-
在国务院“水十条”对矿井水的最新定位下,煤炭开采形成的矿井水资源保护与综合利用成为实现我国煤炭工业绿色发展和生态文明建设中的重大关键问题[1]. 据统计我国吨煤开采产生矿井水为1.87 m3,矿井水产出量为每年6.88×109 m3,平均利用率约为35%[2-3],主要原因是矿井水水质差,导致不能直接利用,需要进行不同程度的预处理或深度处理,而高额的处理成本限制了综合利用[4-7].
近年来,国内外学者在地下水、地表水的水化学特征方面取得了一系列成果[8-12], 如探讨了神东矿区的高氟矿井水分布特征及形成机制[13];研究了辛置井田地下水的水化学特征和水-岩作用机理[14];系统分析了伊敏矿区地下水的水化学特征与其控制因素[15];对郭家湾煤矿井田内不同区域水化学特征进行差异性分析和水质综合评价[16];研究了高铁锰矿井水的水化学特征与其净化机制[17]. 研究主要侧重矿区水文地球化学特征及形成机制,而对干旱区矿井水综合利用于农田灌溉的相关评价相对较少.
我国西部煤炭资源丰富,占全国总量的70%以上,水资源匮乏,生态环境脆弱[18-20]. 在国家“以水定产,以环境承载力定产”煤炭工业发展理念下,矿井水综合利用成为西部矿区高质量快速发展的卡脖子问题. 因此,在地处干旱半干旱区的煤矿矿井水综合利用相关研究显得尤为重要. 新上海一号煤矿地处毛乌素沙漠边缘,属半干旱半沙漠大陆性气候,干旱少雨[21]. 矿井水若能有效的综合利用于农田灌溉,可有效降低矿井水综合利用成本,实现社会-经济-环境的高质量协同发展.
本研究拟对以新上海一号井田为例,针对各含水层矿井水形成作用进行研究,并对各含水层矿井水的灌溉适宜性进行评价,可为干旱半干旱区矿井水综合利用工作提供依据.
煤矿矿井水水化学形成作用与灌溉适宜性评价
Hydrogeochemical processes and irrigation applicability of mine water in coal mine
-
摘要: 矿井水的综合利用方式取决于其水化学特征. 以地处我国典型干旱区的新上海一号井田为研究区,从不同含水层采集55组矿井水样品分析其水化学形成作用,采用电导率(EC)、钠吸附比(SAR)、钠百分含量(SC)的3个指标对不同含水层的矿井水进行了灌溉适宜性评价. 结果表明,各含水层矿井水均呈碱性,总矿化度(TDS)普遍较高. 新生界含水层水化学类型较为多样,由白垩系至三叠系含水层水化学类型由SO4·Cl-Na逐渐过渡为Cl·SO4-Na. 矿井水TDS的主要来源为K++Na+、SO42−和Cl−. 矿井水的化学组分主要受蒸发浓缩影响. 各含水层矿井水均存在不同程度的阳离子交替吸附和脱硫酸作用,由新生界至三叠系含水层,随着阳离子交替吸附作用加强,Ca2+、Mg2+含量不断下降. 研究区内新生界和白垩系含水层的矿井水基本适宜农田灌溉,而直罗组、宝塔山和三叠系含水层的矿井水不适宜直接用于农田灌溉,提出矿井水“分层分质综合利用方法”.Abstract: Comprehensive utilization of mine water depends on its hydrochemical characteristics. The Xinshanghai No.1 coal field, located in typical arid area of China, was employed as the research area. 55 groups of mine water samples in different aquifers were collected and the hydrogeochemical processes of these samples were investigated. Three factors including electrical conductivity (EC), sodium adsorption ratio (SAR) and sodium concentration (SC) were applied to evaluate the irrigation suitability of mine water in each aquifer. The results showed that the mine water was alkaline and total dissolved solids (TDS) was generally high in all aquifers. The hydrochemical types in Cenozoic aquifer were diverse. the mine water chemical types in Cretaceous aquifer were SO4·Cl-Na, which gradually became to Cl·SO4-Na in Triassic aquifer. The main TDS sources of mine water were K+, Na+, SO42−, and Cl−. The chemical composition of mine water was mainly affected by evaporation and concentration. Ex-change adsorption of anions and desulphurization existed in all aquifers with varying degree. From Cenozoic to Triassic aquifer, the contents of Ca2+ and Mg2+ decreased with the enhancement of ex-change adsorption. The mine water in Cenozoic and Cretaceous aquifers were basically suitable for farmland irrigation, while the mine water in Zhiluo、Baotashan and Triassic aquifers were not suitable for farmland irrigation. Therefore, a “stratified and qualitative method” was proposed for comprehensive utilization of mine water.
