-
空气中的有毒气态污染物不仅严重破坏生态环境,而且可以通过呼吸系统进入人体,引发一系列呼吸系统和心脑血管疾病,甚至造成肺癌[1-2]。根据《柳叶刀》污染与健康委员会发布的一份报告,全球每年由大气污染造成死亡人数远超艾滋病、结核病和疟疾等传染病死亡人数之和[3-4],其中 2019年我国因空气污染造成的死亡人数占全世界的27.74%。自《大气污染防治行动计划》等政策相继颁布以来,中国大气环境已有所改善,但仍不容乐观[5]。
大气污染事件通常是以企业生产、建筑施工、道路运输等人为活动产生的大气污染物为基础,在复杂地形和不利气象条件的综合影响下,污染物在短时间累积的现象。因此对特定时间、特定区域范围内的不同污染物排放量进行核算是了解大气污染特征,开展科学的环境空气质量预测的重要基础。大气污染源排放清单正是解决这一问题的先决条件,完整准确的排放清单对污染物来源识别、污染事件成因、污染源现状和发展趋势、大气环境容量测算、区域环境空气控制等具有重要作用[6]。近年来,我国针对不同排放源建立了多种排放清单,如周子航等[7]应用GIS技术建立的移动源排放清单表明污染物的空间分布特征呈现出从城市中心向远郊区递减的趋势;Li等[8]通过建立的扬尘排放清单发现,大规模的基础设施建设是造成颗粒物高排放的主要原因。由人为活动生成的一次污染物在不利天气影响下形成的二次气溶胶颗粒等是重污染天气形成的基础,因此对人为源进行污染防控才是区域空气质量改善的“推进器”[9]。此外,复杂的地形条件对区域空气质量也起着非常重要的作用[10-11]。如盆地等复杂地形地区下垫面的非均匀性会使当地及其周边大气产生热力和动力作用并引发局地次级环流,局地次级环流之间会产生非线性相互作用,导致大气污染物的稀释扩散能力降低[12],大气环境容量远远小于平原城市,在同样强度的大气污染物排放情况下,盆地等复杂地形地区比平原地区更易形成空气重污染事件[13-14]。向怡等[15]发现,盆地中的大气污染物与周围高海拔山体产生“撞山”效应,污染物难以扩散,累积下沉。在胡洵等[16]的研究中,盆地内的大气风场呈现出从周围高海拔地区沿地形走势向中央汇流的趋势,导致盆地中央低海拔地带污染物积聚。郭晓梅[17]研究了地形对大气扩散效应的影响,结果表明,尤其是在秋冬季,盆地内上升气流远弱于下沉气流,阻止了污染物的垂直输送,使得盆地中央低海拔地区上空出现空气“穹窿”,进而导致整个盆地发生严重雾霾事件。在中国,许多城市建立在盆地之中[18-19],而我国学者对排放清单进行的大量研究主要集中在平原地区[20-22],针对盆地地形对大气污染特征的影响研究还相当缺乏。四川盆地是中国四大重度雾霾污染地区之一[23],在盆地的独特地形和不利气象条件的协同作用下,夜间气温下降缓慢、昼夜温差较小、全年低风速有利于静稳天气发生,大气污染物在境内积聚,污染形势严峻;兰州,中国最早报道发生光化学烟雾的城市,其独特的河谷盆地环境导致当地常年风速小、大气层稳定且逆温频率高,污染物难以自行消散,加之当地严重失衡的能源结构,大气污染事件频繁发生[24]。
晋城盆地坐落于山西省东南部,是京津冀大气污染物传输通道“2+26”重点治理城市之一,2019 年其空气质量在全国168 个重点监测城市中排名倒数第10 位[25],大气环境污染严重,控制其污染物的排放对缓解山西省空气污染乃至京津冀及其周边地区的空气污染具有重要作用,同时可为具有盆地地形特征的城市厘清污染物来源提供科学借鉴。因此,为了解晋城盆地大气污染物的排放特征、明确重要污染源和重点控制区域建立一份人为源大气污染物排放清单刻不容缓。
中国盆地城市人为源大气污染物排放清单及空间分布特征——以晋城市为例
Emission inventory and spatial distribution characteristics of anthropogenic air pollutants in basin city in China——A case study of Jincheng City
-
摘要: 为厘清晋城盆地大气污染来源特征,基于实地调研所获取的人为污染源活动水平数据,采用排放因子与物料衡算相结合的方法构建2020年晋城盆地人为源排放清单,利用ArcGIS进行1 km×1 km空间网格分配、Monte Carlo模拟量化各污染物排放量的不确定性。结果表明,晋城市6种大气污染物年排放量分别为:SO2 43736.24 t、NOx 54522.10 t、CO 494967.08 t、VOCs 35912.37 t、PM10 46275.92 t和PM2.5 24314.39 t。其中,电厂和工业锅炉等燃料燃烧活动贡献了79.8%的SO2;化石燃料燃烧和移动源分别贡献46.7%和29.7%的NOx;CO大部分来源于以钢铁冶金和铸件制造为主的工艺过程源,VOCs主要来自移动源,这两类源分别贡献CO和VOCs总排放量的53.8%和31.3%;工艺过程源贡献了32.5%的PM10和35.3%的PM2.5,扬尘源贡献了37.5%的PM10和20.0%的PM2.5。盆地较弱的污染物扩散能力和低海拔地区密集的污染源导致晋城市大气污染物空间分布特征差异显著,在285—750 m的低海拔地区污染物排放量高,而盆地边缘750—2200 m的中高海拔地区排放量较低,污染物主要集中在城区、泽州北部、阳城西部、高平中部和南部。Monte Carlo模拟结果表明,在95%的置信区间内,各污染物排放量的不确定性范围处于−27.31%—26.77%,其中CO的不确定性最低为−15.59%—15.52%,VOCs的不确定性最高为−27.31%—26.77%。