反应体系下可能的转化路径

    Figure 7.  (A)Mass spectra of 3-OH-BDE-7 and its products resulting from LC-MS analysis. (B)Possible reaction pathways of 3-OH-BDE-7 in laccase/ABTS mediated reaction system

  • [1] ZHAO Q, ZHAO H M, QUAN X, et al. Photochemical formation of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from polybrominated diphenyl ethers (PBDEs) in aqueous solution under simulated solar light irradiation [J]. Environmental Science & Technology, 2015, 49(15): 9092-9099.
    [2] SUN H Z, LI Y M, HAO Y F, et al. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in polar marine food webs [J]. Environmental Science & Technology, 2020, 54(23): 15086-15096.
    [3] PENG Y, XIA P, ZHANG J J, et al. Toxicogenomic assessment of 6-OH-BDE47-induced developmental toxicity in chicken embryos [J]. Environmental Science & Technology, 2016, 50(22): 12493-12503.
    [4] LIN K D, YAN C, GAN J. Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide [J]. Environmental Science & Technology, 2014, 48(1): 263-271.
    [5] LI J H, ZHANG Y, DU Z K, et al. Biotransformation of OH-PBDEs by pig liver microsomes: Investigating kinetics, identifying metabolites, and examining the role of different CYP isoforms [J]. Chemosphere, 2016, 148: 354-360. doi: 10.1016/j.chemosphere.2016.01.056
    [6] LIN K D, ZHOU S Y, CHEN X, et al. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols [J]. Chemosphere, 2015, 138: 806-813. doi: 10.1016/j.chemosphere.2015.08.014
    [7] 冯义平, 毛亮, 董仕鹏, 等. 过氧化物酶催化去除水体中酚类内分泌干扰物的研究进展 [J]. 环境化学, 2013, 32(7): 1218-1225. doi: 10.7524/j.issn.0254-6108.2013.07.014

    FENG Y P, MAO L, DONG S P, et al. Peroxidase-catalyzed removal of phenolic endocrine disrupting chemicals from water [J]. Environmental Chemistry, 2013, 32(7): 1218-1225(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.014

    [8] LU K, HUANG Q G, WANG P, et al. Physicochemical changes of few-layer graphene in peroxidase-catalyzed reactions: Characterization and potential ecological effects [J]. Environmental Science & Technology, 2015, 49(14): 8558-8565.
    [9] FENG Y P, COLOSI L M, GAO S X, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions: Reaction rates, products, and pathways [J]. Environmental Science & Technology, 2013, 47(2): 1001-1008.
    [10] LUO Q, YAN X F, LU J H, et al. Perfluorooctanesulfonate degrades in a laccase-mediator system [J]. Environmental Science & Technology, 2018, 52(18): 10617-10626.
    [11] HILGERS R, VINCKEN J P, GRUPPEN H, et al. Laccase/mediator systems: Their reactivity toward phenolic lignin structures [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2037-2046.
    [12] LOU Q, WU Y X, DING H J, et al. Degradation of sulfonamides in aquaculture wastewater by laccase-syringaldehyde mediator system: Response surface optimization, degradation kinetics, and degradation pathway [J]. Journal of Hazardous Materials, 2022, 432: 128647. doi: 10.1016/j.jhazmat.2022.128647
    [13] LI D E, XU C, YEAGER C M, et al. Molecular interaction of aqueous iodine species with humic acid studied by I and C K-edge X-ray absorption spectroscopy [J]. Environmental Science & Technology, 2019, 53(21): 12416-12424.
    [14] DONG S P, XIAO H F, HUANG Q G, et al. Graphene facilitated removal of labetalol in laccase-ABTS system: Reaction efficiency, pathways and mechanism [J]. Scientific Reports, 2016, 6: 21396. doi: 10.1038/srep21396
    [15] LU J H, SHI Y Y, JI Y F, et al. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process [J]. Environmental Pollution, 2017, 220: 1418-1423. doi: 10.1016/j.envpol.2016.10.092
    [16] SHI H H, PENG J B, LI J H, et al. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation [J]. Journal of Hazardous Materials, 2016, 317: 81-89. doi: 10.1016/j.jhazmat.2016.05.064
    [17] LU J H, HUANG Q G, MAO L. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways [J]. Environmental Science & Technology, 2009, 43(18): 7062-7067.
    [18] LU J H, HUANG Q G. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: Ⅱ. cross-coupling with natural organic matter [J]. Environmental Science & Technology, 2009, 43(18): 7068-7073.
    [19] HU J Y, LU K, DONG S P, et al. Inactivation of laccase by the attack of As (Ⅲ) reaction in water [J]. Environmental Science & Technology, 2018, 52(5): 2945-2952.
    [20] 龚志敏, 王佳豪, 刘鹏, 等. 在不同土壤体系下漆酶催化降解对乙酰氨基酚的差异研究[J]. 环境化学, 2022, 41(7): 2256-2263.