-
表 1 研究区采样点信息表
Table 1. The mine water sampling points of the study area
采样时间
Sampling time采样含水层
Sampling aquifer采样钻孔编号
Sampling borehole number样品组数
Number of samples2006 新生界 W1、W3、W7、W11、W17、W21、W22、W25、W28、W32 10 白垩系 1604、1202 2 煤系间 2403(上段)、1602(上段)、1202、2403(下段)、1602(下段) 5 2012 白垩系 Z1、Z8 2 直罗组 Z1、Z2、Z3、Z8、Z10 5 煤系间 Z4、Z5、Z6、Z7、Z12、Z13、Z14、Z16 8 2016 白垩系 B3、B5、B9 3 直罗组 B10 1 煤系间 B1、B13、B35、B38 4 宝塔山 B2、B4、B6、B7、B8、B12、B14、 7 三叠系 B36 1 2019 宝塔山 B15、B37、B44、B45、B47 5 三叠系 B39、B46 2 合计 55 表 2 TDS与各离子之间的相关系数矩阵
Table 2. Correlation coefficient matrix among TDS and ions
项目
ItemK++Na+ Ca2+ Mg2+ Cl− SO42− HCO3− CO32− pH TDS K++Na+ 1.000 Ca2+ 0.481 1.000 Mg2+ 0.353 0.178 1.000 Cl− 0.778** 0.433 0.555* 1.000 SO42− 0.820** 0.322 0.433 0.526* 1.000 HCO3− 0.292 −0.080 0.075 0.331 0.082 1.000 CO32− 0.246 0.619 −0.083 0.073 −0.146 0.070 1.000 pH −0.184 −0.057 −0.177 −0.207 −0.261 −0.187 0.078 1.000 TDS 0.973** 0.580* 0.389 0.757** 0.868** 0.174 0.213 −0.216 1.000 *表示在置信度0.05时相关性显著;**表示在置信度0.01时相关性显著. 表 3 基于Gibbs图的水化学组成形成作用判别方法[26]
Table 3. Determination method of formation of water chemical composition based on Gibbs diagram[26]
判别指标
Discriminative index判别依据
Discrimination on the basis of阴离子质量浓度比值Cl−/(Cl−+HCO3−) 0.5—1 <0.5 0.5—1 阳离子质量浓度比值Na+/(Na++Ca2+) 0.5—1 <0.5 0.5—1 TDS 较高(>1000) 中等(75—1000) 较低(<75) 主要形成作用 蒸发浓缩作用 岩石风化作用 大气降水作用 表 4 各含水层之间水力联系程度
Table 4. Hydraulic connection between each aquifer
含水层
AquiferCl−平均浓度/(mg·L−1)
Mean concentration of Cl−水力联系度K
Degree of hydraulic connection K水力联系程度
Degree of hydraulic connection新生界 275.76 — — 白垩系 351.36 0.06(与新生界) 强 直罗组 564.66 0.12(与白垩系) 强 煤系间 517.10 0.02(与直罗组) 强 宝塔山 902.28 0.14(与煤系间) 强 三叠系 801.18 0.03(与宝塔山) 强 参数
Parameter分级标准
Classification standard参数
Parameter分级标准
Classification standard参数Parameter 分级标准
Classification standardEC/(μs·cm−1) <250 适宜(C1) SAR/(mmol·L−1)1/2 <10 非常适宜(S1) SC/% <20 非常适宜 250—750 允许的(C2) 10—18 适宜(S2) 20—40 适宜 750—2250 不确定(C3) 18—26 允许的(S3) 40—60 允许的 >2250 不适宜(C4) >26 不适宜(S4) 60—80 不确定 >80 不适宜 注:C代表盐化级别,S代表碱化级别,1、2、3、4分别代表低、中、高、极高四个等级. -
[1] 顾大钊, 李井峰, 曹志国, 等. 我国煤矿矿井水保护利用发展战略与工程科技 [J]. 煤炭学报, 2021, 46(10): 3079-3089. GU D Z, LI J F, CAO Z G, et al. Technology and engineering development strategy of water protection and utilization of coal mine in China [J]. Journal of China Coal Society, 2021, 46(10): 3079-3089(in Chinese).