Abstract: To clarify the characteristics of air pollution sources in the Jincheng Basin, an emission inventory of anthropogenic sources in the Jincheng basin in 2020 was constructed using a combination of emission factors and material balance, the 1 km × 1 km spatial grid assignment was obtained using ArcGIS, and Monte Carlo simulations were used to quantify the uncertainty of pollutant emission. The results showed that the annual emissions of pollutants were as followings: SO2 43736.24 t, NOx 54522.10 t, CO 494967.0 t, VOCs 35912.37 t, PM10 46275.92 t, and PM2.5 24314.39 t. Fuel combustion activities such as power plants and industrial boilers contributed 79.80% of the SO2; fossil fuel combustion and mobile sources contributed 46.7% and 29.7% of the NOx respectively; CO mostly came from the industrial process sources such as steel metallurgy and casting manufacturing, and VOCs mainly came from mobile sources, which account for 53.76% and 31.30% of the total CO and VOCs emissions respectively; the industrial process sources contributed 32.5% of PM10 and 35.3% of PM2.5, additionally the dust sources contributed 37.5% of PM10 and 20.0% of PM2.5. The weak pollution dispersion capacity in the basin and the dense pollution sources at low altitudes lead to significant differences in the spatial distribution characteristics of air pollutants in Jincheng, with high pollutant emissions at low altitudes between 285—750 m and low emissions at middle and high altitudes between 750—2200 m at the edge of the basin, with pollutants mainly concentrated in Chengqu, northern Zezhou, western Yangcheng, and central and southern Gaoping. The Monte Carlo simulation showed that the uncertainty in emissions for each pollutant was in the ranges of −27.31% to 26.77% at the 95% confidence interval, with the lowest uncertainty of −15.59% to 15.52% for CO and the highest uncertainty of −27.31% to 26.77% for VOCs.
-
表 1 污染源分类
Table 1. Classification of pollution sources
一级源分类
Primary source classification二级源分类
Secondary source classification三级源分类
Tertiary source classification四级源分类
Quadruple source classification五级源分类
Five-level source classification化石燃料固定燃烧源 电力供热 烟煤/无烟煤/褐煤/贫煤 煤粉炉/流化床炉/层燃炉 切向燃烧/壁燃/
低NOx燃烧器煤气/高炉煤气/天然气 燃气锅炉 柴油/燃料油 燃油锅炉 工业锅炉 煤 煤粉炉/流化床炉/
层燃炉/其他炉焦炭 原油/柴油/燃料油 燃油锅炉 天然气 燃气锅炉 民用燃烧 煤 传统炉灶 液化石油气/天然气/煤气 先进炉灶 表 2 燃煤电厂煤粉锅炉NOx排放因子(kg·t−1)
Table 2. NOx emission factors of pulverized coal boilers in coal-fired power plants(kg·t−1)
机组容量
Unit capacity燃烧方式
Combustion mode无烟煤/贫煤
Anthracite/Lean coal沥青/褐煤
Bitumen/Lignite有LNBs 无LNBs 有LNBs 无LNBs <100 MW 切线燃烧 N/Aa 7.84 N/A 7.14 壁 燃 N/A 10.76 N/A 6.82 W型火焰燃烧 N/A 12.78 N/A 8.64 ≥100 MW 切线燃烧 6.46 6.54 3.90 5.95 壁 燃 8.26 8.97 5.17 5.69 W型火焰燃烧 9.16 10.65 3.89 7.2 a:“N/A”表示不适用.
