-
重金属具有毒性强、来源广、易富集且难降解等特征,对环境和人体健康有着间接和直接的危害,其在自然生态系统的分布、迁移转化和毒性效应一直是环境学科研究的前沿热点问题之一[1-5]. 重金属在自然生态系统的分布特征对于深入认知和评估其环境行为和生态效应具有重要的指示意义. 研究表明,沉积物作为水生态系统中重金属主要的汇,可以作为水生态系统中重金属污染程度的“指示剂”[6-8]. 沉积物中的重金属可通过多途径如水动力扰动、化学和生物方式释放至天然水环境中,对水生生物和人类健康造成潜在和直接的影响甚至是毒性效应 [9-10]. As、Pb、Hg、Cd、Cr、Cu 是《土壤环境监测技术规范》(HJ/T166-2004)中监测的重金属,研究表明,这6种金属所造成污染及潜在生态风险更为严重[11-12]. 沉积物中有机物和营养盐是沉积物中重要组成部分,其中有机质对沉积物中重金属及有毒化合物的毒性、环境迁移力及营养盐交换有重要的作用[13-14]. 氮和磷不仅可为水体中浮游生物提供养分,亦可在水体和沉积物中迁移转化,研究表明,沉积物是水体中氮和磷的重要内源[15]. 因此,探究和明确沉积物中重金属、有机质和营养盐的含量特征和潜在风险,将为湖泊水环境污染防控策略提供科学依据.
湖泊对于维护地区生态健康,调节气候并为人类社会提供多种服务,特别是生境脆弱的西北地区,具有重要的作用[16]. 半咸水湖泊,又称为微咸水湖,是指湖水矿化度在1—35 g·L−1的湖泊,半咸水湖泊中鱼类生物量相对淡水湖泊较低,浮游动物与浮游植物占比低于淡水湖泊[17]. 西北地区湖泊多以半咸水湖泊为主,水动力环境较为封闭,地下水排泄能力较弱,易受人类活动和气候变化的影响[18-19]. 宁夏沙湖地处西北内陆干旱荒漠区域,是宁夏最大的天然半咸水湖泊,对于宁夏的生态调控起着不可或缺的作用[20]. 沙湖水生态环境脆弱,具备半咸水湖泊鲜明的特点. 由于补水短缺、水产养殖与旅游开发不合理性等因素,导致过量营养盐进入宁夏沙湖,影响多种元素在沉积物-水界面的分布特性及生物有效性. 重金属吸附在沉积物表面,在特定条件下,会向水体中再度释放,成为潜在污染源,同时对底栖动物产生毒性,对湖泊生态系统产生影响. 当前,针对沙湖的相关研究主要集中于水环境和浮游动植物多样性方面[21-22],这对于评估重金属在典型湖泊湿地的分布特性及风险是不利的. 2014年王春霞等[23]对沉积物重金属分布特征分析,但研究时间较早且未对宁夏沙湖沉积物中重金属污染特征、潜在风险进行分析.
本研究通过监测沙湖表层沉积物的理化指标和重金属含量,分析理化指标和重金属的空间分布特征,运用单因子污染指数法、地积累指数法和潜在生态风险指数法等多种手段对沉积物重金属污染特征进行评价和分析,并通过相关性分析和主成分分析对沉积物中重金属与营养盐相关性及来源解析. 本研究对揭示宁夏沙湖沉积物重金属分布情况,强化污染防治具有重要指导意义.
