-
土壤系统中生命与非生命的相互关系是人类与其它生物生存环境的重要组成部分对推动物质循环和能量流动具有重要作用. 土壤是人类生产生活的基础资源,它具有提供食物来源、控制温室气体排放、促进碳氮循环和维持生物多样性等多重功能,也是能量交换和物质循环最活跃的生命层,具有有毒污染物缓冲带、过滤器和聚集地的双重身份[1-3]. 即使我国每年土壤污染防治投入不断增加,但仍然面临水土流失严重、耕地质量平均等级偏低、土壤盐碱化和沙化严重等问题. 与此同时,随着我国正式开启全面建设社会主义现代化国家的进程,农业环境改善和矿产资源开发成为全球经济衰退后拉动全球经济增长的不竭动力[4].
来自于土壤系统功能中的生物多样性提供了全球价值最大的生态系统服务. 微生物作为土壤系统的核心在碳、氮、磷等物质分解、养分循环以及结构稳定等方面发挥着重要作用,其多样性也极易受pH、营养条件、重金属等土壤因子的影响[5-6]. 因此,本文分析土壤微生物对碳磷氮等及非金属污染物的代谢特征,并通过矿山土壤环境的微生物特征分析,提出外部物理场调控将有助于微生物群落向可控方向演变,对土壤污染物阻控和理化特性改善并进一步实现退化土壤生态结构与功能重塑具有重要意义.
-
土壤具有以植物、化能营养细菌和藻类为代表的生产者,以土壤中草食动物和肉食动物为代表的消费者及以细菌、真菌、放线菌和食腐动物等为代表的分解者,同时也具有进行物质迁移转化和能量传递的功能. 土壤系统生态功能中有机质分解、养分循环、生物扰动、病虫害控制都与土壤生物多样性密切相关,其中由根系-微生物构成的复杂系统承担了主要的生物化学过程[7]. 当土壤生态系统受外界干扰相对较少时,微生物种类可能演替成一个单一的、“功能最优”的群落,以适合有用资源的开发. 极端环境成为重要的微生物宝库,但环境异质性更容易引起土壤-微生物相互作用的变化,使土壤生态系统长期处于更迭演替的非平衡状态,这严重削弱了土壤系统生态功能. 由于抗干扰敏感性不同使各微生物群落对环境变化表现出巨大差异,土壤代谢等生物化学过程将更加难以捉摸.
微生物作为土壤与外界环境进行物质交换和信息传递的重要群体,是土壤生态系统响应外界胁迫的主导者及土壤微生态的核心驱动,同时它也可辅助植物根系的生长塑造[8]. 土壤微生物群落组成和功能的动态变化能及时反映土壤水分、pH值、温度和养分的状态,是土壤质量和健康的有效指标[9].
-
在生态系统中,物质循环于各生物体之间,能量嵌入食物链的物质中,而整个系统的唯一外部输入是太阳能,包括碳和其他养分在内的循环都与生态系统的主要物质流有关[10]. 能量流是复杂系统的重要组成部分,开放的个体生物、生态群落、生态系统和生物圈从环境中获取能量,能量驱动了系统的发展和演化过程. 树木和其他绿色植物在光合作用的过程中把入射的太阳辐射能转化成生物量,为复杂食物链中其它生物提供可利用的能量[11]. 化学能随生物质的呼吸作用在食物链不同营养级间进行复杂转移,即使能量在系统中不可避免地耗散,但最终都是以热量的形式结束,辐射回太空[12-13].
-
土壤颗粒和孔隙的空间结构以团聚或分散的形式排列,其中团聚结构的稳定性是土壤稳定性的一个重要特征[14]. 土壤团聚体的三大作用包括保证和协调土壤中的水肥气热、影响土壤酶的种类和活性、维持和稳定土壤疏松熟化层. 土壤团聚体稳定性主要由平均质量直径和几何平均直径判定,因此拥有较大粒径分布团聚体的土壤往往稳定性较高. 这种稳定性及聚集程度受微生物群、动物群、凋落物、环境因子和无机粘合剂等各种生物和非生物因素驱动. 如丛枝菌根真菌(AMF)产生的糖蛋白GRSP有助于土壤颗粒之间的联系和团聚体的稳定,其浓度与水稳性团聚体数量呈正相关 [15]. 与团聚体有关的土壤微生物在耕作或其他干扰后的碳和氮动态变化中发挥关键作用[16]. 如较小的团聚体具有较高的SOC、TN浓度和微生物活性,表明碳和氮的动态变化更活跃[17]. 土壤颗粒上孔隙和水膜的不均匀性导致了土壤微生物群落的多样性. 根生物量的变化直接影响土壤团聚体内的微生物类群和微生物残体在不同粒径团聚体内的分布情况[18].
-
营养条件在土壤生物驱动系统物质循环与能量流动中起着至关重要的作用,它控制了系统中相关微生物群落对物质和能量的更迭,成为土壤活性与土壤生态价值的决定性因素[19]. 无机和有机施肥均能增加土壤有机质和养分含量,其影响主要包括重塑微生物群落的组成、提高土壤活性和改善土壤结构. 超过66种有机肥对真核微生物群落具有剂量依赖效应[20-21]. 有机施肥可以使土壤环境中容纳更多的微生物,而无机施肥通过添加养分和改变土壤性质扰乱土壤生态系统. 微生物群落多样性和组成会随施肥过程中的化学性质不断变化,无机氮肥、秸秆和有机肥这3种类型的肥料对变形菌、放线菌和拟杆菌的生长有促进作用,而对酸杆菌和硝化螺旋菌的生长产生抑制作用[22].
土壤有机质在改善土壤结构、热状态或土壤水分动力学方面有重要作用,能显著影响土壤生物的养分循环、有害物质和元素的结合或分解等生化过程,是土壤生物学的重要特征[23]. 土壤较高的有机质含量增加了养分供给和缓冲调节能力,是陆地生态系统中重要的碳固存途径. 维持或增加土壤有机质含量对提高农业生产力和保障食品安全尤为重要[24]. 阳离子交换是由土壤颗粒表面过多负电荷引起的. 有机质引起的土壤阳离子含量变化最大,粘粒型土壤的阳离子含量变化最小,其中Ca2+、Mg2+、K+、Na+、NH4+的平衡变化不断改变着土壤胶体性质[25].
-
土壤是陆地生态系统最大的碳库,其碳储量相当于大气碳库和植物碳库的2—3倍,土壤碳库的增加或减少主要取决于土壤有机碳的输入和输出速率,微生物群落土壤有机库分解释放CO2进入土壤溶液会转化为无机碳. 无机碳库通过影响有机碳转变效率进而影响土壤团聚体稳定性、微生物活性、土壤pH、有机质的分解速率等.
-
土壤有机碳来源于动植物残体、根沉积物和微生物坏死[26],经众多微生物通过体外修饰或体内转化形成[27]. 植物根系和凋落物是植物型碳输入土壤的主要途径,其中高达21%的光合固定碳通过根系分泌物在根际富集,促进了根际微生物的碳循环过程[28]. 土壤吸收大气中CO2主要有地球化学系统吸收和有机碳积累两种形式. 微生物能在长时间内通过分解作用释放CO2,其中植物残枝、木质纤维、木炭等难降解有机物会在长达10年到100年时间内不断降解,同时土壤动物及植物也会通过呼吸作用将CO2随孔隙释放到大气,并且伴随着土壤-水系统的移动,以溶解有机物和HCO3-形式进行迁移和转化,形成丰富的土壤系统和其它系统碳循环形式.
-
土壤有机碳对气候变暖的稳定性与其初始数量和不稳定性有关,并可能因微生物生理的变化而降低,包括微生物碳利用效率和代谢酶活性的提高. 土壤有机质储量的数量和停留时间受气候、土壤质地、植物种类组成、土壤深度和干扰状况等因素的影响,其积累量可改善土壤养分、团聚性能、温度调节等条件[29-30]. 根据代谢模型可以推断,环境温度升高会加速生物化学反应,微生物的碳分解速率会有所增加,其中细菌在溶解性有机物降解过程中比真菌发挥着更强的作用[31-32].
土壤微生物多样性/生物量比值通常在低碳干旱环境中较高,在富碳寒冷环境中较低[33]. 土壤微生物生物量均与其碳代谢强度、碳源丰富度呈显著的正相关关系,高土壤微生物生物量能提高土壤碳代谢速率[34]. 微土壤微生物群落碳代谢功能既受土壤有机质水平的影响,也与土壤氮素密切相关,氮含量较低的土壤会限制微生物活性而影响碳代谢功能[35].
-
MCP(microbial carbon pump)概念与合成有机物在矿物表面和土壤结构内稳定的能力结合起来,如图1显示了微生物在驱动土壤碳循环方面的关键作用[35]. 微生物对碳通量的控制有两个关键且截然不同的作用:通过分解代谢活动促进碳向大气的释放;将碳稳定为不易分解的形式来防止碳的释放.