a: “N/A” indicates not applicable.表 3 火电厂SO2、NOx 、CO、VOCs、PM10和PM2.5的排放因子(kg·t−1)
Table 3. Emission factors of SO2,NOx,CO, VOCs,PM10 and PM2.5 in thermal power plants (kg·t−1)
燃料类型
Fuel Type燃烧技术
Combustion TechnologySO2 NOx CO VOCs PM10 PM2.5 数据来源
Data Source煤 煤粉炉 18Sa 2 0.04 46 12 [39-42] 层燃炉 18Sa 8 0.04 13.88 5.25 循环流化床炉 12Sa 2.64 2 0.04 28.08 5.4 煤b 0.96 1.3 0.02 0.2 0.2 [30, 39-40, 43] 高炉煤气b 1.35 1.3 0.05 0.14 0.14 天然气b 4.1 1.3 0.045 0.03 0.03 燃料油 20 5.84 0.6 0.13 0.85 0.62 [30, 39-40,
42-43]柴油 3 9.62 0.6 0.04 0.5 0.5 a:S代表燃料含硫量(下文同);b:气体燃料排放因子单位g·m−3。
a: S represents the fuel sulfur content (same below); b: Gas fuel emission factors in g·m−3.表 4 其他化石燃料燃烧源排放因子(除特殊标注外,其余排放因子单位均为kg·t−1)
Table 4. Emission factors from other fossil fuel combustion sources (except for special labeling, the unit of other emission factors is kg·t−1)
排放源
Emission Source燃料类型
Fuel TypeSO2 NOX CO VOCs PM10 PM2.5 数据来源
Data Source工业燃烧 煤 20S(1− Sr)a 4 15 0.18 5.4 1.89 [33, 43-45] 焦炭 20S(1− Sr)a 9 6.6 0.04 0.29 0.14 原油 5.09 0.86 8.04 1.6 0.06 柴油 3.78 9.62 0.6 7.65 0.5 0.5 燃料油 3.78 5.84 0.6 0.04 1.03 0.67 天然气b 0.15 1.76 1.3 0.18 0.24 0.17 民用燃烧 煤 3.7 1.88 75 0.6 8.82 6.86 [30, 43, 46] 液化石油气b 0.15 0.88 0.36 0.36 0.22 0.15 天然气b 0.15 1.46 1.3 0.13 0.24 0.17 煤气b 0.69 1.3 0.00044 0.2 0.2 a:Sr表示灰分中的硫含量;b:气体燃料排放因子单位为:g·m−3.
a: Sr denotes the sulfur content in ash; b: Gaseous fuel emission factor in g·m−3.表 5 工艺过程源排放因子
Table 5. Industrial process source emission factors
排放源
Emission Source工艺技术
TechnologySO2 NOx CO VOCs PM10 PM2.5 单位
Unit数据来源
Data Source钢铁冶炼 烧结 3.2 0.6 11 0.25 5.81 2.52 kg·t−1 [43, 47-50] 高炉 0.2 0.2 4.2 8.43 5.25 转炉 0.003 0.1 22 14.68 10.5 电炉 0.1 0.2 9 0.1 8.12 6.02 铸造 1.732 0.548 41 9 7.1 有色金属
冶炼6.98/0.25/
85.52/124.84a5.2/0.19/
63.84/111.27a[47-48, 51] 焦炭 0.91 1.23 1.8 1.25 8.79 5.22 kg·t−1 [30, 44] 水泥 新型干法 15.3 12 0.39 44.1 18.9 kg·t−1 [43, 50-53] 旋窑 18.5 18 0.39 35 14 生料磨机 21.84 7.28 水泥磨机 8 2 kg·t−1 [30, 51] 压碎机 2.2 0.2 kg·t−1 石灰 1 1.6 115 0.39 12 1.4 kg·t−1 [30, 54] 砖瓦 0.53 0.13 150 0.132 0.71 0.27 kg·t−1 [43, 47-48, 51] 平板玻璃 4.4 8.27 7.92 kg·t−1 玻璃纤维 3.15 3.12 2.45 kg·t−1 合成氨 1 43 4.72 kg·t−1 [43, 51, 55] 肥料 0.24 0.18 kg·t−1 [43] 尿素 0.01 1.2 0.9 kg·t−1 基础化学
原料6.75b 1.66/0.223/
1.3/430ckg/生产线 [43, 56-57] 合成橡胶 15 kg·t−1 [57] 轮胎 0.285 kg/个 [51] 合成树脂 0.7448/3/5.7/
10/3/2.2d100e 5e kg·t−1 [43, 51, 58] 人造革 0.182 kg·m−2 [43] 石油加工 0.9 0.3 10 1.82 0.12 0.1 kg·t−1 [43, 50, 56] 油漆 15 kg·t−1 [43] 石墨 0.18 1.6 1.44 kg·t−1 [44] 沥青 27.2 kg·t−1 [51] 水性胶黏剂 0.5 kg·t−1 [58] 塑料制造 40/50/60/
120/2.2fkg·t−1 [59-60] 纸浆 3.1 kg·t−1 [57] 纸 2.6 kg·t−1 [61] 酒 0.25/0.5/
25/218.25gkg·t−1 [43] 油 3.7/9.165h kg·t−1 [43, 57] a:二次铝/二次铜/二次铅/氧化锌;b:硫酸;c:乙烯/苯乙烯/邻苯二甲酸酐/原始化学药品;d:聚氯乙烯/聚丙烯/高密度聚乙烯/低密度聚乙烯/丙烯腈丁二烯苯乙烯树脂/其他;e:聚氯乙烯的单位为g·t−1;f:聚氯乙烯加工/聚酯加工/聚苯乙烯泡沫加工/聚氨酯泡沫加工/其他;g:啤酒/红酒/白酒/酒精;h:食用植物油/非食用植物油.