半咸水宁夏沙湖沉积物中重金属的分布特征、潜在生态风险及来源解析
Distribution characteristics, potential ecological risk and source analysis of heavy metals in the sediments of the brackish-water lake Ningxia Sand Lake
-
摘要: 为揭示和明确半咸水湖泊湿地的重金属污染状况,以宁夏沙湖为例,于2018年4月(春)、7月(夏)、10月(秋)、2019年1月(冬),对沙湖湿地9个采样点沉积物中有机质(OM)、总氮(TN)、总磷(TP)、硝态氮(NO3−-N)、全盐和6种对环境影响较大的有毒有害重金属(As、Pb、Hg、Cd、Cr、Cu)的含量进行了定量分析并运用多种手段进行风险评估. 结果表明,人类活动密集区(湖心、鸟岛和2号桥)沉积物中OM和营养盐含量高于其他区域. 全盐含量在夏季最高,冬季最低;OM、TN和TP含量在夏季最高,春季最低;NO3--N含量在秋季含量最高,冬季最低. 宁夏沙湖沉积物中As、Pb、Hg、Cd、Cr、Cu含量分别在 8.83—13.55 mg·kg−1,16.61—21.71 mg·kg−1,0.02—0.08 mg·kg−1,0.02—0.46 mg·kg−1,51.16—66.54 mg·kg−1,14.67—24.42 mg·kg−1之间,其中Pb和Cd含量均超过背景值. 6种重金属单因子污染指数均小于1,地累积指数(Igeo)均小于0,表明宁夏沙湖沉积物质量状况良好,其中Cr、As和Pb 单因子污染指数和Igeo指数较大,空间分布为假日酒店、湖心相对较高,需在今后监测工作中重点关注. 潜在重金属生态风险为中等污染,仅Hg和Cd出现强和中等的生态危害程度,表明宁夏沙湖沉积物重金属生态风险主要由Hg和Cd造成,生态风险较高的区域主要位于假日酒店、湖心等区域. 相关性分析和主成分分析揭示Pb、Cd、Cr、Cu、OM、TN、TP 具有相似的污染来源,主要来源是人为来源和自然来源. 本研究将为半咸水湖泊重金属污染状况及潜在生态风险提供数据支撑,也将为水环境污染防控提供科学依据.Abstract: To reveal and clarify the heavy metal pollution status of brackish-water lake wetlands, we measured and analyzed the organic matter (OM), total nitrogen (TN), total phosphorus (TP), nitrate nitrogen (NO3−-N), total salt, and six types of environmentally relevant toxic and harmful heavy metals (As, Pb, Hg, Cd, Cr, Cu) from 9 sampling sites in April (spring), July (summer), and October (autumn) and January (winter) 2018. The results showed that content of OM and nutrient salts in sediments were larger in locations with substantial human activity (Lake Center, Bird Island, and Bridge #2) than that of other regions, revealing that human activities impacted the spatial distribution of nutritional salts. Summer had the highest levels of total salt, whereas winter had the lowest levels. The OM, TN, and TP levels were highest in summer but lowest in spring, whereas the NO3−-N values were highest in fall but lowest in winter. As, Pb, Hg, Cd, Cr and Cu in the sediments of Ningxia Sand Lake ranged from 8.83—13.55 mg·kg−1, 16.61—21.71 mg·kg−1, 0.02—0.08 mg·kg−1, 0.02—0.46 mg·kg−1, 51.16—66.54 mg·kg−1, 14.67—24.42 mg·kg−1, among which Pb and Cd were above the background values. The single-factor pollution index of six heavy metals was all less than 1, and the ground accumulation (Igeo) index of six heavy metals was all less than 0, suggesting that the sediment quality was satisfactory. While the single-factor pollution index and Igeo index of Cr, As, and Pb were higher, and the geographical distribution was quite high for Holiday Inn, Lake Center, which required further attention in monitoring work. The potential ecological risk of heavy metals in the sediments of the study area was all medium, whereas some Hg and Cd sites showed strong and medium ecological risk. These results indicated that the ecological risk of heavy metals in sediments of Sand Lake was mainly caused by Hg and Cd, and the high ecological risk areas are mainly located in Holiday Inn, Lake Center. Correlation analysis and principal component analysis revealed that the pollution sources of Pb, Cd, Cr, Cu, OM, TN, and TP were similar, and the main sources were anthropogenic and natural sources. The anthropogenic and natural sources mainly contributed to the main sources of heavy metals in the sediments. This study will support the pollution status and potential ecological risk of heavy metals in semi-saline lakes and provide a scientific basis for water pollution control.