土壤生物能够将腐殖质等复杂有机化合物质高效分解而为养分转化奠定基础,其分解效率受生物活性影响[36]. 通常富碳土壤比贫碳土壤含有更多的抗性细菌群落和更敏感的真菌群落,因此富碳土壤中的群落在应对移位增温时具有更强的碳代谢能力[37]. 土壤理化性质及其微生物群落活动主要受有机碳库的影响,是因为有机碳库的积累和矿化影响了土壤水-气间的碳平衡,微生物代谢需求和现有碳资源状况变化对细胞外酶活性产生了巨大影响[38].
植物根际部分是土壤微生物群落最活跃的部分,含有的大量生物活性分子以及各种次生代谢产物极大地改善了微生物群落结构和多样性[39]. 其中酸细菌是土壤碳循环起关键作用的第二大细菌类型,具有降解纤维素和木质素的能力;放线菌能抑制疾病、增加根结瘤、促进植物生长并改善土壤性能;异养菌通过吸收溶解有机碳增加生物量并转化为无机碳,是碳泵的关键部分[40]. 真菌和细菌的贡献作用取决于土地利用、土壤深度、降水量、温度、pH值、可用养分、细胞外酶活性等土壤理化特性、群落特性以及微生物固碳能力成为微生物残留物积累的主要控制因素[41-42].
-
土壤中磷的主要形态为无机磷,占土壤总磷的60%—80%. 有机磷主要以可溶性磷的形式存在,可溶性有机磷和微生物磷的强相关性表明它们大部分来源于微生物细胞[43]. 土壤微生物在自然磷循环中起着核心作用. 植物根际和土壤微生物通过分泌弱酸来溶解土壤中的磷,并合成磷酸酶促进含磷有机化合物的释放来获取磷资源[44].
土壤磷循环过程主要涉及磷化合物的氧化和还原反应,主要是有机磷和磷酸盐的转化[45]. 土壤中碳和氮的积累会导致营养成分中磷含量的变化从而限制微生物的磷代谢活动,但也可能通过负反馈调节增加微生物磷获取相关的酶活性[33]. 细菌、真菌和藻类中的磷以聚合物形式储存,植物中的磷主要以植酸的形式有机结合存在于种子和谷物中,而磷在动物组织、骨骼和鳞片广泛存在. 磷除了在细胞中储存外,还通过生物溶解聚合形式或生物降解来实现磷的生物循环. 溶磷菌释放的低分子量有机酸通过羟基和羧基螯合与磷酸盐结合的阳离子,增大了可溶性磷含量[46-47]. 然而,磷溶解与释放涉及复杂生物化学过程取决土壤微生物营养、生理及其它环境条件[48].
-
固氮细菌(重氮营养细菌)包括自生固氮菌、共生固氮菌、联合固氮细菌3种,是获得生物可利用氮的重要参与者,能提高土壤肥力[8]. 影响土壤微生氮循环效率的因素有很多,如硝酸盐异化还原成铵是降低系统NO3− 淋溶与流失的重要过程,该过程与降水、温度、pH、土壤全碳和土壤全氮呈正相关关系,其中降水是土壤氮循环的主要驱动因子[49]. 外源氮素的添加能影响土壤有效氮含量进而影响微生物的氮代谢能力,这也是影响土壤微生物活性的一大因素[50]. 土壤碳和pH值对土壤微生物氮循环的影响因生态系统类型而异. 营养碳能加快土壤中的微生物氮循环速率,而pH能促进NO3-N 和 NO2-N周转. 此外,根际环境富集了与有机化合物转化、固氮和反硝化作用相关的微生物,这样的环境严重削弱了硝化作用[51]. 如图1中氮循环可知,除了土壤内部氮周转外,生物固氮对促进系统间氮交流与缓解土壤氮素流失有重要意义. 生物固氮可以催化大气中的氮气还原为生物可利用的铵,能缓解受联合氮源限制的陆地和水生生境的营养压力,有研究发现矿渣肥力的提高可以刺激氮循环[52].
降低土壤氨挥发是农田生态系统中减少土壤氮素损失、提高氮肥利用率的关键途径之一[53]. 提高土壤pH值和透气性、增强土壤有机氮矿化微生物活性促进了土壤氨挥发[54],由此土壤NH4+和NH3吸附的作用机制及土壤硝化作用调控是氨挥发减排的两个主要机制,其受pH、土壤温度、降水等环境因素以及土壤颗粒表面特性控制[55]. 在应对未来气候变化过程中,控制土壤基质有效性和土壤pH等环境因素的交互作用对促进土壤氮素固持具有重要作用.
-
土壤系统中除了重金属污染会导致土壤质量恶化,严重影响土壤功能及其稳定性外,农药、石油烃、微塑料、氟化物等非重金属污染物随着频繁的人类活动变得愈发复杂,能杀死某些特定的微生物群从而破坏土壤生态[56].
常见农药包括有机氯、有机磷、氨基甲酸酯、甲脒、硫氰酸酯、脱硝基酚和抗生素等,其中部分能被土壤原细菌和真菌降解,但受环境基质吸附、农药自身特性以及微生物靶向性等限制,因此具有高环境相容性、靶向性、降解率强的微生物备受关注[57]. 其中抗生素是农业生产中应用最普遍的,植物根部会对抗生素有直接吸附作用,或由植物根系吸收抗生素后向地上组织运输转移,还可通过根系分泌物和土壤微生物组来降解抗生素. 四环素、磺胺甲基嗪、诺氟沙星、红霉素和氯霉素常被作为抗生素类型的代表进行研究. 如嗜热光合菌(Roseiflexus)、贪嗜菌属(Variocorax)、类诺卡氏菌属(Nocardioide)和芽孢杆菌属(Bacillus)都是磺胺类抗生素的潜在降解菌[58].
低水溶性和生物有效性的石油烃易吸附于土壤中[59] ,即使连续氧气注入能加速微生物有氧降解,但自然降解速率不高时对环境和人类健康构成了严重的威胁[60]. 多环芳烃(PAHs)持久存在的主要原因是其具有难降解性、疏水性和生态毒性,长期滞留会扰乱土壤生境,对土壤生物和人类具有很高的潜在风险[61]. 微生物可将PAHs作为唯一碳源和能源,通过产生加氧酶直接破坏PAHs的结构以达到降解目的. 如无色杆菌属(Achromobacter insolitus)、芽孢杆菌属(Bacillus)、解环烃菌属(Cycloclasticus)、黄孢原毛平革菌(Phanaerochaete chrysporium) 和假单胞菌(Pseudomonas) 在PAHs降解中发挥着重要作用[62]. 其中根际微生物通过不同的植物促生长的方式直接或间接帮助寄主植物生长,从而减少根际PAHs的胁迫. 植物还会通过释放不同的根系分泌物,如黄酮类化合物和脂肪酸有助于降解多环芳烃[63].
微塑料(MPs)是一种难降解、持久性强、传播快的新型污染物,可在植物根部被吸收和富集,并从根部迁移到地上部[64]. 土壤中MPs随着时间的推移和微生物资源的变化而增加,从而增加了MPs选择的微生物群落比例. 如放线菌和拟杆菌门在MPs表面生长良好. MPs增加了脱硫杆菌科(Desulfobacteraceae)和脱硫球茎菌科(Desulfobulbaceae)比例,含有的聚酯超细纤维(PES)还会增加盘状真菌菌丝和AMF的丰度.
磷矿的开采与浮选、农肥工业、岩土风化及火山爆发[65]是土壤中氟化物的主要来源,其迁移转化过程受土壤粘土组分、pH、有机质的影响,一般来说迁移性较低[66]. 即使土壤氟的生物有效性较低,但植物根际生态过程会致使氟解吸,并在微生物作用下得到强化,与土壤微生物的溶出-吸收等微观作用是土壤氟迁移与转化研究不可或缺的部分[67]. 氟对植物的影响具有多样性,大多数植物对土壤中的氟具有阻隔作用,但茶树能从土壤中吸收大量的氟并积累在叶片中,适量的氟还能促进茶树生长,同时茶树根际土壤的真菌数量与氟处理量呈正相关关系,而细菌则刚好相反[68].
土壤生态因素与微生物的协同作用是非金属污染物降解的重要过程. 污染物降解过程与土壤的理化特性、微生物活性和氧状态紧密相关. 同时污染物的积累会造成一系列的环境行为,从而改变土壤环境. 如微塑料可以改变土壤理化参数(容重、孔隙度、聚集度、电导率、持水能力和pH值等),进而影响微生物生长代谢[60]. 因此,土壤环境对微生物代谢及微生物对污染物降解有着至关重要的作用.