a: Secondary Aluminum/Secondary Copper/Secondary Lead/Zinc Oxide; b: Sulphuric acid; c: Ethylene/Styrene/Phthalic anhydride/Primary chemicals; d: PVC/Polypropylene/HDPE//LDPE/Acrylonitrile butadiene styrene resin/Others; e: The unit of polyvinyl chloride is g·t-1; f: PVC processing/Polyester processing/Polystyrene foam processing/Polyurethane foam processing/Others; g: Beer/wine/liquor/alcohol; h: Edible vegetable oil/Non-edible vegetable oil.表 6 溶剂使用源主要污染物排放因子
Table 6. Main pollutant emission factors of solvent source
排放源
Emission source种类
CategoryVOCs 单位
Unit数据来源
Data source印刷 100/216/243/620/683/750a kg·t−1 [57] 工业涂层 家具 0.4/218b t·年−1 [43] 家电 0.2 kg·件−1 交通设备 0.3/1.8/2.43/20/21.2c kg·辆−1 其他涂层 0.455/0.4/0.4/0.235d 建筑涂料 120/120/590e kg·t−1 [45, 51] 农药施用 276/568/576f kg·t−1 [43] 鞋 0.06 kg·双−1 [64] 木制人造板 0.5 g·m−3 [51] 洗涤剂 44 g·人−1 [45] 干洗 1000 kg·t−1 [43] 烹饪 3.5 g·人−1 [57] a:柔性版印刷/胶印/凸版印刷/凹版印刷/丝网印刷/其他印刷;b:木制家具/金属家具;c:自行车/摩托车/轿车/汽车/货车;d:线圈(t/生产线)/设备制造(kg·件−1)/机床(kg·件−1)/其他;e:建筑内墙/外墙水性涂料/外墙溶剂型涂料;f:百草枯/稻瘟净/敌敌畏.
a: Flexographic printing/offset printing/letterpress printing/gravure printing/screen printing/other printing; b: Wooden furniture/metal furniture; c: Bicycle/motorcycle/car/automotive /truck; d: Coils (t/line)/equipment manufacturing (kg/piece)/machine tools (kg/piece)/other; e: Building interior/exterior water-based coating/exterior solvent-based coating; f: Paraquat/kitazine/dichlorvos.表 7 生物质燃烧源主要污染物排放因子(kg·t−1)
Table 7. Emission factors of main pollutants from biomass combustion sources
排放源
Emission Source燃料类型
Fuel TypeSO2 NOx CO VOCs PM10 PM2.5 生物质锅炉 生物质成型燃料 0.70 2.79 6.22 1.13 1.12 1.13 户用生物质炉具 小麦秸秆 2.36 0.51 172 9.37 8.86 8.24 玉米秸秆 1.33 0.83 57 7.34 7.39 6.87 薪柴 0.4 0.97 29 3.13 3.48 3.24 生物质开放燃烧 小麦秸秆 0.74 2.89 60 7.49 7.73 7.13 玉米秸秆 0.45 3.43 53 10.2 11.95 11.3 表 8 不同规模餐饮企业烟气排放速率、年总经营时间经验值
Table 8. Experience value of flue gas emission rate and total operating time of catering enterprises of different sizes
企业规模
Enterprise scale大型餐饮企业
Large catering enterprises中型餐饮企业
Medium-sized catering enterprises小型餐饮企业
Small catering enterprises烟气排放
速率/(m3·h−1)2500 2000 1500 年总经营时间/h 2000 1800 1600 表 9 排放源空间分配情况
Table 9. Distribution of emission source space
排放源
Emission source分配原则
Distribution principle空间代理参数
Spatial agent parameters化石燃料固定燃烧源 点源/面源 经纬度、人口密度 工艺过程源 点源 经纬度 移动源 面源/线源 土地类型、道路长度 溶剂使用源 点源/面源 经纬度、人口密度、GDP、土地类型 扬尘源 点源/面源/线源 经纬度、道路长度、土地类型 生物质燃烧源 点源/面源 经纬度、农村居民点 储存运输源 点源/线源 经纬度、道路长度 废弃物处理源 点源 经纬度 其他排放源 点源/面源 经纬度、人口密度 表 10 晋城市大气污染物排放清单(t)
Table 10. Air pollutant emission inventory of Jincheng
排放源
Emission sourceSO2 NOx CO VOCs PM10 PM2.5 化石燃料固定燃烧源 34892.31 25436.25 188526.66 8875.14 10519.79 7726.07 工艺过程源 8041.03 12325.22 266108.56 9357.71 15034.83 8586.42 移动源 657.28 16194.97 34276.66 11240.55 1596.49 1502.38 溶剂使用源 3426.34 扬尘源 17340.44 4858.79 生物质燃烧源 145.62 565.66 6055.20 1837.02 1666.27 1546.24 储存运输源 943.25 废弃物处理源 83.55 其他源 148.81 118.10 94.48 总计 43736.24 54522.10 494967.08 35912.37 46275.92 24314.39 -
[1] WANG W J, CHEN C, LIU D, et al. Health risk assessment of PM2.5 heavy metals in County units of Northern China based on Monte Carlo simulation and APCS-MLR [J]. Science of the Total Environment, 2022, 843: 156777. doi: 10.1016/j.scitotenv.2022.156777 [2] 肖凯, 任学昌, 陈仁华, 等. 典型西北钢铁城市冬季大气颗粒物重金属来源解析及健康风险评价: 以嘉峪关为例 [J]. 环境化学, 2022, 41(5): 1649-1660. doi: 10.7524/j.issn.0254-6108.2021010704 XIAO K, REN X C, CHEN R H, et al. Source analysis and health risk assessment of heavy metals in air particulates of typical northwest steel cities in winter: A case study in Jiayuguan [J]. Environmental Chemistry, 2022, 41(5): 1649-1660(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010704