-
Key words:
- Ningxia Sand Lake /
- sediments /
- nutrients /
- heavy metal /
- risk evaluation
-
图 1 宁夏沙湖采样点分布[20]
Figure 1. Locations of sampling sites in Sand Lake of Ningxia
Table 1. Soil background value and toxicity coefficient of heavy metal elements
项目
ItemsAs Pb Hg Cd Cr Cu 背景值/(mg·kg−1)
Background value11.40 27.10 0.04 0.35 58.10 22.70 毒性系数
Toxic coefficient10 5 40 30 2 5 表 2 沉积物重金属潜在生态风险程度评价标准
Table 2. Potential ecological risk assessment indicators and classification in sediment
风险指数
Risk index轻微
Slight中等
Medium强
Strong很强
Very strong极强
Pole-strength危害系数(Er) Er﹤40 40 ≤ Er﹤80 80 ≤ Er ﹤160 160 ≤ Er﹤320 Er ≥ 320 生态风险指数(RI) RI﹤150 150 ≤ RI﹤300 300 ≤ RI﹤600 600 ≤ RI﹤1200 RI ≥1200 表 3 宁夏沙湖沉积物重金属含量特征
Table 3. Characteristics of the amount of heavymetals in Ningxia Sand Lake
采样点
Site指标
IndexAs Pb Hg Cd Cr Cu S1 平均值 /(mg·kg−1) 8.83 18.32 0.08a 0.02 63.74ab 22.21abc 标准差 /(mg·kg−1) 4.07 4.14 0.01 0.01 1.34 3.11 变异系数/% 46.15 22.59 16.01 35.73 2.10 14.00 S2 平均值 /(mg·kg−1) 10.38 20.46 0.03ab 0.41 60.39ab 20.42abc 标准差 /(mg·kg−1) 2.52 3.15 0.02 0.36 2.72 2.42 变异系数 /% 24.29 15.40 66.67 86.15 4.50 11.85 S3 平均值 /(mg·kg−1) 12.65 21.71 0.02b 0.27 66.54a 24.42a 标准差 /(mg·kg−1) 1.52 1.91 0.01 0.16 3.09 4.97 变异系数 /% 11.98 8.82 38.78 55.03 4.64 20.36 S4 平均值 /(mg·kg−1) 13.55 16.61 0.02b 0.45 54.92cd 17.66abc 标准差 /(mg·kg−1) 1.38 2.38 0.01 0.33 4.73 2.99 变异系数 /% 10.17 14.30 59.98 72.83 8.61 16.93 S5 平均值 /(mg·kg−1) 9.81 17.17 0.06ab 0.42 59.06bc 14.67c 标准差 /(mg·kg−1) 3.15 2.87 0.03 0.16 3.30 1.98 变异系数/% 32.07 16.74 47.76 37.76 5.58 13.47 S6 平均值 /(mg·kg−1) 12.20 17.57 0.02ab 0.46a 64.22ab 15.13c 标准差 /(mg·kg−1) 2.91 6.07 0.01 0.18 3.68 1.21 变异系数 /% 23.84 34.52 47.94 17.67 5.73 8.00 S7 平均值 /(mg·kg−1) 11.52 16.92 0.07b 0.19 60.70ab 17.44abc 标准差 /(mg·kg−1) 2.03 6.73 0.04 0.16 2.86 1.79 变异系数/% 17.65 39.77 54.82 85.22 4.72 10.25 S8 平均值 /(mg·kg−1) 10.14 20.88 0.07ab 0.45 63.09ab 23.10ab 标准差 /(mg·kg−1) 2.61 3.28 0.04 0.30 5.40 3.32 变异系数 /% 25.78 15.72 54.82 66.18 8.56 14.38 S9 平均值 /(mg·kg−1) 10.61 19.55 0.04ab 0.11 51.16d 16.70bc 标准差 /(mg·kg−1) 3.74 4.71 0.03 0.078 1.77 4.48 变异系数 /% 35.19 24.08 81.86 68.47 3.46 26.84 中国土壤元素背景值[32] 9.7 7.9 0.065 0.103 66.6 24.1 宁夏省潮土土壤重金属背景值[33] 12.5 11.4 0.032 0.105 61.2 18.7 GB15618-2018 1 20 240 1.0 0.8 350 100 宁夏沙湖沉积物重金属平均值[23] 11.4 27.1 0.04 0.35 58.1 22.7 注:同列平均数后的小写字母不同表示同一种重金属元素在采样点之间存在显著差异(P < 0.05).