    GONG Z M, WANG J H, LIU P, et al. Effects of laccase degradation on acetaminophen in different soil systems[J]. Environmental Chemistry, 2022, 41(7): 2256-2263(in Chinese).

    [21] MARGOT J, COPIN P J, VON GUNTEN U, et al. Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects[J]. Biochemical Engineering Journal, 2015, 103: 47-59.
    [22] MAO L, HUANG Q G, LUO Q, et al. Ligninase-mediated removal of 17β-estradiol from water in the presence of natural organic matter: Efficiency and pathways [J]. Chemosphere, 2010, 80(4): 469-473. doi: 10.1016/j.chemosphere.2010.03.054
    [23] LORENZO M, MOLDES D, COUTO S R, et al. Inhibition of laccase activity from Trametes versicolor by heavy metals and organic compounds [J]. Chemosphere, 2005, 60(8): 1124-1128. doi: 10.1016/j.chemosphere.2004.12.051
    [24] XIA Q, KONG D Y, LIU G Q, et al. Removal of 17 β -estradiol in laccase catalyzed treatment processes [J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 372-378.
    [25] LU J H, SHAO J, LIU H, et al. Formation of halogenated polyaromatic compounds by laccase catalyzed transformation of halophenols [J]. Environmental Science & Technology, 2015, 49(14): 8550-8557.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.3 %DOWNLOAD: 5.3 %HTML全文: 93.9 %HTML全文: 93.9 %摘要: 0.8 %摘要: 0.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.2 %其他: 99.2 %嘉兴: 0.2 %嘉兴: 0.2 %张家口: 0.2 %张家口: 0.2 %扬州: 0.2 %扬州: 0.2 %温州: 0.2 %温州: 0.2 %其他嘉兴张家口扬州温州Highcharts.com
图( 7)
计量
  • 文章访问数:  2873
  • HTML全文浏览数:  2873
  • PDF下载数:  115
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-06-27
  • 录用日期:  2022-08-25
  • 刊出日期:  2022-12-27
张司雨, 董仕鹏, 高士祥, 卢坤. 漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚[J]. 环境化学, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
引用本文: 张司雨, 董仕鹏, 高士祥, 卢坤. 漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚[J]. 环境化学, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
ZHANG Siyu, DONG Shipeng, GAO Shixiang, LU Kun. Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system[J]. Environmental Chemistry, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702
Citation: ZHANG Siyu, DONG Shipeng, GAO Shixiang, LU Kun. Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system[J]. Environmental Chemistry, 2022, 41(12): 3855-3865. doi: 10.7524/j.issn.0254-6108.2022062702

漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚

    通讯作者: Tel:(86)18530575037, E-mail:kunlu@nju.edu.cn
  • 1. 合肥工业大学计算机与信息学院,合肥,230601
  • 2. 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京,210023
基金项目:
国家自然科学基金( 21906080 )和江苏省自然科学基金( BK20190318 )资助.