-
矿山环境恶化源头主要来自于矿山开采、尾矿堆积及工程器械作业活动,长期以来尾矿治理一直是绿色矿山的关键内容. 矿石的尾矿产生量可超60%,部分选矿甚至能达到99%以上. 2013年以来全国新增尾矿累积堆存量已超50亿t,综合利用率却不足36%,并常年处于较低水平[69]. 尾矿中不同价态和形态的As、Hg、Cd等因迁移转化差异显著而污染阻滞困难,并且受尾矿尾砂粒径、pH、含水率等理化性质影响较大. 环境条件变化易释放有毒物质,并且能通过食物链富集而威胁人类健康. 选矿过程中添加的有毒有害化学药剂也是环境污染的潜在来源[70-71].
各尾矿因其具有不同的理化特性也被广泛利用,地聚合物技术是最具创新性和适用性的方法之一,添加的粉煤灰和硅粉对于提高产品性能起重要作用,还包括有价成分回收、陶粒生产等利用途径[72]. 尾矿的土壤化利用也是常见的工程技术之一. 多数尾矿富含植物生长所需要的矿物元素而用作土壤改良剂或制备化肥[73],尾矿与有机固废以及重金属稳定剂复配成尾矿基土壤,具有一般土壤蓄水、养分、气的能力,为矿山植物提供更理想的生长环境[74]. 由于尾矿粒径分布、重金属、微生物多样性、pH等的复杂性,尾矿土壤化技术需要低成本与高效率的创新性发展.
-
矿山土壤溶液中重金属及其它有毒物质是微生物所接触的不良指标,其中有效重金属含量与土壤微生物代谢高度相关. 酸碱度低于6时可能会降低微生物对重金属的极限值,并且会增加大部分重金属的有效浓度[75]. 硫还原和有机酸释放能降低矿山土壤pH值并增加可溶性金属离子,植物根际微生物通过络合、螯合、氧化还原等反应调节植物适应性和改变土壤的理化性质来促进重金属的快速解毒或清除,根际质子(H+)和酶有助于重金属的迁移与转化[76].
矿山土壤具有较低的活性,相比一般土壤而言,其进行更多的厌氧反应. 随着矿山土壤有机质的消耗,其生态功能与结构将持续恶化,微生物及植被恢复成为矿山复垦的必由之路. 根系生物量可以增加胞外酶、铁载体、植物激素等含量,稳定尾砂和提高保水能力,同时降低重金属对植物健康的不利影响[77-78]. 腐殖酸和沸石的联合作用可减轻重金属对土壤酶活性的影响[79],其他诸多特定菌剂也可用来固定重金属. 农杆菌能快速氧化植物根部砷(Ⅲ)和锑(Ⅲ),在根际土壤中螯合铁/锰氢氧化物/羟基氧化物沉淀降低生物有效性[80]. 矿山土壤生态恢复除了对重金属和酸碱变化表现出耐受能力外,有关固氮解磷和碳循环微生物的增加在促进生态重构方面功不可没. 尾矿废弃地中常见的固氮微生物有变形菌、古细菌和蓝藻等[81],其中变形菌对矿山环境表现出快速的生长和适应能力,并且对缺碳的胁迫具有强大的反应能力,在矿山早期微生物群落恢复和提高土壤活性方面起重要作用.
-
电迁移、电泳和电化学氧化诱导等电动处理方法是去除高粘低渗透土壤中Ni、Zn、Cr、Cd等无机污染物的主要手段[82]. 但电动处理过程中土壤pH、含水量、温度等环境因子的变化会引起微生物群落结构、丰度、多样性或活性改变,对土壤生态有较大影响[83]. 土壤孔隙水电解产生的H+和OH-会改变两极土壤pH,引起微生物群落结构以及数量和丰度降低,减轻营养循环及重金属作用过程[84]. 处理过程中电极两端离子不断聚集可能导致土壤渗透势增加,造成细胞失水,减少微生物数量和降低代谢能力.
不同的电场强度会引起不同的电流效应,对微生物群落变化及其代谢水平的影响不同,弱电场(1 V·cm−1)可激活脱氢酶活性,适当的电场强度(2 V·cm−1)有利于微生物的生长代谢,但较高的电场强度(3 V·cm−1)会让土壤温度过高而对微生物活性和代谢产生负面影响[83,85-86]. 电动处理后土壤中营养物质的消耗和污染物浓度的变化改变了微生物代谢状态[87].
-
磁场可通过影响水-土界面行为来影响土壤微生物群落演替及物质循环过程,主要机制是促进水的电离和改变带电粒子的作用轨迹来影响溶液的物理化学性质,并与磁性矿物Fe3SO4关系密切[88]. 磁场还可以通过跨膜运输、基因表达和细胞酶活性等多种机制影响微生物的生长代谢如引起跨膜蛋白和可溶性蛋白构象的改变而产生显著的生物学效应[89-90]. 磁处理对废水中微生物的生长和降解能力具有明显影响,强度8.1 mT时能提高好氨氧化细菌的活性以缩短硝化时间[91-93],并且磁处理能影响特定条件下微生物的活性,富集具有特殊耐性的微生物菌群[94]. 低强度磁场能增强微生物活性促进土壤的呼吸作用,高强度的磁场甚至会对过氧化物酶和脲酶活性产生抑制作用. 磁场对微生物的影响还取决于磁场类型、细菌种类和操作条件[95-96]. 土壤磁处理后改变了细菌数量和群落结构. 该处理减少了氨化细菌的数量,但增加了与硝化反应及磷循环相关的细菌数量,并且对有机磷细菌有显著影响. 磁场还可以通过影响土壤的渗透性、膨胀性和团聚性等性质使微生物生存的微生态环境发生变化,从而影响其活性[97].
-
紫外线照射对环境是致命的,它引起的氧化损伤导致了大多数细胞类型中重要的生物分子(包括蛋白质)的损伤. 然而,有些细菌能在极端照射下生存,包括从航天器组件中分离出来的芽孢杆菌及西藏膜杆菌、嗜麦芽窄食单胞菌和葡萄球菌等耐紫外细菌[98]. 研究发现微生物在极端紫外线照射下的生存能力与它们的基因组稳定性有关,并且也在其它耐紫外线细菌中发现了紫外线防御过程[99]. 在地球自然环境中,耐紫外线辐射微生物的多样性及其代谢机制研究,可增强土壤环境功能性微生物的耐受性且将持久发挥作用[100].
-
随着土地利用模式及环境的变化,微生物研究成为解决土壤可持续利用和提高社会生产效率的重要途径. 微生物作为土壤生态系统中物质循环和能量流动的主要驱动者,在碳、氮、磷等物质分解和养分循环以及结构稳定等方面发挥着重要作用,但极易受pH、营养条件、重金属等土壤因子的影响. 再者,土壤系统中农药、石油烃、多环芳烃等非金属污染物具有难降解、毒性强和持久性强的特点,可通过生物降解的方法,分离驯化高效降解菌,从而改善土壤结构,防止生态破坏. 通过土壤环境的外场作用机制分析,表明电、磁、紫外等外场控制将有助于微生物群落与功能向可控方向演变,土壤生化过程调控有望加快退化土壤生态结构与功能重塑过程.
针对土壤微生物代谢模式的特点,未来还需要进行更深入的研究.
(1)污染与退化土壤的微生物修复或治理过程除了关注特异性降解菌株研究外,微生物与其生境的协同作用将对土壤长效自净功能保持起着关键性作用. 土壤作为一个整体的、动态的生命系统,其结构与营养条件是维持系统内物理迁移和化学转化过程有序进行的重要基础.
(2)提高各类污染物的生物可利用性,针对不同污染物特性,考虑土壤环境因素,有效结合其他技术,如添加辅助剂,以促进微生物在污染物胁迫条件下代谢,或提高微生物对某一污染物的降解速率.
(3)建立土壤健康评估体系,关注和研究微生物群落的定向代谢以及与植物根际的协同作用将极大地推动土壤高质量发展.
土壤微生物代谢模式及其环境影响研究进展
Developments in the research of soil microbial metabolic patterns and their environmental impacts
-
摘要: 随着土壤利用模式变化及矿产资源不断开发,土壤微生物活性降低及矿山土壤生态恶化已成为阻碍社会生产效率提高的主要因素之一.由于国家和社会逐渐重视土地高质量发展及微生物生态修复工程,本文综述了土壤微生物对碳、磷、氮和其它非金属污染物的代谢模式,并且基于土壤生态系统特性,讨论了微生物驱动的物质循环影响因素(pH、营养条件、重金属等土壤因子).阐述了微生物多样性和根际环境的形成在矿山生态环境修复初期所起的重要作用,并通过土壤环境的外场作用机制分析,揭露了电、磁、紫外等外场的控制将有助于微生物群落及其功能的可控方向演变,对土壤污染物阻控和理化特性改善并推动实现退化土壤生态结构与功能的重塑具有重要意义.Abstract: With the change of soil utilization patterns and the continuous exploitation of mineral resources, the decrease of soil microbial activity and the ecological deterioration of mineral soils have become one of the main factors that hinder the improvement of social productivity.As the country and society are gradually paying attention to high-quality land development and microbial ecological remediation projects, this paper reviews the metabolic patterns of carbon, phosphorus, nitrogen and other non-metallic pollutants by soil microorganisms, and discusses the microbially driven material cycling factors (pH, nutrient conditions, heavy metals and other soil factors) based on soil ecosystem characteristics.The importance of microbial diversity and the formation of the inter-root environment in the initial phase of mine ecosystem restoration is described, and through the analysis of the external field action mechanism of soil environment, revealing that the control of external fields such as electric, magnetic and ultraviolet will contribute to the controlled evolution of microbial communities and their functions, which is significant for the control of soil contaminants and improvement of physicochemical properties as well as promoting the remodeling of ecological structure and function of degraded soils.