Different lowercase letters after the mean in the same column indicate significant differences between sampling sites for the same heavy metal element (P < 0.05).
1表示《土壤环境质量标准 农用地土壤污染风险管控标准》(GB15618-2018),pH >7.5,田地性质为其他.
Indicates Soil Environmental Quality Standard Soil Contamination Risk Control Standard for Agricultural Land (GB15618-2018), pH > 7.5, and the field nature is other.表 4 宁夏沙湖沉积物重金属含量季节变化特征
Table 4. Seasonal variation characteristics of heavy metal content in sediment of Sand Lake in Ningxia
季节
Season指标
IndexAs Pb Hg Cd Cr Cu 春季
Spring最大值 14.60 24.48 0.07 0.64 63.20 20.40 最小值 7.66 11.30 0.01 0.02 49.00 11.90 平均值 /(mg·kg−1) 12.10 18.0 0.03 0.30 57.80 16.00 标准差 /(mg·kg−1) 2.60 3.80 0.0 0.20 5.50 3.10 变异系数 /% 20% 20% 60% 80% 10% 20% 夏季
Summer最大值 14.01 24.48 0.08 0.94 68.29 29.1 最小值 4.14 14.69 0.01 0.03 50.30 15.80 平均值 /(mg·kg−1) 10.78 20.29 0.05 0.50 62.68 21.43 标准差 /(mg·kg−1) 3.20 3.60 0.0 0.30 5.50 4.80 变异系数 /% 30% 20% 60% 60% 10% 20% 秋季
Autumn最大值 13.61 25.39 0.09 0.77 70.10 28.4 最小值 7.19 13.96 0.01 0.02 62.07 15.20 平均值 /(mg·kg−1) 10.90 20.10 0.04 0.30 62.60 21.50 标准差 /(mg·kg−1) 2.90 2.90 3.80 0.0 0.20 4.70 变异系数 /% 30% 20% 70% 70% 10% 20% 冬季
Winter最大值 13.73 22.88 0.09 0.34 65.9 20.8 最小值 5.80 11.23 0.01 0.01 51.96 14.6 平均值 /(mg·kg−1) 10.58 16.82 0.04 0.15 58.60 17.39 标准差 /(mg·kg−1) 3.00 3.00 4.90 0.0 0.10 4.40 变异系数 /% 30% 30% 80% 90% 10% 20% 表 5 宁夏沙湖重金属单因子污染指数
Table 5. Single-factor standard index for heavy metals in Ningxia Sand Lake
采样点
SiteAs Pb Hg Cd Cr Cu S1 0.57 0.68 0.32 0.04 0.96 0.74 S2 0.67 0.82 0.11 0.83 0.91 0.68 S3 0.82 0.80 0.27 0.57 0.98 0.83 S4 0.87 0.61 0.29 0.98 0.81 0.60 S5 0.63 0.63 0.75 0.85 0.87 0.50 S6 0.79 0.65 0.42 0.92 0.94 0.51 S7 0.74 0.62 0.25 0.38 0.89 0.59 S8 0.65 0.77 0.86 0.91 0.93 0.79 S9 0.93 0.72 0.81 0.32 0.88 0.74 平均值 0.71 0.70 0.42 0.65 0.89 0.64 表 6 宁夏沙湖沉积物重金属潜在生态风险指数值及污染等级
Table 6. Potential ecological risk index values and pollution levels of heavy metals in sediment of Ningxia Sand Lake
采样点
SiteEr RI 危害程度
Hazard levelAs Pb Hg Cd Cr Cu S1 22.77 13.52 159.38 5.07 7.48 15.11 223.32 中等 S2 26.78 15.10 56.93 99.16 7.08 27.78 232.84 中等 S3 32.64 16.03 45.83 68.66 7.81 16.61 187.58 中等 S4 34.96 12.26 46.92 108.12 6.44 12.01 220.72 中等 S5 25.32 12.67 120.36 101.98 6.93 9.98 277.24 中等 S6 31.49 12.97 66.77 109.87 7.53 10.30 238.93 中等 S7 29.74 12.49 39.24 45.71 7.12 11.863 146.17 轻微 S8 26.17 15.41 137.83 108.93 7.40 15.71 311.45 强 S9 27.39 14.43 80.56 27.29 6.00 11.36 167.04 中等 平均值 28.58 13.88 83.76 74.98 7.09 14.52 222.81 中等 贡献率/% 12.83 6.23 37.59 33.65 3.18 6.52 表 7 宁夏沙湖沉积物重金属主成分载荷分布
Table 7. Principal component load distribution of heavy metals of Ningxia Sand Lake
元素
Elements因子载荷