摘要: 本研究选取3-OH-BDE-7为典型的羟基化多溴联苯醚(OH-PBDEs),系统探究了3-OH-BDE-7在基于二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)的漆酶介体系统中的转化动力学过程,考察了ABTS投加量、漆酶投加量、pH值和温度以及天然有机质对酶介体系统介导3-OH-BDE-7转化过程的影响。结果表明,3-OH-BDE-7在单一漆酶体系下去除率较低,加入2.0 μmol·L−1ABTS后,3-OH-BDE-7去除率提高了约20倍。3-OH-BDE-7在漆酶介体系统的转化过程符合假一级动力学过程,其假一级动力学常数分别与ABTS投加量和漆酶投加量呈正相关。漆酶介体系统催化氧化3-OH-BDE-7的适宜pH值范围为3—8,适宜的温度范围为25—35 ℃。此外,天然有机质能够抑制3-OH-BDE-7在漆酶介体系统中的转化过程,主要原因归结于天然有机质能够与底物有机自由基发生反应,使得底物有机自由基重新回到初始状态。本研究不仅对认识羟基化多溴联苯醚在自然环境中的转化过程具有重要意义,而且为合理设计基于漆酶介体系统的废水处理工艺具有重要参考价值。

English Abstract

  • 羟基化多溴联苯醚(OH-PBDEs)是一类与母体多溴联苯醚(PBDEs)结构类似的化合物,由于其具有较强的内分泌干扰效应,因而受到了广泛的关注[1-3]. 研究表明,OH-PBDEs能够通过酶或者金属氧化物介导的氧化耦合反应发生转化[4-7]. 其中,由于酶介导氧化耦合反应能够生成土壤有机质等,因此在自然腐殖化过程中扮演者重要的角色[6, 8]. 在众多氧化酶中,漆酶是一组结合了多个铜原子的内源性多酚氧化酶,由多种真菌以及高等植物以胞外分泌物的形式产出,广泛存在于自然界中,因此漆酶介导的氧化耦合反应过程对有机污染物在环境中的迁移、转化过程起着重要的作用[6, 9].

    漆酶作为氧化还原酶,可以直接氧化酚类污染物. 但是由于自身氧化还原电位较低(通常在0.5—0.8 V),导致其对于氧化还原电位高的物质氧化效果不够理想[10]. 例如,仅仅依靠反应体系中单一的漆酶无法完成木质素、多环芳烃等大分子的转化过程[11]. 研究发现一些小分子化合物可以充当介体,使得漆酶在介体的辅助作用下,通过介导电子的转移过程,生成具有较高氧化还原电位的活性物种,进而实现对其他非酚类物质的高效催化氧化[11-12]. 目前,常用的介体主要是人工合成介体,如2, 2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)、1-羟基苯并三唑(HBT)、紫尿酸(VIO)、N-羟基-N-乙酰基-苯胺(NHA)等,其中ABTS是目前应用最广泛的介体[13-14]. 而漆酶与这些介体构成的系统成为漆酶-介体系统(laccase-mediator-system, LMS ),能够实现高效、快速的降解高氧化还原电位或不能进入漆酶活性中心的底物分子[11].

    尽管对漆酶催化转化酚类化合物的动力学过程已经有了较好认识,但是这些认识主要集中在单一酶催化体系[9, 15]. 例如,已有研究报道了四溴双酚A、三氯生、对氨基苯酚、雌激素等微污染物在单一漆酶作用体系下的转化动力学过程[9, 15-17]. 然而,在实际环境中,无论是人工合成的介体还是天然的介体都将与漆酶形成LMS[11]. 此外,其他共存物质,如天然有机质,也将不可避免参与这些污染物的转化过程[18-19]. 因此,探究污染物在LMS中的动力学过程对认识其在真实自然环境下的转化过程十分重要. 然而,目前关于这一方面的仍然较为缺乏.

    本研究选取3-OH-BDE-7为典型的OH-PBDEs,系统探究了3-OH-BDE-7在基于ABTS的LMS中的转化动力学过程,考察了ABTS投加量、漆酶投加量、pH值和温度对LMS介导3-OH-BDE-7转化过程的影响. 此外,还探究了天然有机质(natural organic matter, NOM)对LMS介导3-OH-BDE-7转化动力学过程的影响,并揭示了NOM抑制LMS转化3-OH-BDE-7的内在机制. 研究结果不仅对认识羟基化多溴联苯醚在自然环境中的转化过程具有重要意义,而且为合理设计基于LMS的废水处理工艺具有重要参考价值.