[2] 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展 [J]. 煤炭科学技术, 2016, 44(1): 1-7. GU D Z, ZHANG Y, CAO Z G. Technical progress of water resource protection and utilization by coal mining in China [J]. Coal Science and Technology, 2016, 44(1): 1-7(in Chinese).
[3] 顾大钊, 李庭, 李井峰, 等. 我国煤矿矿井水处理技术现状与展望 [J]. 煤炭科学技术, 2021, 49(1): 11-18. GU D Z, LI T, LI J F, et al. Current status and prospects of coal mine water treatment technology in China [J]. Coal Science and Technology, 2021, 49(1): 11-18(in Chinese).
[4] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展 [J]. 煤炭学报, 2020, 45(1): 304-316. SUN Y J, CHEN G, XU Z M, et al. Research progress of water environment, treatment and utilization in coal mining areas of China [J]. Journal of China Coal Society, 2020, 45(1): 304-316(in Chinese).
[5] 孙亚军, 徐智敏, 李鑫, 等. 我国煤矿区矿井水污染问题及防控技术体系构建 [J]. 煤田地质与勘探, 2021, 49(5): 1-16. SUN Y J, XU Z M, LI X, et al. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system [J]. Coal Geology & Exploration, 2021, 49(5): 1-16(in Chinese).
[6] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践 [J]. 煤炭学报, 2017, 42(1): 56-65. SUN Y J, ZHANG M F, GAO S, et al. Water-preserved mining technology and practice in typical high intensity mining area of China [J]. Journal of China Coal Society, 2017, 42(1): 56-65(in Chinese).
[7] 孙亚军, 张莉, 徐智敏, 等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展 [J]. 煤炭学报, 2022, 47(1): 423-437. SUN Y J, ZHANG L, XU Z M, et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution [J]. Journal of China Coal Society, 2022, 47(1): 423-437(in Chinese).
[8] 王建, 韩海东, 许君利, 等. 塔里木河流域出山径流水化学特征研究 [J]. 中国环境科学, 2021, 41(4): 1576-1587. WANG J, HAN H D, XU J L, et al. Hydrochemical characteristics of the mountain runoff in Tarim River Basin, China [J]. China Environmental Science, 2021, 41(4): 1576-1587(in Chinese).
[9] 罗珍, 仁增拉姆, 陈虎林, 等. 西藏巴松措冷季水化学特征及其影响因素 [J]. 中国环境科学, 2021, 41(9): 4263-4270. LUO Z, REN Z, CHEN H L, et al. Hydrochemical characteristics and its controlling factors of Basong Lake in cold season in Tibet [J]. China Environmental Science, 2021, 41(9): 4263-4270(in Chinese).
[10] 刘鑫, 向伟, 马小军, 等. 黄土高原中部浅层地下水化学特征及影响因素 [J]. 中国环境科学, 2021, 41(11): 5201-5209. LIU X, XIANG W, MA X J, et al. Hydrochemical characteristics and controlling factors of shallow groundwater in the Chinese Loess Plateau [J]. China Environmental Science, 2021, 41(11): 5201-5209(in Chinese).
[11] 刘敏, 赵良元, 李青云, 等. 长江源区主要河流水化学特征、主要离子来源 [J]. 中国环境科学, 2021, 41(3): 1243-1254. LIU M, ZHAO L Y, LI Q Y, et al. Hydrochemical characteristics, main ion sources of main rivers in the source region of Yangtze River [J]. China Environmental Science, 2021, 41(3): 1243-1254(in Chinese).
[12] 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制 [J]. 煤炭学报, 2021, 46(6): 1966-1977. HAO C M, ZHANG W, HE R M, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district [J]. Journal of China Coal Society, 2021, 46(6): 1966-1977(in Chinese).