Factor loadings因子1 Factor 1 因子2 Factor 2 因子3 Factor 3 As 0.0468 0.7579 0.3455 Pb 0.5755 0.0071 0.4928 Hg 0.1248 −0.6738 −0.1809 Cd 0.4328 −0.0163 0.3106 Cr 0.7798 −0.2011 0.0990 Cu 0.5531 −0.5078 0.3273 OM 0.7060 0.3543 −0.0946 TN 0.7545 −0.0064 −0.3676 TP 0.7959 0.1970 −0.0640 NO3−−N 0.3967 0.2198 −0.6927 特征值 3.3088 1.5396 1.2371 贡献率/% 33.0881 15.3964 12.3712 累计贡献率/% 33.0881 48.4844 60.85559 -
[1] ZHANG A G, WANG L L, ZHAO S L, et al. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks [J]. Regional Studies in Marine Science, 2017, 11: 32-42. doi: 10.1016/j.rsma.2017.02.002 [2] VARDHAN K H, KUMAR P S, PANDA R C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives [J]. Journal of Molecular Liquids, 2019, 290: 111197. doi: 10.1016/j.molliq.2019.111197 [3] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability [J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161 [4] MANIRETHAN V, RAVAL K, RAJAN R, et al. Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source: Pseudomonas stutzeri [J]. Journal of Environmental Management, 2018, 214: 315-324. [5] XIANG M T, LI Y, YANG J Y, et al. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops [J]. Environmental Pollution, 2021, 278: 116911. doi: 10.1016/j.envpol.2021.116911 [6] MARIYANTO M, AMIR M F, UTAMA W, et al. Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia [J]. Science of the Total Environment, 2019, 675: 632-641. doi: 10.1016/j.scitotenv.2019.04.244 [7] LI X C, BING J P, ZHANG J H, et al. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system [J]. Science of the Total Environment, 2022, 842: 156683. doi: 10.1016/j.scitotenv.2022.156683 [8] LIU R, JIANG W W, LI F J, et al. Occurrence, partition, and risk of seven heavy metals in sediments, seawater, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China [J]. Journal of Environmental Management, 2021, 279: 111771. doi: 10.1016/j.jenvman.2020.111771 [9] LIU Q, YANG P P, HU Z, et al. Identification of the sources and influencing factors of the spatial variation of heavy metals in surface sediments along the northern Jiangsu coast [J]. Ecological Indicators, 2022, 137: 108716. doi: 10.1016/j.ecolind.2022.108716 [10] PAUL V, SANKAR M S, VATTIKUTI S, et al. Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA [J]. Chemosphere, 2021, 263: 128243. doi: 10.1016/j.chemosphere.2020.128243 [11] FANG X H, PENG B, WANG X, et al. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan Province, China [J]. Science of the Total Environment, 2019, 689: 557-570. doi: 10.1016/j.scitotenv.2019.06.330 [12] ZHANG P Y, QIN C Z, HONG X, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China [J]. Science of the Total Environment, 2018, 633: 1136-1147. doi: 10.1016/j.scitotenv.2018.03.228 [13] HORPPILA J. Sediment nutrients, ecological status and restoration of lakes [J]. Water Research, 2019, 160: 206-208. doi: 10.1016/j.watres.2019.05.074 [14] ZHAO H C, ZHAO H X, WANG S R, et al. Coupling characteristics and environmental significance