-
Key words:
- Soil microorganisms /
- Nutrient metabolism /
- Non-metallic pollutant /
- Heavy metal /
- Outfield regulation.
-
水华(algal bloom)是在一定的营养、气候和水文条件下藻类等浮游生物大量繁殖并在水体表面聚集,使水体颜色发生变化的现象[1]. 水华的发生可能引起严重的生态环境问题,大量繁殖的藻类死亡后耗氧分解会造成水体缺氧,这严重威胁了水体中其他生物的生存,从而导致生态失衡,而如果饮用水源发生水华则会影响饮用水安全,造成严重的经济损失[2]. 一直以来,水华都是国内外研究学者重点关注的生态环境问题之一.
湖光岩玛珥湖(以下简称湖光岩)是距今14—16万年前由平地火山喷发后火山口下沉形成的湖泊,是世界上最大且保存最完整的玛珥湖[3]. 湖光岩是封闭性湖泊,四周被火山碎屑岩包围,且没有河流的注入与流出,湖水水位的变化主要取决于大气降水和地下水位的变化[4]. 前人有关湖光岩生态问题的研究主要集中在水体营养盐的时空分布[3]、浮游植物对溶解态氮的吸收[5]以及浮游植物种属的季节性变化[6]等方面,而有关湖光岩水华问题的研究尚未有过报道. 早在2009年以及2011年便有新闻报道关于湖光岩的湖面漂浮着蓝藻,但当时却未引起各学界的重视[7]. 2021年12月—2022年3月,笔者注意到湖光岩的湖面漂浮着大量的浮游藻类,东、北部水域的湖水浑浊且湖滩被一层绿色的藻泥所覆盖,此外在东、北部湖滩也发现了不少已经死亡的乌龟(图1),经观察确认湖光岩暴发了水华. 鉴于有关湖光岩水华现象的研究尚未有过报道,故本文对湖光岩的水华现象开展初步的研究分析,以期为认识湖光岩水华发生的机理提供科学依据.
湖光岩为封闭性湖泊,是研究认识较为单纯的水文条件下水华形成与发展的理想场所,对研究封闭性湖泊水华的发生具有独特的科学意义. 此外,湖光岩为国家4A级旅游景点,水华的发生必然对湖泊水体及周围的生态环境有所影响,因此分析和探讨湖光岩发生水华的原因具有积极的理论与实际意义. 本研究通过对湖光岩水华暴发的主要藻种鉴定以及水体样品的水质分析等,试图从营养盐、水文条件以及气象因素等方面探讨分析湖光岩发生水华的原因,以期认识玛珥湖水华发生的影响控制因素,同时也为湖光岩水华的治理与预防提供科学依据.
1. 材料与方法(Materials and methods)
1.1 研究区域与采样点布设
湖光岩(21°09′N,110°17′E)位于中国广东省湛江市,其外形呈心形形状,由紧邻的两个火山喷发口组合而成,在水下被火山岩壁分割成东、西两湖,东湖小且浅,西湖较大且深,湖泊水位较低时可看见东西两湖之间不连续的火山石出落于水中. 湖泊总面积为 2.3 km2,水深最深处约为 22 m[8]. 水华藻类样品及水样的采集主要是结合湖光岩的地形环境以及水华发生的位置进行采样点的布设,如图2所示,其中S1、S2站点位于浅滩区域,水深约1—2 m,该区域发生水华现象,湖水中漂浮着大量的浮游藻类并且湖滩有藻泥沉积覆盖,在S1、S2站点采集水华藻类样品和水样,S3站点位于西湖区域,S4站点位于东湖区域,由于S3、S4站点的区域没有发生水华,故在这两个样点只采集了水样.
1.2 样品采集与处理
样品的采集时间为2022年3月,使用采水器取水面以下约 0.5 m深处的水样1 L,完成后立即带回实验室,使用0.45 μm的醋酸纤维滤膜过滤,过滤后的水样冷冻保存于-20 ℃的冰箱,用于开展营养盐(硝态氮(NO3−-N)、亚硝态氮(NO2−-N)、铵态氮(NH4+-N)、磷酸盐(PO43−-P)和硅酸盐(SiO32−-Si))的分析. 另采集250 mL水样,加入3—5 mL的鲁哥试剂固定液,带回实验室经沉淀浓缩后进行镜下观察拍照,用于水华主要藻种的分析与鉴定.
1.3 测定与分析方法
湖水理化性质的测定包括现场水体的水温、pH值、盐度的测定,均使用便捷式多参数分析仪(上海雷磁有限公司,DZB—718L)进行现场测定. 营养盐的测定根据《水和废水监测分析方法》[9]进行测定,其中氨氮采用纳氏试剂分光光度法,亚硝酸盐采用萘乙二胺分光光度法,硝酸盐采用紫外分光光度法,磷酸盐采用磷钼蓝分光光度法,硅酸盐采用硅钼黄法分光光度法. 水华主要藻种的鉴定通过光学显微镜对采集的浮游藻类进行镜下观察和拍照,并参照《中国淡水藻类》[10]、《淡水微型生物图谱》[11]进行鉴定.
2. 结果与讨论(Results and discussion)
2.1 水华藻种鉴定
显微镜观察显示,构成湖光岩水华的藻种主要有两种,分别显示于图3a、b和图3c、d. 其中图3a、b显示的藻类为球形单细胞体,呈黄绿色,细胞壁薄,细胞直径5—10 μm;参照《中国淡水藻类》[10]和《淡水微型生物图谱》[11]进行鉴定,确定该藻种为绿藻门(Chlorophyta)、绿藻纲(Chlorophyceae)、绿球藻目(Chlorococcales)、小球藻科(Chlorellaceae)、小球藻属(Chlorella)中的小球藻(Chlorella vulgaris). 图c、d显示的藻类为多数细胞组成的群体,成熟的群体明显裂开,胶被的某些区域破裂或穿孔;群体中的细胞呈球形或椭圆形,直径3—7 μm,呈蓝绿色;经图谱鉴定该藻种为蓝藻门(Cyanophyceae)、蓝藻纲(Cyanophyceae)、色球藻目(Chroococcales)、色球藻科(Chroococcaceae)、微囊藻属(Microcystis)中的铜绿微囊藻(Microcystis aeruginosa)[12]. 因此,引起湖光岩水华暴发的主要藻类为绿藻和蓝藻,且以绿藻占据优势,通过显微镜观察小球藻的数量占比可达60%.
张才学等[6]于2006年对湖光岩的浮游藻类进行周年的调查,结果检出湖光岩水体中浮游藻类260种,以绿藻门、蓝藻门、硅藻门为主,其中绿藻门占45%,硅藻门占30.4%,蓝藻门占16.5%,绿藻门的小球藻以及蓝藻门的小型色球藻、水华微囊藻、煤黑厚皮藻为全年广布优势种;2013年张国维等[13]检出湖光岩水体中浮游藻类135种,其中绿藻门占33.3%,蓝藻门占30.4%,硅藻门占22.2%,绿藻门的小球藻、蓝藻门的水华微囊藻、铜绿微囊藻以及硅藻门的颗粒直链藻为全年广布优势种. 可见,由于环境理化因子以及水质营养条件的改变,水华期间与没有发生水华期间浮游藻类的组成结构发生改变.
2.2 水华暴发期间湖水理化性质分析
2.2.1 湖水表层温度
表1为2022年3月份湖光岩各站点理化状态的测定结果. 由表1可看出,湖光岩各站点的温度变化范围为25.10—29.20 ℃,平均温度为26.72 ℃,且水华发生区域的S1、S2站点的水温要比S3、S4站点的水温高2—4 ℃,这与湖光岩的地理环境有关,S3、S4站点位于湖光岩的南部,南部的植被较高且密集分布,阳光易被遮挡,因此湖泊的南部日照时间较短,接收的阳光较少,而S1、S2站点位于湖光岩的东北部,在一天中能接收更充足的阳光,因而S1、S2站点的水温更高[14].