    • 漆酶(Laccase,分离自Trametes versicolor)、2, 2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS,纯度>98%)、3-OH-BDE-7(纯度>97%)购自美国Sigma-Aldrich公司. Suwannee天然有机质(natural organic matter,NOM购自国际腐殖质协会(IHSS). 磷酸氢二钠、磷酸二氢钠购自南京化学试剂有限公司. 有机试剂(甲醇、乙酸)均为色谱纯,购自Tedia公司. 其他实验室常用试剂为分析纯. 实验所用水均来自Milli-Q纯化系统的去离子水(18.25 MΩ·cm).

    • 漆酶的酶活性通过ABTS法测定[9]. 其中1个漆酶酶活性单位(U)定义为每分钟催化氧化1 μmol ABTS所需要的漆酶酶量. 具体测定反应体系如下:2.8 mL醋酸钠缓冲溶液(10 mmol·L−1,pH = 5.0). 1 mL ABTS (20 mmol·L−1)溶液,以及0.1 mL稀释的漆酶储备溶液,反应启动后,通过紫外分光光度计(Cary 100,Varian,USA)监测溶液在420 nm的吸光度在3 min内随时间的变化,重复3次,取其斜率k的平均值。酶活性通过公式(1)计算可得[20].

    • LMS系统催化氧化3-OH-BDE-7的反应在8 mL玻璃反应管中进行. 反应体系设置如下:反应体系总体积为2.0 mL,其中3-OH-BDE-7的浓度为2.0 μmol·L−1,初始漆酶活性设置为0.02、0.04、0.08、0.1、0.2、0.3、0.4、0.5 U·mL−1,ABTS的浓度分别设定为0、1.0、1.5、2.0、4.0 μmol·L−1. 反应溶液为10 mmol·L−1的磷酸钠缓冲溶液(pH=6.0). 反应管置于恒温振荡培养箱中(转速为150 r·min−1),在不同的反应时间点(0、1、5、10、20、30、60 min)下将反应管从培养箱中取出,并向其中加入2 mL的甲醇终止反应. 取1 mL的反应液置于离心机进行离心,离心条件设置为:转速20000 r·min−1,离心时间10 min. 离心后,取上清液置于棕色液相小瓶中,用高效液相色谱分析测定上清液中剩余的3-OH-BDE-7浓度. 每个实验样品至少设置3个重复.

      为探究溶液pH值和温度对LMS系统催化氧化3-OH-BDE-7的影响,使用同样的反应装置进行实验. 实验条件设置为:反应体系总体积为2 mL,其中3-OH-BDE-7的浓度为2.0 μmol·L−1,初始漆酶活性为0.1 U·mL−1,ABTS的浓度为2.0 μmol·L−1. 溶液pH设置为3.0、4.0、5.0、6.0、7.0、8.0、9.0和10.0. 反应温度控制在25 ℃,反应时间为60 min. 对于温度的影响,实验条件设置为:反应体系总体积为2 mL,其中3-OH-BDE-7的浓度为2 μmol·L−1,初始漆酶活性为0.1 U·mL−1,ABTS的浓度为2.0 μmol·L−1,溶液pH控制在6.0,反应温度控制在4、10、25、35、45、55、65 ℃,反应时间为60 min. 反应结束后,按照以上步骤取样,并用高效液相色谱分析测定测定溶液中剩余的3-OH-BDE-7浓度. 每个实验样品至少设置3个重复.

      为探究NOM对LMS系统催化氧化3-OH-BDE-7的影响,使用同样的反应装置进行实验. 实验条件设置为:反应体系总体积为2 mL,其中3-OH-BDE-7的浓度为2.0 μmol·L−1,初始漆酶活性为0.1 U·mL−1,ABTS的浓度为2.0 μmol·L−1,NOM的浓度为2.0、4.0、6.0、8.0、10.0 mg·L−1,溶液pH设置为6.0,温度控制在25 ℃. 在不同的反应时间点(0、1、5、10、20、30、60 min)下将反应管从培养箱中取出,按照以上步骤取样,并用高效液相色谱分析测定溶液中剩余3-OH-BDE-7的浓度. 每个实验样品至少设置3个重复.