of nitrogen, phosphorus and organic carbon in the sediments of Erhai Lake [J]. Environmental Science and Pollution Research, 2020, 27(16): 19901-19914. doi: 10.1007/s11356-020-08120-9 [15] LIANG G N, ZHANG B, LIN M, et al. Evaluation of heavy metal mobilization in creek sediment: Influence of RAC values and ambient environmental factors [J]. Science of the Total Environment, 2017, 607/608: 1339-1347. doi: 10.1016/j.scitotenv.2017.06.238 [16] HAN Q, TONG R Z, SUN W C, et al. Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade [J]. Science of the Total Environment, 2020, 701: 134929. doi: 10.1016/j.scitotenv.2019.134929 [17] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. WANG S M, DOU H S. China Lakes Journal[M]. Beijing: Science Press, 1998 (in Chinese).
[18] LI W Q, QIAN H, XU P P, et al. Distribution characteristics, source identification and risk assessment of heavy metals in surface sediments of the Yellow River, China [J]. Catena, 2022, 216: 106376. doi: 10.1016/j.catena.2022.106376 [19] REN J, HAO J X, TAO L. Concentrations, spatial distribution, and pollution assessment of heavy metals in surficial sediments from upstream of Yellow River, China [J]. Environmental Science and Pollution Research, 2021, 28(3): 2904-2913. doi: 10.1007/s11356-020-10349-3 [20] 王燕, 刘彦斌, 赵红雪, 等. 宁夏沙湖水质评价及水污染特征 [J]. 湿地科学, 2020, 18(3): 362-367. doi: 10.13248/j.cnki.wetlandsci.2020.03.014 WANG Y, LIU Y B, ZHAO H X, et al. Water quality assessment and characteristics of water pollution of sand lake in Ningxia [J]. Wetland Science, 2020, 18(3): 362-367(in Chinese). doi: 10.13248/j.cnki.wetlandsci.2020.03.014
[21] 璩向宁, 曹园园, 刘文辉, 等. 宁夏沙湖主湖区水环境变化特征 [J]. 湿地科学, 2017, 15(2): 200-206. doi: 10.13248/j.cnki.wetlandsci.2017.02.006 QU X N, CAO Y Y, LIU W H, et al. Change characteristics of water environment of main lake area of Shahu lake in Ningxia [J]. Wetland Science, 2017, 15(2): 200-206(in Chinese). doi: 10.13248/j.cnki.wetlandsci.2017.02.006
[22] 翟昊, 刘曼红, 明霄阳, 等. 宁夏沙湖生态修复前后浮游植物群落结构变化与水质评价 [J]. 东北林业大学学报, 2021, 49(8): 84-89. doi: 10.3969/j.issn.1000-5382.2021.08.016 ZHAI H, LIU M H, MING X Y, et al. Variation of phytoplankton community structure before and after ecological restoration and water quality assessment in Shahu Lake, Ningxia [J]. Journal of Northeast Forestry University, 2021, 49(8): 84-89(in Chinese). doi: 10.3969/j.issn.1000-5382.2021.08.016
[23] 王春霞, 王英超. 沙湖沉积物中重金属污染的分布特征及生态安全评价[J]. 中国人口·资源与环境, 2017, 27(S2): 115-118. WANG C X, WANG Y C. Distribution characteristics of heavy metal pollution and evaluation of ecological risk in the sediments of Shahu Lake[J]. China Population, Resources and Environment, 2017, 27(Sup 2): 115-118(in Chinese).
[24] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. BAO S D. Soil agrochemical analysis[M]. Beijing: China Agricultural Press, 2000(in Chinese).