表 1 湖光岩不同采样站点理化因子的测定结果Table 1. Determination results of physical and chemical factors at various stations of the Huguangyan站点 Stations T/℃ pH S/% NH4+-N/ (mg·L−1) NO3--N/ (mg·L−1) NO2--N/ (mg·L−1) PO43--P/ (mg·L−1) SiO32--Si/ (mg·L−1) N:P S1 27.4 8.601 0.006 0.137 0.192 0.003 0.004 4.140 83 S2 29.2 8.665 0.006 0.136 0.139 0.003 0.003 1.700 93 S3 25.2 7.980 0.006 0.091 0.133 0.003 0.001 0.164 227 S4 25.1 8.017 0.006 0.097 0.143 0.003 0.002 0.141 122 温度是水体环境中最为重要的参数,也是诱发水华暴发的重要因素之一. 温度通过影响藻类的代谢强度和光合作用,控制着藻类的生长、发育和分布等[15]. 此次构成湖光岩水华暴发的两种主要藻种中,小球藻对温度的适应范围较广,而铜绿微囊藻在28—32 ℃的水温条件下生长速率最高,更适宜在较高温的条件下生长[16-17]. 由于湖光岩水华的暴发主要发生于冬春季节,冬季的湖水温度相对偏低,更适合小球藻的生长繁殖,这应是湖光岩水华暴发的主要藻种中小球藻占据优势的主要原因. 而发生水华区域的S1、S2站点位于湖光岩的北部,冬季期间能接收更充足的阳光,水温比位于日照少的南部区域的S3、S4站点要高,更有利于藻类进行光合作用.
2.2.2 酸碱度
表1显示湖光岩各站点的pH值变化范围为7.98—8.67,水质偏弱碱性,其中S2站点的pH值最高为8.67,而且S1、S2站点的pH值要比S3、S4站点的pH值高,这与浮游藻类在生长过程中吸收水体中的CO2进行光合作用有关,使得水体中的氢离子浓度降低,pH值升高. 一般情况下,藻类适宜生长在中性或者弱碱性的环境中,而水体的pH值也会随着藻类的增多而升高[18]. 小球藻对pH值的适应范围较广,适应能力较强. 而铜绿微囊藻在pH值为8.0—9.5的环境条件下生长繁殖能力较强,pH值过低或过高都会对铜绿微囊藻的生长有所影响[19]. 总体上看,湖光岩的酸碱度条件有利于小球藻和铜绿微囊藻的生长繁殖.
2.2.3 营养盐条件
由表1可见,湖光岩各站点不同营养盐的含量中,SiO32−-Si的平均含量最高。4个站点的SiO32−-Si含量变化较大,范围为0.141—4.140 mg·L−1,S1站点的SiO32−-Si含量最高,为4.140 mg·L−1. PO43−-P的含量最低,含量范围为0.001—0.004 mg·L−1,其中S1站点的PO43−-P含量最高为0.004 mg·L−1. 在4个站点中NO2−-N的含量最稳定,4个站点的NO2−-N含量都为0.003 mg·L−1. NO3−-N的含量在4个站点中基本稳定,其中S1站点的NO3−-N含量最高,为0.192 mg·L−1. NH4+-N的含量变化在4个站点变化不大,变化范围为0.097—0.137 mg·L−1,其中S1站点的NH4+-N含量最高,为0.137 mg·L−1.
不同时期下湖光岩表层水营养盐含量的对比分析表明(表2),SiO32−-Si的含量在不同时期测定的营养盐组分中都是最高的,变化的范围为0.2674—1.5360 mg·L−1,PO43−-P含量最低,变化范围为0.0006—0.0030 mg·L−1. 图4为不同时期湖光岩表层水营养盐含量以及本研究不同采样点营养盐含量柱形图. 由图4中可明显看出,除了NO3−-N之外,本研究测定的NH4+-N、NO2−-N、PO43−-P、SiO32−-Si含量远高于前人测定的数值. 此外,从图4中可看出,除NO2−-N之外,水华发生区域S1、S2站点测定的NH4+-N、NO3−-N、PO43−-P、SiO32−-Si含量均高于S3、S4站点的含量. 营养盐是影响水体中藻类生长发育的重要条件,并在一定程度上导致水体中的优势藻类群落发生改变. 由此可见,相对较高的营养盐含量是引起湖光岩水华暴发的主要原因.
表 2 湖光岩表层水营养盐含量历史对比分析表Table 2. Table for historical comparison and analysis of nutrient content determination in the surface water of the Huguangyan时间Time T/℃ pH NH4+-N/(mg·L−1) NO3--N/(mg·L−1) NO2--N/(mg·L−1) PO43--P/(mg·L−1) SiO32--Si/(mg·L−1) N:P 参考文献References 2007春季 27.00 8.40 0.0885 0.7295 0.0026 0.0009 0.2674 912 [6] 2013.03 20.30 7.88 0.0290 0.2500 0.0020 — — — [20] 2016春季 — 6.85—8.44 0.0410 0.0470 0.0006 0.0006 0.4460 148 [3] 2022.03 26.70 8.32 0.1150 0.1510 0.0030 0.0030 1.5360 89 本研究 在分析的5种营养盐中,SiO32−-Si的含量最高,一方面这可能是由于湖泊底层沉积物中的有机质氧化分解产生的,另一方面可能是因为湖光岩四周为火山碎屑岩,火山碎屑岩的硅元素含量较高,岩石中的可溶性物质经雨水冲刷被带入水体中,从而使水体中的SiO32−-Si含量背景值较高[3]. 已有研究发现在浮游藻类中蓝藻和绿藻对磷有较高的需求,对硅没有明显的需求,而硅藻则对硅的需求较高[21-22]. 引发湖光岩水华暴发的两种主要藻类属于蓝藻和绿藻,因此,较高含量的SiO32−-Si对水华的形成没有明显的促进作用,其含量也可能没有达到让湖光岩水体暴发硅藻水华的浓度门限.
在本研究分析的5种营养盐中,PO43−-P含量最低,贝格最小值定律指出,植物生长取决于外界提供给它的所需养料中数量最少的一种[2]. Redfield[23]指出浮游藻类吸收利用氮、磷营养盐的最适宜比例为16:1,在研究中一般认为水体中的氮磷比大于16:1存在磷限制,而小于16:1则存在氮限制. 由表1可见,本研究中4个站点的N:P变化范围为83—227(N = DIN,P = PO43−-P),其中S3站点的氮磷比值最高为227,S1站点的氮磷比值最低为83,表现出明显的磷限制,这一分析结果与前人的研究结果一致[3, 6]. 且由表2及图4可见,相比于前人的研究,本研究的氮磷比相对较低. 因此,相比于氮营养盐含量的增加,磷营养盐含量的增加更有利于浮游藻类的生长繁殖. 由图4可见,相比于前人的研究,本研究的PO43−-P含量相对偏高,且水华发生区域的S1、S2站点的PO43−-P含量要比S3、S4站点的PO43−-P含量高. 因此,PO43−-P含量增加是导致湖光岩发生水华的重要因子之一.
张国维等[5]利用15N 稳定同位素示踪技术研究湖光岩浮游藻类对氮的吸收速率,结果发现湖光岩的浮游藻类对NH4+-N的吸收速率最高,更偏好利用NH4+-N,而对NO3−-N、NO2−-N则具有一定的亲和力. 由此推测,NH4+-N 也是调控湖光岩浮游藻类生长的重要营养盐因子之一. 由图4可知,相比于之前没有发生水华现象的研究,本研究中NH4+-N的含量相对较高,而且相比于S3、S4站点,水华发生区域的S1、S2站点的NH4+-N含量也是相对偏高的. 根据以上分析可见,水体中PO43−-P、NH4+-N含量的增加是造成水华现象发生的主要原因.
湖光岩为封闭性湖泊,其营养物质的循环主要是生态系统的内部循环,而外源营养物质的输入较少[6]. 湖光岩的营养物质内部循环受水体温度变化的影响较大,湖光岩的水体温度在垂向上具有季节性分层的现象,夏季表层水的温度高,表层水与较冷的深层水出现分层,阻碍了表层水与深层水及底层沉积物的营养盐循环交换,而到了冬春季节表层水的温度开始下降,水体的分层被破坏,水体发生混合,表层水的营养盐会有所增加[3, 24]. 此次湖光岩水华的暴发正值冬春季节,推测PO43−-P、NH4+-N等营养盐含量的增加主要是由于表层水与深层水发生垂直混合,从而使表层水的营养盐含量增加. 且S1、S2站点位于湖光岩浅滩区域,水深较浅,在冬季风的作用下其水体垂直混合更充分,因而其营养盐含量比S3、S4站点的高,更有利于水华的暴发.