[3] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale [J]. Nature, 2015, 525(7569): 367-371. doi: 10.1038/nature15371 [4] TILT B. China's air pollution crisis: Science and policy perspectives [J]. Environmental Science & Policy, 2019, 92: 275-280. [5] LI Q, WANG E R, ZHANG T T, et al. Spatial and temporal patterns of air pollution in Chinese cities [J]. Water, Air, & Soil Pollution, 2017, 228(3): 1-22. [6] ZHAO B, WANG P, MA J Z, et al. A high-resolution emission inventory of primary pollutants for the Huabei region, China [J]. Atmospheric Chemistry and Physics, 2012, 12(1): 481-501. doi: 10.5194/acp-12-481-2012 [7] 周子航, 邓也, 吴柯颖, 等. 成都市道路移动源排放清单与空间分布特征 [J]. 环境科学学报, 2018, 38(1): 79-91. doi: 10.13671/j.hjkxxb.2017.0368 ZHOU Z H, DENG Y, WU K Y, et al. On-road mobile source emission inventory and spatial distribution characteristics in Chengdu [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 79-91(in Chinese). doi: 10.13671/j.hjkxxb.2017.0368
[8] LI T K, DONG W, DAI Q L, et al. Application and validation of the fugitive dust source emission inventory compilation method in Xiongan New Area, China [J]. Science of the Total Environment, 2021, 798: 149114. doi: 10.1016/j.scitotenv.2021.149114 [9] LI M, LIU H, GENG G N, et al. Anthropogenic emission inventories in China: A review [J]. National Science Review, 2017, 4(6): 834-866. doi: 10.1093/nsr/nwx150 [10] WU L, SU H, KALASHNIKOVA O V, et al. WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley [J]. Atmospheric Chemistry and Physics, 2017, 17(12): 7291-7309. doi: 10.5194/acp-17-7291-2017 [11] YIM S H L, FUNG J C H, NG E Y Y. An assessment indicator for air ventilation and pollutant dispersion potential in an urban canopy with complex natural terrain and significant wind variations [J]. Atmospheric Environment, 2014, 94: 297-306. doi: 10.1016/j.atmosenv.2014.05.044 [12] LI X J, HUSSAIN S A, SOBRI S, et al. Overviewing the air quality models on air pollution in Sichuan Basin, China [J]. Chemosphere, 2021, 271: 129502. doi: 10.1016/j.chemosphere.2020.129502 [13] HIGGINBOTHAM N, FREEMAN S, CONNOR L, et al. Environmental injustice and air pollution in coal affected communities, Hunter Valley, Australia [J]. Health & Place, 2010, 16(2): 259-266. [14] GUSTIN M S, FINE R, MILLER M, et al. The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain [J]. Science of the Total Environment, 2015, 530/531: 455-470. doi: 10.1016/j.scitotenv.2015.03.046 [15] 向怡, 史学峰, 吴玉生. 大同盆地复杂地形下近场大气污染物扩散模型选取研究 [J]. 环境污染与防治, 2022, 44(1): 45-50. XIANG Y, SHI X F, WU Y S. Study on the selection of near-field air pollutants diffusion model in complex terrain of Datong Bason [J]. Environmental Pollution & Control, 2022, 44(1): 45-50(in Chinese).
[16] 胡洵, 蔡旭晖, 宋宇, 等. 关中盆地近地面风场和大气输送特征分析 [J]. 气候与环境研究, 2020, 25(6): 637-648. doi: 10.3878/j.issn.1006-9585.2020.20019 HU X, CAI X H, SONG Y, et al. Diagnostic analysis of wind fields and atmospheric transport pathways in the Guanzhong Basin [J]. Climatic and Environmental Research, 2020, 25(6): 637-648(in Chinese). doi: 10.3878/j.issn.1006-9585.2020.20019
[17] 郭晓梅. 四川盆地空气质量气候特征及其大地形影响效应的观测模拟研究[D]. 南京: 南京信息工程大学, 2016. GUO X M. Observed and simulated research on climate characteristic of air quality and the topographic induced effects in Sichuan Basin[D]. Nanjing: Nanjing University of Information Science & Technology, 2016(in Chinese).