    • 安捷伦高效液相色谱仪(HPLC,Agilent 1200)用以分离及定量检测溶液中3-OH-BDE-7的浓度. 具体分析测定条件如下:流动相为甲醇-水(85∶15,V∶V),流速设定为1 mL·min−1;Eclipse XDB-C18 柱(250 mm×4 mm, 5 μm) (安捷伦,美国);检测器为可变波长扫描紫外检测器(VWD),检测波长为230 nm,进样量设置为20 μL,柱温为25 ℃. 降解产物的液相色谱-质谱联用(liquid chromatograph mass spectrometer,LC/MS)分析条件:采用 Thermo LCQ 质谱检测器(Quest LCQ Duo, USA),通过XDB C18色谱柱(150 mm×4.6 mm, 5 µm)进行分离. 流动相组成为甲醇和水(85∶15,V∶V),流速设置为0.2 mL·min−1,进样量为10 µL. ESI源参数设置为:毛细管和锥管电压分别设置为4.5 kV和25 V,去溶剂和离子源温度设置为300 ℃ 和 120 ℃. N2作为雾化气和辅助气,流速分别为350 L·h−1和50 L·h−1.

    • 首先探究3-OH-BDE-7在只有漆酶存在下的降解过程,结果如图1A所示. 从图1可以看出,漆酶能够转化3-OH-BDE-7,且随着漆酶投加量的增加,3-OH-BDE-7的去除率也不断增加. 但是,即使当漆酶浓度增加到0.5 U·mL−1时,去除率依然只有~40%。此外,当漆酶含量从0.4 U·mL−1增加到0.5 U·mL−1时,反应60 min后,3-OH-BDE-7的去除率只增加了2%左右. 这可能是由于漆酶自身氧化还原电位较低(通常在0.5—0.8V),导致其对于3-OH-BDE-7氧化效果较差[10]. 3-OH-BDE-7在介体ABTS存在下的降解动力学如图1A所示,在只有漆酶(0.1 U·mL−1)的反应体系中,反应60 min后,只有8.5%的 3-OH-BDE-7被去除. 而加入介体ABTS (2 μmol·L−1)后,3-OH-BDE-7的去除速率显著提高. 例如,反应30 min后,62.5%的3-OH-BDE-7被去除,而反应60 min后,3-OH-BDE-7去除率高达84.7%. 值得注意的是,在只含有介体ABTS的条件下,3-OH-BDE-7几乎不会被去除. 以上研究结果表明介体ABTS能够显著促进漆酶催化氧化3-OH-BDE-7.

      此外,从图1A发现,随着反应的进行,溶液中的3-OH-BDE-7的浓度持续降低. 根据公式(2),以ln(C0/Ct)对反应时间作图,如图1B所示. 结果发现,无论是否存在ABTS,都呈线性关系,这说明3-OH-BDE-7的去除过程符合假一级反应动力学规律,之前的研究也发现了类似的酶催化反应的特征[9].

      式中,kobs为表观一级反应动力学常数,C0为底物起始浓度,Ct为反应t时刻后溶液中剩余的底物浓度,t为反应时间. 通过计算可知,只有漆酶存在的条件下,假一级动力学常数为0.0016 min−1;加入ABTS后,假一级动力学常数为0.0318 min−1. 因此,加入ABTS的漆酶体系催化氧化3-OH-BDE-7的速率约是单纯漆酶体系下的20倍.

      ABTS促进漆酶催化氧化3-OH-BDE-7的作用机理如图2所示. 在只有漆酶的反应体系下,漆酶与氧气反应后形成氧化态漆酶,然后氧化态漆酶再对底物进行氧化. 而在介体存在情况下,介体首先被漆酶氧化形成活性高且具有一定稳定性的氧化态介体,氧化态介体再作为氧化剂去氧化底物. 因此,在本研究中,漆酶-ABTS介体系统催化氧化3-OH-BDE-7的机制为:ABTS优先于3-OH-BDE-7迅速与漆酶发生反应,产生ABTS+和ABTS++,然后ABTS+和ABTS++再高效催化氧化3-OH-BDE-7,与此同时自身被还原为ABTS[14].