2.2.4 水位变化
浮游藻类的生长不仅受温度、光照、pH、营养盐、微量元素等影响因子的控制,水位的变化对藻类的生长也具有重要的调节作用[25]. 水位下降所引起的垂向轻微扰动能够使水体中的营养盐获得重新分配,激发底层水体和沉积物中营养盐的活性,为浮游藻类的生长提供了更持久的营养盐支撑条件[26]. 此外,水位的下降增强了水体的透光性,有利于浮游藻类进行光合作用,为浮游藻类的生长提供了有利的条件.
根据湛江市水文局的水文记录显示,在没有发生水华的年份湖光岩的平均水位多保持在20—21 m,而2021年以来湖光岩的水位在持续走低,2021—2022年最低水位出现在2022年4月中旬,为18.93 m,这表明在水华发生期间湖光岩的水位下降了近2 m. 湖光岩为封闭性湖泊,没有河流的注入与流出,水位的变化主要是取决于降雨和地下水位的变化. 湖光岩的气候属于典型的热带季风气候,干湿季分明,降雨主要集中在夏秋季节,冬春季节降雨量少,偏干旱[3]. 可见在冬春季节,水华发生期间降雨量偏少,减少了湖水的主要来源,长时间的干旱加快了湖水的蒸发速率,造成水位降低. 水位的下降使得水体中的营养盐得以重新分配,增强水体的透光性,为藻类的生长创造有利的条件. 此外,湖光岩为封闭性湖泊,在水位下降的条件下,水体中的营养盐得以富集,且更有利于水体的垂直混合,使表层的营养盐含量增加,加剧水华的暴发进程.
3. 结 论(Conclusion)
(1)引发2021—2022年湖光岩水华暴发的主要藻种为绿藻门中的小球藻以及蓝藻门中的铜绿微囊藻,其中小球藻的数量占比可达60%.
(2)2021—2022年湖光岩水华暴发的主要原因是在冬春季节,表层水体的温度下降,水体的分层被破坏,表层水体与深层水及底层沉积物的营养盐发生内部循环,导致表层水营养盐浓度增高,特别是PO43−-P和NH4+-N的增加,再加上适宜的水温、pH、光照条件以及水位的下降,为藻类的生长创造有利的条件,造成水华的发生. 因此,2021—2022年湖光岩水华的暴发是营养盐、水体环境因子以及气候因子等影响因子综合作用的结果.
致谢:感谢广东省湛江市水文局提供湖光岩水位数据资料和罗涛在藻类样品采集中给予的帮助,特别感谢广东海洋大学张才学教授和南宁师范大学徐轶肖教授对论文提出的宝贵修改意见,在此向他们表示衷心的感谢!
-
[1] FEI X F, CHRISTAKOS G, XIAO R, et al. Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information [J]. Science of the Total Environment, 2019, 661: 168-177. doi: 10.1016/j.scitotenv.2019.01.149 [2] CRAWFORD J W, HARRIS J A, RITZ K, et al. Towards an evolutionary ecology of life in soil [J]. Trends in Ecology & Evolution, 2005, 20(2): 81-87. [3] KHAN K, LU Y L, KHAN H, et al. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan [J]. Food and Chemical Toxicology, 2013, 58: 449-458. doi: 10.1016/j.fct.2013.05.014 [4] 郭娟, 崔荣国, 闫卫东, 等. 2019年中国矿产资源形势回顾与展望 [J]. 中国矿业, 2020, 29(1): 1-5. GUO J, CUI R G, YAN W D, et al. Outlook and overview of mineral resources situation of China in 2019 [J]. China Mining Magazine, 2020, 29(1): 1-5(in Chinese).
[5] NICOLÁS C, MARTIN-BERTELSEN T, FLOUDAS D, et al. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen [J]. The ISME Journal, 2019, 13(4): 977-988. doi: 10.1038/s41396-018-0331-6 [6] 林耀奔, 叶艳妹, 杨建辉, 等. 土地整治对土壤微生物多样性的影响分析 [J]. 环境科学学报, 2019, 39(8): 2644-2653. LIN Y B, YE Y M, YANG J H, et al. The effect of land consolidation on soil microbial diversity [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2644-2653(in Chinese).
[7] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望 [J]. 植物生态学报, 2014, 38(3): 298-310. doi: 10.3724/SP.J.1258.2014.00027 WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310(in Chinese). doi: 10.3724/SP.J.1258.2014.00027
[8] ISLAM W, NOMAN A, NAVEED H, et al. Role of environmental factors in shaping the soil microbiome [J]. Environmental Science and Pollution Research, 2020, 27(33): 41225-41247. doi: 10.1007/s11356-020-10471-2 [9] WANG J W, NIU W Q, LI Y, et al. Subsurface drip irrigation enhances soil nitrogen and phosphorus metabolism in tomato root zones and promotes tomato growth [J]. Applied Soil Ecology, 2018, 124: 240-251. doi: 10.1016/j.apsoil.2017.11.014 [10] MARLEAU J N, PELLER T, GUICHARD F, et al. Converting ecological currencies: Energy, material, and information flows [J]. Trends in Ecology & Evolution, 2020, 35(12): 1068-1077. [11] DELEN D. A holistic approach to manufacturing systems modelling [J]. International Journal of Simulation and Process Modelling, 2009, 5(1): 54. doi: 10.1504/IJSPM.2009.025827 [12] KORHONEN J, WIHERSAARI M, SAVOLAINEN I. Industrial ecosystem in the Finnish forest industry: Using the material and energy flow model of a forest ecosystem in a forest industry system [J]. Ecological Economics, 2001, 39(1): 145-161. doi: 10.1016/S0921-8009(01)00204-X [13] ZHANG J. Energy flows in complex ecological systems: A review [J]. Journal of Systems Science and Complexity, 2009, 22(3): 345-359. doi: 10.1007/s11424-009-9169-3 [14] MERINO-MARTÍN L, STOKES A, GWEON H S, et al. Interacting effects of land use type, microbes and plant traits on soil aggregate stability [J]. Soil Biology and Biochemistry, 2021, 154: 108072. doi: 10.1016/j.soilbio.2020.108072 [15] XIE H T, LI J W, ZHANG B, et al. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates [J]. Scientific Reports, 2015, 5: 14687. doi: 10.1038/srep14687 [16] GUPTA V V S R, GERMIDA J J. Soil aggregation: Influence on microbial biomass and implications for biological processes [J]. Soil Biology and Biochemistry, 2015, 80: A3-A9. doi: 10.1016/j.soilbio.2014.09.002 [17] XIAO S S, ZHANG W, YE Y Y, et al. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem [J]. Scientific Reports, 2017, 7: 41402. doi: 10.1038/srep41402 [18] JING Y L, DING X L, ZHAO X C, et al. Non-additive effects of nitrogen and phosphorus fertilization on microbial biomass and residue distribution in a subtropical plantation [J]. European Journal of Soil Biology, 2022, 108: 103376. doi: 10.1016/j.ejsobi.2021.103376 [19] LALIBERTÉ E, KARDOL P, DIDHAM R K, et al. Soil fertility shapes belowground food webs across a regional climate gradient [J]. Ecology Letters, 2017, 20(10): 1273-1284. doi: 10.1111/ele.12823 [20] MURASE J, HIDA A, OGAWA K, et al. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil [J]. Soil Biology and Biochemistry, 2015, 80: 237-243. doi: 10.1016/j.soilbio.2014.10.015 [21] GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems - A meta-analysis [J]. Soil Biology and Biochemistry, 2017, 115: 452-460. doi: 10.1016/j.soilbio.2017.09.018 [22] DANG P F, LI C F, LU C, et al. Effect of fertilizer management on the soil bacterial community in agroecosystems across the globe [J]. Agriculture, Ecosystems & Environment, 2022, 326: 107795. [23] YANG F, TIAN J, FANG H J, et al. Functional soil organic matter fractions, microbial community, and enzyme activities in a mollisol under 35 years manure and mineral fertilization [J]. Journal of Soil Science and Plant Nutrition, 2019, 19(2): 430-439. doi: 10.1007/s42729-019-00047-6 [24] VOLTR V, MENŠÍK L, HLISNIKOVSKÝ L, et al. The soil organic matter in connection with soil properties and soil inputs [J]. Agronomy, 2021, 11(4): 779. doi: 10.3390/agronomy11040779 [25] EVANGELOU V P, PHILLIPS R E. Cation exchange in soils[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 343-410. [26] LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century [J]. Global Change Biology, 2020, 26(1): 261-273. doi: 10.1111/gcb.14859 [27] WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems [J]. Soil Biology and Biochemistry, 2021, 162: 108422. doi: 10.1016/j.soilbio.2021.108422 [28] ZHAO R D, HE M, JIANG C L, et al. Microbial community structure in rhizosphere soil rather than that in bulk soil characterizes aggregate-associated organic carbon under long-term forest conversion in subtropical region [J]. Rhizosphere, 2021, 20: 100438. doi: 10.1016/j.rhisph.2021.100438 [29] LAL R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems [J]. Global Change Biology, 2018, 24(8): 3285-3301. doi: 10.1111/gcb.14054 [30] GHIMIRE R, LAMICHHANE S, ACHARYA B S, et al. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review [J]. Journal of Integrative Agriculture, 2017, 16(1): 1-15. doi: 10.1016/S2095-3119(16)61337-0 [31] CROWTHER T W, van den HOOGEN J, WAN J, et al. The global soil community and its influence on biogeochemistry [J]. Science, 2019, 365(6455): eaav0550. doi: 10.1126/science.aav0550 [32] ZHANG Y L, HEAL K V, SHI M J, et al. Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient [J]. Science of the Total Environment, 2022, 818: 151823. doi: 10.1016/j.scitotenv.2021.151823 [33] BASTIDA F, ELDRIDGE D J, GARCÍA C, et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes [J]. The ISME Journal, 2021, 15(7): 2081-2091. doi: 10.1038/s41396-021-00906-0 [34] 苏丹, 张凯, 陈法霖, 等. 施氮对不同有机碳水平桉树林土壤微生物群落碳代谢的影响 [J]. 生态学报, 2015, 35(18): 5940-5947. SU D, ZHANG K, CHEN F L, et al. Effects of nitrogen application on carbon metabolism of soil microbial communities in eucalyptus plantations with different levels of soil organic carbon [J]. Acta Ecologica Sinica, 2015, 35(18): 5940-5947(in Chinese).
