-
在地球水循环系统中,地表水、地下水和大气降水等不同类型水体具有不同的氢氧稳定同位素组成特征[1]。地热温泉作为一种天然环保的地热资源,是地球水循环过程中的重要组成部分。由于受温度、水-岩作用和冷水混入等因素的影响,地热温泉水的氢氧稳定同位素具有特有的同位素组成特征[2]。因此,为了准确地认识地热温泉水的水源以及水文循环过程,通常采用氢氧稳定同位素对其进行示踪,以获取地热温泉水补给来源、补给高程和补给温度等相关信息[3],为地热温泉水资源的可持续开发利用提供重要依据。
目前,对于氢氧稳定同位素的研究在理论和实践上均有较快的发展,且主要集中应用于天然水、大气降水以及地表水等水体[4],同时也逐渐应用于地下热水的相关研究[5-6]。早期的研究通过δD和δ18O数值确定了全球大气降水线,指出通常大气降水是地下热水的母源,18O飘移现象在高温地热系统中普遍存在[7]。如在美国加利福尼亚州科索高温地热系统中,储层岩石中的δ18O值与温度就表现出紧密关系[8];日本别府地热系统中的高温温泉δ18O值相较于当地大气降水有所偏负,且随着蒸汽冷凝物的混入,温度升高也导致18O飘移的现象发生[9]。这两处典型地热系统均表明18O的飘移与地热热储温度直接相关。近50年来,国内相关专家学者对西藏区域内地下热水的氢氧稳定同位素也开展了相关研究,并利用氢氧稳定同位素信息估算地下热水热储温度和循环深度[4,10-11],为区域地下热水资源的开发利用提供了良好的科学支持。同时,相关学者分别对西藏东部昌都区域的觉拥温泉[12]、阿旺地下热水[13],中部拉萨区域的松多温泉、日多温泉、羊八井地热田[11],北部那曲地区的谷露地热田[14],南部区域内的谷堆地热田[15]以及西部日喀则区域内的搭格架地热田、色米地热田[15]等一些西藏区域内典型高温地热系统地下热水的氢氧稳定同位素特征开展了相关研究。结果表明西藏区域内地热温泉的补给来源主要为大气降水,但存在不同程度的18O飘移现象。其主要原因是这些地热温泉水体温度较高,水-岩作用强烈,从而发生了明显的氧同位素交换作用,导致地下热水中的δ18O含量增多。值得特别注意的是,西藏西部区域内的高硼地热区的地热温泉水样出现相较更明显的18O飘移现象,显示了岩浆流体补给的特点[15]。
这些前期的研究为进一步系统开展西藏地区地热温泉水的氢氧稳定同位素特征、补给来源以及补给高程的估算提供了基础。本文就以地热温泉分布广泛的西藏日喀则市行政区域为研究范围,涉及该区域18个县中的16个,筛选该区域内地热温泉出露较为典型的27处地热温泉、54个泉眼为研究对象,通过采集2020年枯水期(12月)以及2021丰水期(8月)各泉眼地热温泉水样,对这54个泉眼水样的氢氧稳定同位素时空变化特征、补给来源、补给高程和补给温度开展了研究。旨在同时从空间维度和时间维度对日喀则全区域范围内的地热温泉水循环过程中物质迁移进行了解,为区域地热温泉水资源的可持续开发与利用提供科学依据。
西藏日喀则区域地热温泉水氢氧稳定同位素特征
Hydrogen and oxygen stable isotopic characteristics of geothermal hot spring water in Shigatse region, Tibet
-
摘要: 西藏日喀则区域内地热资源丰富,但针对这些地热温泉水氢氧稳定同位素特征研究相对匮乏。本研究对西藏日喀则区域内27处地热温泉、54个泉眼水样的δD和δ18O含量时空变化、补给来源、补给高程和补给温度开展了研究。结果表明,氢同位素在空间变化上整体表现为自东南向西北呈先减小再升高再减小的趋势,氧同位素自东南向西北呈先减少再升高的趋势,其蒸发量和水-岩作用可能是研究区地热温泉水δD、δ18O分布的主要影响因素。在被研究的54个泉眼中,与西藏其他区域情况类似,研究区内的地热温泉水主要受大气降水补给,且丰水期影响较枯水期明显。但除康布(KB)温泉的11个泉眼以外,其余43个泉眼样点受区域海拔高度、降水量、蒸发量、温泉水温和游离CO2含量高低的影响,地热温泉水-岩作用的强烈程度不同,导致地热温泉水存在不同程度的18O飘移,从而表现出地热温泉水中氢氧稳定同位素的空间异质性。研究区内除康布(KB)温泉以外,水-岩作用和地热温泉水的补给方式是地下热水中物质组成的影响因素。而康布(KB)温泉,因无明显的水-岩作用,使得其与大气降水的关系更为紧密。利用大气降水中δD和δ18O的高程效应和温度效应的计算可以得出康布(KB)温泉的补给高程为4264—4301 m,补给温度为−6.27—−5.53 ℃。这进一步表明康布(KB)温泉地下热水主要受地热温泉出露区附近所在山体接受的大气降水入渗补给影响。Abstract: The Shigatse region of Tibet is rich in thermal resources, but there are few studies on the hydrogen and oxygen stable isotopic characteristics of these geothermal hot spring waters and their significance. In this study, the temporal and spatial variations of δD and δ18O contents, recharge sources, recharge elevation and recharge temperature of 27 geothermal hot springs (all together with 54 spring water samples) in Shigatse region ,Tibet were studied. The results showed that the overall spatial variation of hydrogen isotopes showed a trend of decreasing and then increasing, and decreasing at the end from southeast to northwest direction. Oxygen isotopes were as decreasing and then increasing from southeast to northwest. The evaporation and water-rock interaction may be the main factors influencing the distribution of δD and δ18O in geothermal hot spring waters. Among the 54 spring samples studied, similar to the other regions in Tibet, the geothermal hot spring waters in the study area were mainly recharged by atmospheric precipitation, and the impact was more obvious in the wet season than in the dry season. However, except for the 11 springs samples from Khambu (KB) hot spring, the remaining 43 spring samples were affected by the regional altitude, precipitation, evaporation, hot spring water temperature and free CO2 contents. The intensity of the hydrothermal effect of geothermal hot springs was different, resulting from different degrees of 18O drift in geothermal hot spring waters, thus showing the spatial heterogeneity of hydrogen and oxygen stable isotopes in geothermal hot spring waters. Except for the Khambu (KB) hot springs in the study area, the water-rock interaction and the replenishment method of the geothermal hot spring waters were the influencing factors of the material composition of the underground hot waters. The Khambu (KB) hot springs had no obvious water-rock interaction, which made it more closely related to atmospheric precipitation. It can be concluded that the recharge elevation of the Khambu (KB) hot spring is 4264—4301 m, and the recharge temperature is −6.27—−5.53 ℃. This further indicates that the geothermal waters of the Khambu (KB) hot springs was mainly affected by the infiltration and recharge of atmospheric precipitation received by the mountains near the geothermal hot springs.