[13] 赵峰华, 郭元, 孙红福, 等. 辛置煤矿主要含水层的自由排水柱淋滤实验与水岩作用机理 [J]. 煤炭学报, 2019, 44(4): 1207-1215. ZHAO F H, GUO Y, SUN H F, et al. Free draining column leaching experiment and mechanism of water-rock interaction in main aquifer of Xinzhi coal mine [J]. Journal of China Coal Society, 2019, 44(4): 1207-1215(in Chinese).
[14] WANG T T, JIN D W, YANG J, et al. Assessing mine water quality using a hierarchy fuzzy variable sets method: A case study in the Guojiawan mining area, Shaanxi Province, China [J]. Environmental Earth Sciences, 2019, 78(8): 264. doi: 10.1007/s12665-019-8216-1 [15] 王甜甜, 张雁, 赵伟, 等. 伊敏矿区地下水水化学特征及其形成作用分析 [J]. 环境化学, 2021, 40(5): 1480-1489. WANG T T, ZHANG Y, ZHAO W, et al. Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area [J]. Environmental Chemistry, 2021, 40(5): 1480-1489(in Chinese).
[16] 李福勤, 杨静, 何绪文, 等. 高铁高锰矿井水水质特征及其净化机制 [J]. 煤炭学报, 2006, 31(6): 727-730. LI F Q, YANG J, HE X W, et al. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese [J]. Journal of China Coal Society, 2006, 31(6): 727-730(in Chinese).
[17] 王双明, 段中会, 马丽, 等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势 [J]. 煤炭科学技术, 2019, 47(2): 1-6. WANG S M, DUAN Z H, MA L, et al. Research status and future trends of geological assurance technology for coal green development in Western China [J]. Coal Science and Technology, 2019, 47(2): 1-6(in Chinese).
[18] 姚峰, 古丽·加帕尔, 包安明, 等. 基于遥感技术的干旱荒漠区露天煤矿植被群落受损评估 [J]. 中国环境科学, 2013, 33(4): 707-713. YAO F, GULI·J, BAO A M, et al. Damage assessment of the vegetable types based on remote sensing in the open coalmine of arid desert area [J]. China Environmental Science, 2013, 33(4): 707-713(in Chinese).
[19] 马超, 田淑静, 邹友峰, 等. 神东矿区AVHRR/NDVI的时空、开采强度和气候效应 [J]. 中国环境科学, 2016, 36(9): 2749-2756. MA C, TIAN S J, ZOU Y F, et al. Dynamic responses of the coalfield ecosystem to mining intensity, spatio-temporal variation, and climate change derived from AVHRR/NDVI in Shendong coalfield [J]. China Environmental Science, 2016, 36(9): 2749-2756(in Chinese).
[20] 赵河聚, 成龙, 贾晓红, 等. 高寒沙区生物土壤结皮覆盖土壤碳释放动态 [J]. 生态学报, 2020, 40(18): 6396-6404. ZHAO H J, CHENG L, JIA X H, et al. The dynamics of soil carbon release covered with biological soil crusts in Alpine sand area [J]. Acta Ecologica Sinica, 2020, 40(18): 6396-6404(in Chinese).
[21] 张泽源. 新上海一号煤矿宝塔山砂岩含水层地下水疏降优化研究[D]. 北京: 煤炭科学研究总院, 2021. ZHANG Z Y. Study on Groundwater Drainage Technology of Baotashan Sandstone Aquifer in New Shanghai No. 1 Coal Mine[J]. Beijing: China Coal Reasearch Institute, 2021.
[22] 吕玉广, 肖庆华, 程久龙. 弱富水软岩水-沙混合型突水机制与防治技术: 以上海庙矿区为例 [J]. 煤炭学报, 2019, 44(10): 3154-3163. LÜ Y G, XIAO Q H, CHENG J L. Mechanism and prevention of water-sand inrush in soft rock with weakly abundant water: A case study in Shanghai temple mining area [J]. Journal of China Coal Society, 2019, 44(10): 3154-3163(in Chinese).