    • 为进一步明确ABTS在反应体系中的作用,本文探究了不同浓度ABTS对漆酶催化氧化3OH-BDE-7的影响. 如图3A所示,随着ABTS投加量的增加,3-OH-BDE-7的去除率不断增加. 例如,当ABTS投加量为1 μmol·L−1时,反应60 min后,3-OH-BDE-7的去除率为46%;而当ABTS投加量增加到4 μmol·L−1时,反应60 min后,3-OH-BDE-7的去除率为高达97%. 尽管研究结果已经证明了ABTS能够显著促进漆酶催化氧化3-OH-BDE-7,但是仍然有必要定量评估3-OH-BDE-7在漆酶-ATBS介体系统下的去除动力学过程. 从图3B可以看出,3-OH-BDE-7的去除过程在不同ABTS投加量的条件下依然符合假一级动力学规律. 通常情况下,根据假一级动力学规律,在酶浓度一定的情况下,3-OH-BDE-7的反应速率仅和其自身浓度相关,而与溶液中的酶浓度无关,这符合酶作为催化剂的规律,同时也证明了酶活性在反应过程中保持稳定[15]. 但是在漆酶-介体系统下,3-OH-BDE-7的降解过程依然符合这一规律,这说明ABTS的加入并不改变酶催化氧化3-OH-BDE-7的特征规律. 此外,本文进一步分析了kobs与ABTS浓度之间的相关关系,结果如图2C所示. 在漆酶浓度固定的条件下,kobs与ABTS浓度之间具有较好的正相关关系. 考虑到漆酶-ABTS介体系统介导3-OH-BDE-7氧化的速率远远高于漆酶单独氧化3-OH-BDE-7的速率(图1), 因此推测在ABTS存在下,漆酶-ABTS组成了新的催化活性中心,即ABTS将优先与漆酶发生反应产生ABTS+和ABTS++,然后ABTS+和ABTS++再介导3-OH-BDE-7的转化过程.

    • 为了验证以上推测,本文进一步探究了在ABTS投加量固定的情况下,漆酶投加量对LMS系统催化氧化3-OH-BDE-7的影响. 从图4A可以看出,在ABTS固定的情况下,随着漆酶投加量的增加,3-OH-BDE-7的去除率逐渐增加. 例如,当漆酶浓度为0.02 U·mL−1时,kobs为0.006 min−1;而当漆酶浓度增加到0.5 U·mL−1时,kobs增加到0.040 min−1. 此外,3-OH-BDE-7的去除过程仍然符合假一级动力学规律,这也验证了之前的推测.

      本文进一步分析了kobs与酶活性之间的相关关系. 如图4B所示,在整个漆酶投加量范围内(0.02—0.5 U·mL−1),kobs与酶活性之间并不存在正相关关系,这明显不符合酶催化反应的特征. 基于对LMS系统的作用机理的分析,本文推测漆酶与介体ABTS之间存在一个最佳配比. 由于ABTS也是漆酶的一个潜在反应底物,因此ABTS的投加量并不是越多越好,这是因为过多的ABTS会跟底物形成竞争关系,从而导致底物的去除率降低. 本文进一步对实验数据进行了分段拟合,结果如图4B所示. 漆酶投加量在0—0.1 U·mL−1和0.1—0.5 U·mL−1范围内时,kobs分别与漆酶的活性均呈现出了较好的线性关系. 在第一阶段,即漆酶投加量在0—0.1 U·mL−1范围内时,漆酶含量是3-OH-BDE-7降解的主要限速因素,由于ABTS本身不与底物发生反应,因此随着酶浓度的增加3-OH-BDE-7的去除率快速增加. 而当漆酶投加量在0.1—0.5 U·mL−1范围内时,ABTS的含量是3-OH-BDE-7降解的主要限速因素,因为此时漆酶含量足够多,但是由于漆酶自身的氧化还原电位较低,导致其直接与3-OH-BDE-7反应的速率低,所以即使再增大漆酶投加量,3-OH-BDE-7的降解速率也不会增加太多. 综上所述,这些结果进一步证明了本文前面的假设,即ABTS优先于3-OH-BDE-7迅速与漆酶发生反应,产生ABTS+和ABTS++,形成新的催化活性物种去介导底物的去除过程.