[35] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage [J]. Nature Microbiology, 2017, 2: 17105. doi: 10.1038/nmicrobiol.2017.105 [36] 喻国军, 谢晓尧. 喀斯特地区造林对土壤团聚体稳定性及微生物碳代谢活性的影响 [J]. 水土保持研究, 2020, 27(6): 21-27,36. YU G J, XIE X Y. Effects of afforestation on soil aggregate stability and microbial carbon metabolism activity in Karst area [J]. Research of Soil and Water Conservation, 2020, 27(6): 21-27,36(in Chinese).
[37] GLASSMAN S I, WEIHE C, LI J H, et al. Decomposition responses to climate depend on microbial community composition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11994-11999. doi: 10.1073/pnas.1811269115 [38] WANG C Q, XUE L, DONG Y H, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations [J]. Science of the Total Environment, 2021, 758: 143695. doi: 10.1016/j.scitotenv.2020.143695 [39] GLICK B R. Soil microbes and sustainable agriculture [J]. Pedosphere, 2018, 28(2): 167-169. doi: 10.1016/S1002-0160(18)60020-7 [40] LI X F, XU J, SHI Z, et al. Regulation of protist grazing on bacterioplankton by hydrological conditions in coastal waters [J]. Estuarine, Coastal and Shelf Science, 2019, 218: 1-8. doi: 10.1016/j.ecss.2018.11.013 [41] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论 [J]. 中国科学:地球科学, 2021, 51(5): 680-695. LIANG C, ZHU X]. An overview of carbon storage mechanism of soil microbial carbon pump [J]. Chinese Science:Earth Science, 2021, 51(5): 680-695(in Chinese).
[42] DENG F B, LIANG C. Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil [J]. Soil Biology and Biochemistry, 2022, 165: 108486. doi: 10.1016/j.soilbio.2021.108486 [43] ZHAO Y, LI Y L, YANG F. Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements [J]. Science of the Total Environment, 2021, 751: 141614. doi: 10.1016/j.scitotenv.2020.141614 [44] YAO Q M, LI Z, SONG Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil [J]. Nature Ecology & Evolution, 2018, 2(3): 499-509. [45] MENDEZ M O, MAIER R M. Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology [J]. Environmental Health Perspectives, 2008, 116(3): 278-283. doi: 10.1289/ehp.10608 [46] VEDRAN, VUČIĆ, SUSANN, et al. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams [J]. Engineering in Life Sciences, 2021, 21(3/4): 77-86. [47] AMY C, AVICE J C, LAVAL K, et al. Are native phosphate-solubilizing bacteria a relevant alternative to mineral fertilizations for crops?Part II: PSB inoculation enables a halving of P input and improves the microbial community in the rapeseed rhizosphere [J]. Rhizosphere, 2022, 21: 100480. doi: 10.1016/j.rhisph.2022.100480 [48] ZHANG J E, FENG L F, OUYANG Y, et al. Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China [J]. CATENA, 2020, 195: 104686. doi: 10.1016/j.catena.2020.104686 [49] CHENG Y, ELRYS A S, MERWAD A R M, et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium [J]. Environmental Science & Technology, 2022, 56(6): 3791-3800. [50] CHINTA Y D, UCHIDA Y, ARAKI H. Availability of nitrogen supply from cover crops during residual decomposition by soil microorganisms and its utilization by lettuce (Lactuca sativa L. ) [J]. Scientia Horticulturae, 2020, 270: 109415. doi: 10.1016/j.scienta.2020.109415 [51] LING N, WANG T T, KUZYAKOV Y. Rhizosphere bacteriome structure and functions [J]. Nature Communications, 2022, 13: 836. doi: 10.1038/s41467-022-28448-9 [52] NAVARRO-NOYA Y E, HERNÁNDEZ-MENDOZA E, MORALES-JIMÉNEZ J, et al. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings [J]. Applied Soil Ecology, 2012, 62: 52-60. doi: 10.1016/j.apsoil.2012.07.011 [53] NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis [J]. Geoderma, 2017, 288: 79-96. doi: 10.1016/j.geoderma.2016.11.004 [54] 许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展 [J]. 应用生态学报, 2020, 31(12): 4312-4320. XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: A review [J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320(in Chinese).
[55] STARKE R, MONDÉJAR R L, HUMAN Z R, et al. Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach [J]. Soil Biology and Biochemistry, 2021, 155: 108170. doi: 10.1016/j.soilbio.2021.108170 [56] ARAÚJO A S F, MONTEIRO R T R, ABARKELI R B. Effect of glyphosate on the microbial activity of two Brazilian soils [J]. Chemosphere, 2003, 52(5): 799-804. doi: 10.1016/S0045-6535(03)00266-2 [57] AL-ANI M A M, HMOSHI R M, KANAAN I A, et al. Effect of pesticides on soil microorganisms [J]. Journal of Physics:Conference Series, 2019, 1294(7): 072007. doi: 10.1088/1742-6596/1294/7/072007 [58] 田其凡, 何玘霜, 陆安祥, 等. 农田土壤抗生素抗性基因与微生物群落的关系 [J]. 环境化学, 2020, 39(5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602 TIAN Q F, HE Q S, LU A X, et al. Relationship between antibiotic resistance genes and microbial communities in farmland soil [J]. Environmental Chemistry, 2020, 39(5): 1346-1355(in Chinese). doi: 10.7524/j.issn.0254-6108.2019060602
[59] ZHANG W, LIU Y G, TAN X F, et al. Enhancement of detoxification of petroleum hydrocarbons and heavy metals in oil-contaminated soil by using Glycine-β-cyclodextrin [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1155. doi: 10.3390/ijerph16071155 [60] NISHIWAKI J, KAWABE Y, KOMAI T, et al. Decomposition of gasoline hydrocarbons by natural microorganisms in Japanese soils [J]. Geosciences, 2018, 8(2): 35. doi: 10.3390/geosciences8020035 [61] KOŠNÁŘ Z, MERCL F, TLUSTOŠ P. Ability of natural attenuation and phytoremediation using maize (Zea mays L. ) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil [J]. Ecotoxicology and Environmental Safety, 2018, 153: 16-22. doi: 10.1016/j.ecoenv.2018.01.049 [62] LI X N, QU C S, BIAN Y R, et al. New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics [J]. Environmental Pollution, 2019, 255: 113312. doi: 10.1016/j.envpol.2019.113312 [63] KOTOKY R, RAJKUMARI J, PANDEY P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil [J]. Journal of Environmental Management, 2018, 217: 858-870. doi: 10.1016/j.jenvman.2018.04.022 [64] 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102 HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102
[65] GAN C D, GAN Z W, CUI S F, et al. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area [J]. Science of the Total Environment, 2021, 771: 144809. doi: 10.1016/j.scitotenv.2020.144809 [66] CUI S F, FU Y Z, ZHOU B Q, et al. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil [J]. Chemosphere, 2021, 278: 130432. doi: 10.1016/j.chemosphere.2021.130432 [67] 傅绍光, 刘鹏, 罗虹, 等. 铝和氟对茶树根际土壤微生物交互作用的研究 [J]. 浙江师范大学学报(自然科学版), 2009, 32(3): 332-337. FU S G, LIU P, LUO H, et al. Interaction of aluminum and fluorine stress on soil microbes of tea rhizosphere [J]. Journal of Zhejiang Normal University (Natural Sciences), 2009, 32(3): 332-337(in Chinese).