[18] 王小兰, 王雁, 闫世明, 等. 晋中盆地主要城市冬季PM2.5传输特征分析 [J]. 环境科学, 2022, 43(7): 3423-3438. WANG X L, WANG Y, YAN S M, et al. Analysis of PM2.5 transmission characteristics in main cities of Jinzhong Basin in winter [J]. Environmental Science, 2022, 43(7): 3423-3438(in Chinese).
[19] 杨显玉, 吕雅琼, 邵平, 等. 四川盆地大气氨与氮氧化物排放对细颗粒物污染的影响及减排潜力[J]. 中国环境科学, 2022, 42(8): 3502-3511. YANG X Y, LV Y Q, SHAO P, et al. Impact of ammonia and nitrogen oxides emissions on particle matter pollution and mitigation potential over the Sichuan Basin[J]. China Environmental Science, 2022, 42(8): 3502-3511(in Chinese).
[20] CHEN K Y, WANG P F, ZHAO H, et al. Summertime O3 and related health risks in the North China plain: A modeling study using two anthropogenic emission inventories [J]. Atmospheric Environment, 2021, 246: 118087. doi: 10.1016/j.atmosenv.2020.118087 [21] ZHANG Y, DORE A J, MA L, et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain [J]. Environmental Pollution, 2010, 158(2): 490-501. doi: 10.1016/j.envpol.2009.08.033 [22] SIMAYI M, SHI Y Q, XI Z Y, et al. Understanding the sources and spatiotemporal characteristics of VOCs in the Chengdu Plain, China, through measurement and emission inventory [J]. Science of the Total Environment, 2020, 714: 136692. doi: 10.1016/j.scitotenv.2020.136692 [23] SUN Y, NIU T, HE J J, et al. Classification of circulation patterns during the formation and dissipation of continuous pollution weather over the Sichuan Basin, China [J]. Atmospheric Environment, 2020, 223: 117244. doi: 10.1016/j.atmosenv.2019.117244 [24] 张凯, 于周锁, 高宏, 等. 兰州盆地人为源大气污染物网格化排放清单及其空间分布特征 [J]. 环境科学学报, 2017, 37(4): 1227-1242. ZHANG K, YU Z S, GAO H, et al. Gridded emission inventories and spatial distribution characteristics of anthropogenic atmospheric pollutants in Lanzhou valley [J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1227-1242(in Chinese).
[25] 中华人民共和国环境保护部. 中国生态环境状况公报[R]. 2020. Ministry of Ecology and Environment of the People’s Republic of China. Ecological and Environmental Status Bulletin of China[R]. 2020 (in Chinese).
[26] SUN D, FANG J, SUN J Q. Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region [J]. Resources, Conservation and Recycling, 2018, 129: 416-423. doi: 10.1016/j.resconrec.2016.09.021 [27] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021 (in Chinese).
[28] BP. BP statistical review of world energy 2021[M]. London: BP, 2021. [29] 晋城市统计局. 晋城统计年鉴[M]. 北京: 中国统计出版社, 2021. Jincheng City Bureau of Statistics. Jincheng Statistical Yearbook[M]. Beijing: China Statistics Press, 2021 (in Chinese).
[30] 贺克斌. 城市大气污染源排放清单编制技术手册[R]. 北京: 清华大学, 2018. HE K B. Technical manual for compiling urban air pollutant emission inventory [R]. Beijing: Tsinghua University, 2018 (in Chinese).
[31] STREETS D G, BOND T C, CARMICHAEL G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 [J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D21): 8809. [32] ZHAO Y, WANG S X, DUAN L, et al. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction [J]. Atmospheric Environment, 2008, 42(36): 8442-8452. doi: 10.1016/j.atmosenv.2008.08.021 [33] LIU H J, WU B B, LIU S H, et al. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China [J]. Atmospheric Environment, 2018, 181: 20-33. doi: 10.1016/j.atmosenv.2018.03.013 [34] 中华人民共和国环境保护部. 锅炉大气污染物排放标准[EB/OL]. [2022-06-01]. 2014, Ministry of Ecology and Environment of the People’s Republic of China. Boiler air pollutant emission standard [EB/OL]. [2022-06-01]. 2014,
[35] 中华人民共和国环境保护部. 燃煤电厂污染防治最佳技术指南(试行)[EB/OL]. [2022-06-01]. 2010, Ministry of Ecology and Environment of the People’s Republic of China. Coal-fired power plants pollution prevention best technology guide (Trial) [EB/OL]. [2022-06-01]. 2010,
[36] LIU F, ZHANG Q, TONG D, et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010 [J]. Atmospheric Chemistry and Physics, 2015, 15(23): 13299-13317. doi: 10.5194/acp-15-13299-2015 [37] ZHANG Q, STREETS D G, HE K B, et al. NOx emission trends for China, 1995-2004: The view from the ground and the view from space [J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D22): D22306. doi: 10.1029/2007JD008684 [38] TIAN H Z, LIU K Y, ZHOU J R, et al. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants: Temporal trends and spatial variation characteristics [J]. Environmental Science & Technology, 2014, 48(6): 3575-3582. [39] 王丽涛, 张强, 郝吉明, 等. 中国大陆CO人为源排放清单 [J]. 环境科学学报, 2005, 25(12): 1580-1585. doi: 10.3321/j.issn:0253-2468.2005.12.002 WANG L T, ZHANG Q, HAO J M, et al. Anthropogenic CO emission inventory of China's mainland [J]. Acta Scientiae Circumstantiae, 2005, 25(12): 1580-1585(in Chinese). doi: 10.3321/j.issn:0253-2468.2005.12.002
[40] 张强. 中国区域细颗粒物排放及模拟研究[D]. 北京: 清华大学, 2005. ZHANG Q. Regional Fine Particle Emissions and Simulation in China[D]. Beijing: Tsinghua University, 2005(in Chinese).