[25] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算 [J]. 环境科学与技术, 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030 XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index [J]. Environmental Science & Technology, 2008, 31(2): 112-115(in Chinese). doi: 10.3969/j.issn.1003-6504.2008.02.030
[26] MULLER G. Index of geoaccumulation in sediments of the Rhine River [J]. GeoJournal, 1969, 2: 108-118. [27] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [28] 刘永九, 黄素珍, 张璐, 等. 洪湖国际重要湿地沉积物磷空间分布特征及释放风险 [J]. 环境科学, 2021, 42(7): 3198-3205. doi: 10.13227/j.hjkx.202009090 LIU Y J, HUANG S Z, ZHANG L, et al. Spatial distribution characteristics of Phosphorus fractions and release risk in sediments of Honghu international importance wetland [J]. Environmental Science, 2021, 42(7): 3198-3205(in Chinese). doi: 10.13227/j.hjkx.202009090
[29] 王书锦, 刘云根, 张超, 等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价 [J]. 湖泊科学, 2017, 29(1): 69-77. doi: 10.18307/2017.0108 WANG S J, LIU Y G, ZHANG C, et al. Distribution and pollution risk assessment of nitrogen, phosphorus and organic matter in inlet rivers of Erhai Basin [J]. Journal of Lake Sciences, 2017, 29(1): 69-77(in Chinese). doi: 10.18307/2017.0108
[30] 卞培旺, 陈法锦, 张叶春, 等. 海底表层沉积物腐蚀性环境特征与评估: 以三亚湾为例 [J]. 海洋环境科学, 2020, 39(4): 563-569. doi: 10.12111/j.mes.20190010 BIAN P W, CHEN F J, ZHANG Y C, et al. Characteristics and evaluation of corrosive environment of surface sediments: A case study of the Sanya Bay [J]. Marine Environmental Science, 2020, 39(4): 563-569(in Chinese). doi: 10.12111/j.mes.20190010
[31] JI Z H, ZHANG Y, ZHANG H, et al. Fraction spatial distributions and ecological risk assessment of heavy metals in the sediments of Baiyangdian Lake [J]. Ecotoxicology and Environmental Safety, 2019, 174: 417-428. doi: 10.1016/j.ecoenv.2019.02.062 [32] 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[33] 朱嵬, 李志刚, 李健, 等. 宁夏黄河流域湖泊湿地底泥重金属污染特征及生态风险评价 [J]. 中国农学通报, 2013, 29(35): 281-288. ZHU W, LI Z G, LI J, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in the lake wetlands in the Yellow River valleys of Ningxia [J]. Chinese Agricultural Science Bulletin, 2013, 29(35): 281-288(in Chinese).
[34] BING H J, ZHOU J, WU Y H, et al. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China [J]. Environmental Pollution, 2016, 214: 485-496. doi: 10.1016/j.envpol.2016.04.062 [35] LIU M, CHEN J B, SUN X S, et al. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River Estuary to the East China Sea shelf [J]. Environmental Pollution, 2019, 245: 111-121. doi: 10.1016/j.envpol.2018.10.128 [36] 邓海, 王锐, 严明书, 等. 矿区周边农田土壤重金属污染风险评价 [J]. 环境化学, 2021, 40(4): 1127-1137. doi: 10.7524/j.issn.0254-6108.2020071601 DENG H, WANG R, YAN M S, et al. Risk assessment of heavy metal pollution in farmland soil around mining area [J]. Environmental Chemistry, 2021, 40(4): 1127-1137(in Chinese). doi: 10.7524/j.issn.0254-6108.2020071601
[37] BENSON N U, ADEDAPO A E, FRED-AHMADU O H, et al. New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea [J]. Regional Studies in Marine Science, 2018, 18: 44-56. doi: 10.1016/j.rsma.2018.01.004 [38] 王钦, 丁明玉, 张志洁, 等. 太湖不同湖区沉积物重金属含量季节变化及其影响因素 [J]. 生态环境, 2008, 17(4): 1362-1368. WANG Q, DING M Y, ZHANG Z J, et al. Seasonal varieties and influential factors of heavy metals in sediments of Taihu Lake [J]. Ecology and Environment, 2008, 17(4): 1362-1368(in Chinese).