[68] 2020年城市固体废物污染环境防治年报发布[J]. 再生资源与循环经济, 2021, 14(2): 14. 2020 annual report on prevention and control of environmental pollution by urban solid waste released[J]. Recyclable Resources and Circular Economy, 2021, 14(2): 14(in Chinese).
[69] 中华人民共和国环境保护部. 2014年全国大、中城市固体废物污染环境防治年报(节选) [J]. 再生资源与循环经济, 2015, 8(1): 4-8. doi: 10.3969/j.issn.1674-0912.2015.01.003 Ministry of Environmental Protection of the People's Republic of China. 2014 national annual report on prevention and control of environmental pollution by solid waste in large and medium cities (excerpt) [J]. Recyclable Resources and Circular Economy, 2015, 8(1): 4-8(in Chinese). doi: 10.3969/j.issn.1674-0912.2015.01.003
[70] ZHOU Y Y, REN B Z, HURSTHOUSE A, et al. Antimony ore tailings: Heavy metals, ChemicalSpeciation, and leaching characteristics [J]. Polish Journal of Environmental Studies, 2018, 28(1): 485-495. doi: 10.15244/pjoes/85006 [71] HU X Y, HE M C, LI S S, et al. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China [J]. Journal of Geochemical Exploration, 2017, 176: 76-84. doi: 10.1016/j.gexplo.2016.01.009 [72] CUI X W, GENG Y, LI T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies [J]. Resources, Conservation and Recycling, 2021, 173: 105746. doi: 10.1016/j.resconrec.2021.105746 [73] WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings [J]. Chemosphere, 2017, 184: 594-600. doi: 10.1016/j.chemosphere.2017.06.025 [74] YI Z J, ZHAO C H. Desert “soilization”: An eco-mechanical solution to desertification [J]. Engineering, 2016, 2(3): 270-273. doi: 10.1016/J.ENG.2016.03.002 [75] KAUR R, SHARMA S, KAUR H. Heavy metals toxicity and the environment [J]. Journal of Pharmacognosy and Phytochemistry, 2019: 247-249. [76] MA Y, OLIVEIRA R S, FREITAS H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation [J]. Frontiers in Plant Science, 2016, 7: 918. [77] MISHRA J, SINGH R, ARORA N K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms [J]. Frontiers in Microbiology, 2017, 8: 1706. doi: 10.3389/fmicb.2017.01706 [78] TRIPPE K M, MANNING V A, REARDON C L, et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? [J]. Applied Soil Ecology, 2021, 165: 103962. doi: 10.1016/j.apsoil.2021.103962 [79] XING L, WEN J, YAN C Y, et al. Improving the microenvironment of Cd-contaminated River sediments through humic substances washing and zeolite immobilization [J]. Process Safety and Environmental Protection, 2021, 146: 779-788. doi: 10.1016/j.psep.2020.12.024 [80] XIAO E Z, NING Z P, XIAO T F, et al. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump [J]. Environmental Pollution, 2019, 253: 141-151. doi: 10.1016/j.envpol.2019.06.097 [81] ZHAN J, SUN Q Y. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration [J]. Journal of Environmental Sciences, 2011, 23(3): 476-487. doi: 10.1016/S1001-0742(10)60433-0 [82] 刘广容, 叶春松, 钱勤, 等. 电动生物修复底泥中电场对微生物活性的影响 [J]. 武汉大学学报(理学版), 2011, 57(1): 47-51. LIU G R, YE C S, QIAN Q, et al. Effects of electrokinetic bioremediation of electric field on sediment microbial activity [J]. Journal of Wuhan University (Natural Science Edition), 2011, 57(1): 47-51(in Chinese).
[83] LI F M, GUO S H, WANG S, et al. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil [J]. Chemosphere, 2020, 254: 126880. doi: 10.1016/j.chemosphere.2020.126880 [84] HARTL M, BEDOYA-RÍOS D F, FERNÁNDEZ-GATELL M, et al. Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells [J]. Science of the Total Environment, 2019, 652: 1195-1208. doi: 10.1016/j.scitotenv.2018.10.234 [85] 范瑞娟, 马艳, 张琇, 等. 芘污染盐碱土壤微生物-电动修复效率影响因素 [J]. 中国环境科学, 2021, 41(2): 801-812. doi: 10.3969/j.issn.1000-6923.2021.02.035 FAN R J, MA Y, ZHANG X, et al. Factors affecting bio-electrokinetic remediation efficiency of pyrene contaminated saline-alkali soil [J]. China Environmental Science, 2021, 41(2): 801-812(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.02.035
[86] ALSHAWABKEH A N, MAILLACHERUVU K. Electrochemical and biogeochemical interactions under dc electric fields[M]//Physicochemical Groundwater Remediation. Boston: Kluwer Academic Publishers, 2005: 73-90. [87] 范瑞娟, 郭书海, 李凤梅, 等. 二维电场中微生物群落动态及混合有机物降解特征 [J]. 环境科学学报, 2017, 37(9): 3543-3552. FAN R J, GUO S H, LI F M, et al. Dynamics of microbial community and degradation characteristics of mixed organics in a 2-dimensional electric field [J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3543-3552(in Chinese).
[88] ZAIDI N S, SOHAILI J, MUDA K, et al. Magnetic field application and its potential in water and wastewater treatment systems [J]. Separation & Purification Reviews, 2014, 43(3): 206-240. [89] QU M M, CHEN J M, HUANG Q Q, et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields [J]. International Biodeterioration & Biodegradation, 2018, 128: 41-47. [90] MCLEAN M, ENGSTRÖM S, HOLCOMB R. Static magnetic fields for the treatment of pain [J]. Epilepsy & Behavior, 2001, 2(3): S74-S80. [91] LYU W L, SONG Q, SHI J, et al. Weak magnetic field affected microbial communities and function in the A/O/a sequencing batch reactors for enhanced aerobic granulation [J]. Separation and Purification Technology, 2021, 266: 118537. doi: 10.1016/j.seppur.2021.118537 [92] LI M Q, ZHANG J, LIANG S, et al. Novel magnetic coupling constructed wetland for nitrogen removal: Enhancing performance and responses of plants and microbial communities [J]. Science of the Total Environment, 2022, 819: 152040. doi: 10.1016/j.scitotenv.2021.152040 [93] XU D, JI H M, REN H Q, et al. Inhibition effect of magnetic field on nitrous oxide emission from sequencing batch reactor treating domestic wastewater at low temperature [J]. Journal of Environmental Sciences (China), 2020, 87: 205-212. doi: 10.1016/j.jes.2019.05.014 [94] NIU C, LIANG W H, REN H Q, et al. Enhancement of activated sludge activity by 10-50 mT static magnetic field intensity at low temperature [J]. Bioresource Technology, 2014, 159: 48-54. doi: 10.1016/j.biortech.2014.01.131 [95] 张吉先, 俞劲炎. 磁场对土壤微生物和酶活性的影响 [J]. 土壤通报, 1999, 30(1): 26-28. doi: 10.3321/j.issn:0564-3945.1999.01.008 ZHANG J X, YU J Y. Effect of magnetic field on soil microorganism and enzyme activity [J]. Chinese Journal of Soil Science, 1999, 30(1): 26-28(in Chinese). doi: 10.3321/j.issn:0564-3945.1999.01.008
[96] XU Y B, HOU M Y, RUAN J J, et al. Effect of magnetic field on surface properties of Bacillus cereus CrA and its Extracellular Polymeric Substances (EPS) [J]. Journal of Adhesion Science and Technology, 2014, 28(21): 2196-2208. doi: 10.1080/01694243.2014.951303 [97] 栗杰, 依艳丽, 贺忠科, 等. 磁处理棕壤对土壤中几种细菌的影响 [J]. 土壤通报, 2009, 40(6): 1262-1265. LI J, YI Y L, HE Z K, et al. Effects of magnetic treatment on some soil microbial activities in brown earth [J]. Chinese Journal of Soil Science, 2009, 40(6): 1262-1265(in Chinese).
[98] FLORES M R, ORDOÑEZ O F, MALDONADO M J, et al. Isolation of UV-B resistant bacteria from two high altitude Andean Lakes (4, 400 m) with saline and non saline conditions [J]. The Journal of General and Applied Microbiology, 2009, 55(6): 447-458. doi: 10.2323/jgam.55.447 [99] SINGH O V, GABANI P. Extremophiles: Radiation resistance microbial reserves and therapeutic implications [J]. Journal of Applied Microbiology, 2011, 110(4): 851-861. doi: 10.1111/j.1365-2672.2011.04971.x [100] GABANI P, PRAKASH D, SINGH O V. Bio-signature of ultraviolet-radiation-resistant extremophiles from elevated land [J]. American Journal of Microbiological Research, 2014, 2(3): 94-104. doi: 10.12691/ajmr-2-3-3 -