[41] 王艳. 中国氮氧化物排放及污染时空分布特征研究[D]. 北京: 北京师范大学, 2011. WANG Y. Spatial and temporal distribution characteristics of nitrogen oxide emissions and pollution in China[D]. Beijing: Beijing Normal University, 2011(in Chinese).
[42] WANG X P, MAUZERALL D L, HU Y T, et al. A high-resolution emission inventory for Eastern China in 2000 and three scenarios for 2020 [J]. Atmospheric Environment, 2005, 39(32): 5917-5933. doi: 10.1016/j.atmosenv.2005.06.051 [43] 中华人民共和国环境保护部. 大气挥发性有机物源排放清单编制技术指南(试行) [EB/OL]. [2022-06-01]. 2014, Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Compilation of Emission Inventory of Volatile Organic Compounds from Atmosphere (Trial) [EB/OL]. [2022-06-01]. 2014,
[44] BAI L, LU X, YIN S S, et al. A recent emission inventory of multiple air pollutant, PM2.5 chemical species and its spatial-temporal characteristics in central China [J]. Journal of Cleaner Production, 2020, 269: 122114. doi: 10.1016/j.jclepro.2020.122114 [45] LIU S H, HUA S B, WANG K, et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis [J]. Science of the Total Environment, 2018, 624: 396-406. doi: 10.1016/j.scitotenv.2017.12.102 [46] 中华人民共和国环境保护部. 民用煤大气污染物排放清单编制技术指南(试行)[EB/OL]. [2022-06-01]. 2016, Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Compilation of Air Pollutant Emission Inventory of Civil Coal (Trial) [EB/OL]. [2022-06-01]. 2016,
[47] 中华人民共和国环境保护部. 大气细颗粒物一次源排放清单编制技术指南( 试行 ) [EB/OL]. [2022-06-01]. 2014, Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Compilation of Atmospheric Fine Particulate Matter Emission Inventory from Primary Sources (Trial) [EB/OL]. [2022-06-01]. 2014,
[48] 中华人民共和国环境保护部. 大气可吸入颗粒物一次源排放清单编制技术指南(试行)[EB/OL]. [2022-06-01]. 2014, Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Compilation of Primary Source Emission Inventory of Atmospheric Inhalable Particulate Matter (Trial)[EB/OL]. [2022-06-01]. 2014,
[49] WANG K, TIAN H Z, HUA S B, et al. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics [J]. Science of the Total Environment, 2016, 559: 7-14. doi: 10.1016/j.scitotenv.2016.03.125 [50] ZHAO Y, NIELSEN C P, MCELROY M B, et al. CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control [J]. Atmospheric Environment, 2012, 49: 103-113. doi: 10.1016/j.atmosenv.2011.12.015 [51] HUA H, JIANG S Y, SHENG H, et al. A high spatial-temporal resolution emission inventory of multi-type air pollutants for Wuxi City [J]. Journal of Cleaner Production, 2019, 229: 278-288. doi: 10.1016/j.jclepro.2019.05.011 [52] HUA S B, TIAN H Z, WANG K, et al. Atmospheric emission inventory of hazardous air pollutants from China's cement plants: Temporal trends, spatial variation characteristics and scenario projections [J]. Atmospheric Environment, 2016, 128: 1-9. doi: 10.1016/j.atmosenv.2015.12.056 [53] LEI Y, ZHANG Q, NIELSEN C, et al. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020 [J]. Atmospheric Environment, 2011, 45(1): 147-154. doi: 10.1016/j.atmosenv.2010.09.034 [54] ZHAO Y, QIU L P, XU R Y, et al. Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China [J]. Atmospheric Chemistry and Physics, 2015, 15(21): 12623-12644. doi: 10.5194/acp-15-12623-2015 [55] 孟琛琛, 倪爽英, 陆雅静, 等. 河北省工业源大气污染物排放清单及减排潜力[J]. 环境科学与技术, 2019, 42(S2): 186-193. MENG C C, NI S Y, LU Y J, et al. Emission inventory and emission reduction potential of typical industrial sources in Hebei Province[J]. Environmental Science & Technology, 2019, 42(Sup 2): 186-193(in Chinese).