[39] BERTIN C, BOURG A C M. Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities [J]. Water Research, 1995, 29(7): 1729-1736. doi: 10.1016/0043-1354(94)00327-4 [40] 尹宇莹, 彭高卓, 谢意南, 等. 洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析 [J]. 环境化学, 2021, 40(8): 2399-2409. doi: 10.7524/j.issn.0254-6108.2020042401 YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake [J]. Environmental Chemistry, 2021, 40(8): 2399-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042401
[41] 陈姗, 许凡, 谢三桃, 等. 合肥市十八联圩湿地表层沉积物营养盐与重金属分布及污染评价 [J]. 环境科学, 2019, 40(11): 4932-4943. doi: 10.13227/j.hjkx.201903184 CHEN S, XU F, XIE S T, et al. Distribution and pollution assessment of nutrients and heavy metals in surface sediments from shibalianwei wetland in Hefei, Anhui Province, China [J]. Environmental Science, 2019, 40(11): 4932-4943(in Chinese). doi: 10.13227/j.hjkx.201903184
[42] ZHANG J H, LI X C, GUO L Q, et al. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China [J]. Science of the Total Environment, 2021, 799: 149472. doi: 10.1016/j.scitotenv.2021.149472 [43] MIRANDA L S, WIJESIRI B, AYOKO G A, et al. Water-sediment interactions and mobility of heavy metals in aquatic environments [J]. Water Research, 2021, 202: 117386. doi: 10.1016/j.watres.2021.117386 [44] 许艳, 王秋璐, 曾容, 等. 渤海湾表层沉积物重金属污染状况及年际变化分析[J]. 中国环境科学, 2022, 42(9):4255-4263. XU Y, WANG Q L, ZENG R, et al. Pollution status and the annual variations of heavy metals in the surface sediments of the Bohai Bay [J]. China Environmental Science, 2022, 42(9): 4255-4263(in Chinese)
[45] MA L, XIAO T F, NING Z P, et al. Pollution and health risk assessment of toxic metal(loid)s in soils under different land use in sulphide mineralized areas [J]. Science of the Total Environment, 2020, 724: 138176. doi: 10.1016/j.scitotenv.2020.138176 [46] 历军, 赵伟强, 俞龙生, 等. 珠江三角洲某河流型饮用水源地的土壤重金属污染源解析和风险评价 [J]. 环境污染与防治, 2020, 42(12): 1511-1514, 1522. doi: 10.15985/j.cnki.1001-3865.2020.12.014 LI J, ZHAO W Q, YU L S, et al. Pollution source analysis and risk evaluation of heavy metals in soil of a river drinking water source in Pearl River Delta [J]. Environmental Pollution & Control, 2020, 42(12): 1511-1514, 1522(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.12.014
[47] 杜彩丽, 黎佳茜, 李国文, 等. 乌梁素海表层沉积物中营养盐和重金属分布特征以及风险评价[J]. 环境科学,2022,43(12): 5598-5607. DU C L, LI J Q, LI G W, et al. Distribution characteristics of nutrients and heavy metals in surface sediments of the Wuliang Su Sea and risk assessment[J]. Environmental Science,2022,43(12): 5598-5607 (in Chinese).
[48] 江涛, 林伟稳, 曹英杰, 等. 梅江流域清凉山水库沉积物重金属污染、生态风险评价及来源解析 [J]. 环境科学, 2020, 41(12): 5410-5418. doi: 10.13227/j.hjkx.202003018 JIANG T, LIN W W, CAO Y J, et al. Pollution and ecological risk assessment and source apportionment of heavy metals in sediments of Qingliangshan Reservoir in the Meijiang Basin [J]. Environmental Science, 2020, 41(12): 5410-5418(in Chinese). doi: 10.13227/j.hjkx.202003018