    • 图5A可以看出,在pH为4—7范围内,LMS体系对3-OH-BDE-7的去除率均可达80%以上,保持了较高水平. 当pH值增大或者减小时,3-OH-BDE-7的去除率都有所降低. 例如在pH为3和10的条件下,反应60 min后,3-OH-BDE-7的去除率分别只有63%和35%. pH会影响漆酶的活性是因为反应介质的pH值影响漆酶表面的电化学特性或反应中心,不同的pH值能够影响漆酶的稳定性,从而进一步影响漆酶的活性. 通常情况下,每种漆酶都有自身适宜的pH值范围. 从图5B可以看出,本实验所用的漆酶活性的最佳pH值是5.0. 当溶液pH值高于或低于5.0时,漆酶的活性都显著降低. 例如当溶液pH值为3时,漆酶的活性相比于pH等于5.0时降低了36%. 然而从图5A的去除率上来看,3-OH-BDE-7的去除率在pH为3时只降低了约20%, 类似的现象在之前的研究中也有被发现[21]. 有研究表明在漆酶-ABTS介体系统下,起主要作用是ABTS++[14],而ABTS++在酸性环境下更容易保持其稳定性. 这也就解释了为什么在pH为3时,酶活性降低了36%,而3-OH-BDE-7的去除率只降低了约20%. 此外,对比图5A和5B,可以发现ABTS介体的加入,可以缓解pH改变致酶失活而对降低对底物去除率的趋势. 因此,ABTS的加入扩大了漆酶催化氧化底物的pH适用范围.

      温度也是影响酶活性的关键因素之一. 从图5C可以看出,本研究中LMS的反应最佳温度范围在25—35 ℃. 而当温度升高或者降低时,LMS对3-OH-BDE-7的去除率都显著降低. 例如,在温度为4 ℃时,3-OH-BDE-7去除率只有约20%. 通过对不同温度下酶活性的测定,可以发现本实验中所用的漆酶的最佳温度范围也在25—35 ℃. 此外,通过对比图5C和5D,可以发现不同温度下LMS对3-OH-BDE-7的去除率变化趋势与温度对酶活性的影响趋势基本一致,这说明ABTS的加入并不会改变漆酶催化氧化底物的温度适用范围.

    • NOM的主要成分是溶解性的腐殖质,广泛存在于多个环境介质中,例如自然水体和土壤中. 因此,酶催化氧化污染的动力学过程不可避免的受到NOM的影响[9, 18]. 本文进一步探究了不同浓度的NOM对漆酶-ABTS介体系统催化氧化3-OH-BDE-7的影响. 从图6A可以看出,NOM的存在对LMS催化氧化3-OH-BDE-7具有一定的抑制作用,并且随着NOM浓度的增加,抑制程度越来越大. 木质素过氧化物酶(Lip)以及漆酶在催化去除雌激素和四溴双酚A的反应过程中也发现了类似的现象[9, 22]. 此外,3-OH-BDE-7的降解过程在NOM存在的情况下,同样呈现出假一级动力学规律,结果如图6B所示. 通过公式(2)计算可知,当NOM浓度为2.0、4.0、6.0、8.0、10.0 mg·L−1时,其kobs分别为0.0122、0.0082、0.0058、0.0047、0.0038 min−1.

      有研究发现NOM中的羟基和羧基能和漆酶活性中心的铜离子发生配位反应,从而使得漆酶的活性降低[23]. 但是,本研究中NOM的存在对漆酶的活性并没有影响,如图6C所示,这与Xia等的研究结果一致,他们也发现腐殖酸并不会影响漆酶的活性[24]. 因此本实验中NOM对酶活性的影响不是其抑制作用的主要原因.