[23] HAN G L, LIU C Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining Karst-dominated terrain, Guizhou Province, China [J]. Chemical Geology, 2004, 204(1/2): 1-21. [24] 杨婷婷, 许光泉, 余世滔, 等. 煤层下部太原组岩溶水化学组分特征及其成因分析 [J]. 水文地质工程地质, 2019, 46(2): 100-108. YANG T T, XU G Q, YU S T, et al. An analysis of the chemical composition characteristics and formation of the Karst groundwater in the Taiyuan Group in the lower part of a coal seam [J]. Hydrogeology & Engineering Geology, 2019, 46(2): 100-108(in Chinese).
[25] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [26] GIBBS R J. Water chemistry of the Amazon River [J]. Geochimica et Cosmochimica Acta, 1972, 36(9): 1061-1066. doi: 10.1016/0016-7037(72)90021-X [27] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析 [J]. 环境科学, 2018, 39(12): 5428-5439. LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvialproluvial fan of Qinhe River [J]. Environmental Science, 2018, 39(12): 5428-5439(in Chinese).
[28] SCHOELLER H. Qualitative evaluation of groundwater resources: methods and techniques of groundwater investigation and development [J]. Water Research, 1965, 33: 5483-5516. [29] 李书鉴, 韩晓, 王文辉, 等. 无定河流域地表水地下水的水化学特征及控制因素 [J]. 环境科学, 2022, 43(1): 220-229. LI S J, HAN X, WANG W H, et al. Hydrochemical characteristics and controlling factors of surface water and groundwater in Wuding River Basin [J]. Environmental Science, 2022, 43(1): 220-229(in Chinese).
[30] 郑涛, 焦团理, 胡波, 等. 涡河流域中部地区地下水化学特征及其成因分析 [J]. 环境科学, 2021, 42(2): 766-775. ZHENG T, JIAO T L, HU B, et al. Hydrochemical characteristics and origin of groundwater in the central guohe river basin [J]. Environmental Science, 2021, 42(2): 766-775(in Chinese).
[31] 陈陆望, 许冬清, 殷晓曦, 等. 华北隐伏型煤矿区地下水化学及其控制因素分析: 以宿县矿区主要突水含水层为例 [J]. 煤炭学报, 2017, 42(4): 996-1004. CHEN L W, XU D Q, YIN X X, et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area [J]. Journal of China Coal Society, 2017, 42(4): 996-1004(in Chinese).
[32] 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化 [J]. 中国地质, 2018, 45(6): 1128-1141. SUN H Y, MAO Q G, WEI X F, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami Basin [J]. Geology in China, 2018, 45(6): 1128-1141(in Chinese).
[33] XING L N, GUO H M, ZHAN Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain [J]. Journal of Asian Earth Sciences, 2013, 70/71: 250-264. doi: 10.1016/j.jseaes.2013.03.017 [34] ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China [J]. Applied Geochemistry, 2011, 26(8): 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018 [35] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30. [36] 赵宝峰, 吕玉广. 新上海一号井田水文地球化学特征及控制因素 [J]. 干旱区资源与环境, 2022, 36(3): 92-98. ZHAO B F, LV Y G. Hydrogeochemical characteristics and main controlling factors of Xinshanghai No. 1 coal field [J]. Journal of Arid Land Resources and Environment, 2022, 36(3): 92-98(in Chinese).
[37] MAHATO M K, SINGH P K, SINGH A K, et al. Assessment of hydrogeochemical processes and mine water suitability for domestic, irrigation, and industrial purposes in east bokaro coalfield, India [J]. Mine Water and the Environment, 2018, 37(3): 493-504. doi: 10.1007/s10230-017-0508-7 [38] SINGH A K, MONDAL G C, SINGH T B, et al. Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India [J]. Environmental Earth Sciences, 2012, 67(8): 2175-2191. doi: 10.1007/s12665-012-1658-3 [39] 毛萌, 朱雪芹. 宣化盆地地下水化学特性及灌溉适用性评价 [J]. 干旱区资源与环境, 2020, 34(7): 142-149. MAO M, ZHU X Q. Chemical characteristics of groundwater in Xuanhua Basin and assessment of irrigation applicability [J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 142-149(in Chinese).
[40] SEN Z. Practical and Applied Hydrogeology[M]. Elsevier, 2015.