[56] ZHAO Y, ZHANG J, NIELSEN C P. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China [J]. Atmospheric Chemistry and Physics, 2013, 13(2): 487-508. doi: 10.5194/acp-13-487-2013 [57] QIU P P, TIAN H Z, ZHU C Y, et al. An elaborate high resolution emission inventory of primary air pollutants for the Central Plain Urban Agglomeration of China [J]. Atmospheric Environment, 2014, 86: 93-101. doi: 10.1016/j.atmosenv.2013.11.062 [58] 陈颖, 叶代启, 刘秀珍, 等. 我国工业源VOCs排放的源头追踪和行业特征研究 [J]. 中国环境科学, 2012, 32(1): 48-55. doi: 10.3969/j.issn.1000-6923.2012.01.008 CHEN Y, YE D Q, LIU X Z, et al. Source tracing and characteristics of industrial VOCs emissions in China [J]. China Environmental Science, 2012, 32(1): 48-55(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.01.008
[59] 潘月云, 李楠, 郑君瑜, 等. 广东省人为源大气污染物排放清单及特征研究 [J]. 环境科学学报, 2015, 35(9): 2655-2669. PAN Y Y, LI N, ZHENG J Y, et al. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province [J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2655-2669(in Chinese).
[60] KLIMONT Z, STREETS D G, GUPTA S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China [J]. Atmospheric Environment, 2002, 36(8): 1309-1322. doi: 10.1016/S1352-2310(01)00529-5 [61] ZHOU M M, JIANG W, GAO W D, et al. Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province, China [J]. Environmental Pollution, 2021, 288: 117666. doi: 10.1016/j.envpol.2021.117666 [62] ZHANG Q J, YANG L, MA C, et al. Emission characteristics and chemical composition of particulate matter emitted by typical non-road construction machinery [J]. Atmospheric Pollution Research, 2020, 11(4): 679-685. doi: 10.1016/j.apr.2019.12.018 [63] 何向东, 黄兴宇, 张传兵, 等. 焦作市人为源挥发性有机物排放清单 [J]. 环境化学, 2019, 38(9): 1998-2007. doi: 10.7524/j.issn.0254-6108.2018111004 HE X D, HUANG X Y, ZHANG C B, et al. Emission inventories of anthropogenic VOCs in Jiaozuo City [J]. Environmental Chemistry, 2019, 38(9): 1998-2007(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111004
[64] 陈小方, 张伟霞, 陈柄旭, 等. 江门市人为源挥发性有机物排放清单 [J]. 环境科学, 2018, 39(2): 600-607. doi: 10.13227/j.hjkx.201708172 CHEN X F, ZHANG W X, CHEN B X, et al. Emission inventory of anthropogenic VOCs in Jiangmen City [J]. Environmental Science, 2018, 39(2): 600-607(in Chinese). doi: 10.13227/j.hjkx.201708172
[65] 中华人民共和国环境保护部. 扬尘源颗粒物排放清单编制技术指南(试行)[EB/OL]. [2022-06-01]. 2014, Ministry of Ecology and Environment of the People’s Republic of China. Technical Guide for Compilation of Particulate Matter Emission Inventory from Dust Sources (Trial) [EB/OL]. [2022-06-01]. 2014,
[66] 宋立来, 李廷昆, 毕晓辉, 等. 京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法 [J]. 环境科学研究, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03 SONG L L, LI T K, BI X H, et al. Construction and dynamic method of soil fugitive dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei region [J]. Research of Environmental Sciences, 2021, 34(8): 1771-1781(in Chinese). doi: 10.13198/j.issn.1001-6929.2021.05.03
[67] LI T K, BI X H, DAI Q L, et al. Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China [J]. Atmospheric Environment, 2018, 191: 46-54. doi: 10.1016/j.atmosenv.2018.07.051 [68] ZHANG Q Q, PAN Y P, HE Y X, et al. Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain [J]. Atmospheric Environment, 2019, 214: 116869. doi: 10.1016/j.atmosenv.2019.116869 [69] 闫雨龙, 彭林. 山西省人为源VOCs排放清单及其对臭氧生成贡献 [J]. 环境科学, 2016, 37(11): 4086-4093. doi: 10.13227/j.hjkx.201606055 YAN Y L, PENG L. Emission inventory of anthropogenic VOCs and its contribution to ozone formation in Shanxi Province [J]. Environmental Science, 2016, 37(11): 4086-4093(in Chinese). doi: 10.13227/j.hjkx.201606055
[70] 柯伯俊. 四川省大气污染源排放清单研究[D]. 成都: 西南交通大学, 2014. KE B J. Research of an air pollutant emission inventory for Sichuan[D]. Chengdu: Southwest Jiaotong University, 2014(in Chinese).