      其次,NOM也可以作为底物,与酶发生反应,这主要是因为NOM分子结构中有许多酚类官能团[18]. 由于NOM对漆酶催化反应的影响主要取决于酚类官能团的含量及其周围的电子或空间微环境[24]. 因此,不同来源的NOM可能对酶催化反应表现出不同的影响. 例如,从泥炭中提取的NOM组分对漆酶反应具有一定的抑制作用,而来源于IHSS的NOM则对漆酶反应具有一定的促进作用[18]. 为探究本实验中NOM的LMS的影响,本文进一步利用紫外分光光度计表征了NOM在LMS下的吸光度变化. 如图6D所示,NOM的吸光度值并没有发生显著的变化,这表明NOM与LMS之间不发生反应,类似的现象在Lu等[25]的研究中也观测到. 此外,NOM也可能吸附3-OH-BDE-7,进而抑制其在LMS下的去除. 为探究NOM对3-OH-BDE-7的吸附作用对其去除率的影响,本文将NOM与3-OH-BDE-7先共同孵育24 h后,再进行降解实验,结果如图6E所示. 从图6E可以看出,共同孵育条件下3-OH-BDE-7的去除率与同时投加条件下的去除率并没有显著性差异,这说明NOM对3-OH-BDE-7的吸附作用并不是NOM抑制作用的主要原因.

      有研究报道,腐殖质能够逆转漆酶介导的底物氧化过程[25]. 在漆酶催化氧化底物的过程中,分为两个阶段. 第一个阶段是底物(S)首先被酶氧化成活性自由基中间体(S*),第二个阶段是活性自由基中间体(S*)发生耦合进而生成耦合产物(P). 这两个阶段很大程度上是不可逆的,然而在NOM存在的情况,生成的活性自由基中间体(S*)可能与NOM发生反应重新转化成底物(S).

      假设S*达到相对稳态,即ds/dt≈0,则根据公式,可知:

      代入公式(8),可知

      假设S*的浓度非常小,并且变化慢,则产物的生成速率与反应物的消失速率近似相等. 则

      因此,

      公式变换后,

      因此,1/kobs应该与NOM的浓度呈正相关,结果如图6E所示. 1/kobs与NOM的浓度之间具有较好的线性关系(R2=0.9990),这说明NOM可以与LMS中形成的底物有机自由基发生反应,使其返回到初始状态,所以NOM才表现出对3-OH-BDE-7转化的抑制作用.

    • 最后,利用LC-MS对3-OH-BDE-7在LMS下的中间产物进行了鉴定。通过分析LC-MS信息,并结合溴代待物的特征质谱图,识别出了3种降解产物,结果如图7A所示。根据鉴定到的中间产物,对3-OH-BDE-7的降解路径进行了推测,结果如图7B所示。在LMS作用下,3-OH-BDE-7失去一个电子生成3-OH-BDE-7自由基(R1)。3-OH-BDE-7自由基经过电荷重排后依次形成自由基R2和R3,R3中C—O断裂后生成自由基R4。路径1是自由基R4与水反应生成2,4-二溴酚(产物1);路径2是自由基R1与自由基R2发生耦合反应1-(2,4-二苯氧基)-2,4-二溴苯甲醚(产物2);路径3是两个自由基R4发生耦合反应生成1,3-二(2,4-二苯氧基)苯醚(产物3)。这与本课题组之前的研究结果类似,即漆酶催化反应过程中,生成的有机自由基容易发生耦合反应生成二聚物或者三聚物[9]

    • (1) ABTS能够显著促进漆酶催化氧化去除3-OH-BDE-7的速率. 加入ABTS (2 μmol·L−1)的漆酶体系催化氧化3-OH-BDE-7的速率约是单纯漆酶体系下的20倍.

      (2) 当漆酶投加量固定时,随着ABTS浓度的增加,3-OH-BDE-7的去除率也不断提高,并且假一级动力学常数与ABTS的浓度呈正相关.

      (3) 当ABTS投加量固定时,随着漆酶浓度的增加,尽管3-OH-BDE-7的去除率也不断提高,但是增加的程度在不断降低.

      (4) ABTS的加入扩大了漆酶催化氧化3-OH-BDE-7的pH适用范围, 但是并不会改变漆酶催化氧化3-OH-BDE-7的温度适用范围.

      (5) NOM能够抑制3-OH-BDE-7在LMS系统的降解,并且随着NOM浓度的增加,抑制作用逐渐增强. NOM抑制3-OH-BDE-7降解的主要原因是NOM能够淬灭催化反应过程中的底物有机自由基.

    参考文献 (25)

返回顶部

目录

/

返回文章
返回