-
表 1 西藏日喀则区域地热温泉样点基本信息表
Table 1. Basic information of geothermal hot spring sampling sites in Shigatse region, Tibet
序号
Serial number地热温泉名称
Name of geothermal hot spring泉眼编号 - 地热温泉类型
Spring sampling number - Geothermal spring type海拔/m
Altitude地热温泉所在县
The county1 荣满东温泉(RMD) 2个采样点:枯(RMD1、RMD2)- 热泉;
丰(RMD2)→低温温泉4096 仁布县 2 雅江温泉(YJ) 1个采样点:枯(YJ)- 热泉;丰
→未采样3720 3 查当微温泉(CDW) 1个采样点:(CD)- 微温泉 4177 康马县 4 拉布普温泉(LBP) 1个采样点:(LBP)- 温泉 4368 南木林县 5 碧碧龙喷泉(BBL) 1个采样点:(BBL)- 沸泉 4548 6 欧布堆(OBD) 2个采样点:枯(OBD1)-热泉;(OBD2)-低温温泉;
丰(OBD2)→温泉4455 7 金嘎温泉(JG) 2个样点:(JG1、JG3)- 温泉 4316 江孜县 8 康布温泉(KB) 11个样点:枯(A、B、C、D、E、I、J、K、M)- 热泉,
(F、G-温泉);丰(D、E、J、K、M)→温泉4259 亚东县 9 塔杰温泉(TJ) 1个采样点:(TJ)-热泉 4492 岗巴县 10 龙中温泉(LZ) 3个采样点:枯:(LZ1)-热泉,(LZ2)-温泉,(LZ3)-沸泉;
丰(LZ1)→温泉4512 11 孔玛温泉(KM) 2个采样点:枯(KM1)-温泉、(KM2)-热泉;
丰(KM2)→未采样4697 12 东拉热泉(DL) 1个采样点:(DL)-温泉 4776 定结县 13 果琼温泉(GQ) 1个采样点:(GQ)-热泉 3923 谢通门县 14 卡嘎温泉(KG) 1个采样点:(KG)-热泉 3946 15 卡乌温泉(KW) 3个采样点:枯(KW1、KW3)- 热泉;(KW2)-温泉;
丰(KW1)→沸泉,(KW2)→低温温泉4619 萨迦县 16 芒普温泉(MP) 2个采样点:枯(MP1、MP2)- 温泉;丰(MP2)→热泉 4607 拉孜县 17 锡钦温泉(XQ) 1个采样点:(XQ)-热泉 4013 18 尼夏温泉(NX) 1个样点:(NX)-热泉 4173 定日县 19 鲁鲁温泉(LL) 4个采样点:枯(LL1、LL2)-热泉,(LL3)-低温温泉,
(LL4)- 温泉;丰(LL3)→未采样4421 20 仓木达温泉(CDM) 1个采样点:(CDM)-温泉 4398 21 搭格架间歇喷泉(DGJ) 3个样点:枯(DGJ1、DGJ3)- 沸泉,(DGJ2)—热泉;
丰(DGJ2)→沸泉,(DGJ3)→亚沸泉5065 昂仁县 22 热龙温泉(RL) 1个采样点:(RL)-温泉 4383 昂仁县 23 阿当微(ADW) 1个样点:(ADW)-微温泉 4352 聂拉木县 24 仲玛低温温泉(ZM) 1个采样点:枯(ZM)-微温泉;丰:(ZM)→热泉 4291 吉隆县 25 卡龙温泉(KL) 1个采样点:(KL)-温泉 4443 26 如角沸泉(RJ) 3个采样点:枯(RJ1-RJ3)-热泉;丰(RJ1)→沸泉,
(RJ3)→未采样5128 萨嘎县 27 斯冲温泉(SC) 2个泉眼:(SC1、SC2)-低温温泉 5120 仲巴县 表 2 西藏日喀则区域地热温泉氢氧稳定同位素和温度数据
Table 2. Hydrogen and oxygen stable isotopes and temperature data of geothermal hot springs in Shigatse region, Tibet
序号
Serial number泉眼编号
Spring sample number丰水期 (Wet season) 枯水期 (Dry season) δ18O/‰ δD/‰ t/℃ δ18O/‰ δD/‰ t/℃ 1 荣满东(RMD)温泉RMD1泉眼 −17.72 −151.9 59 −12.81 −153.2 54 2 荣满东(RMD)温泉RMD2泉眼 −15.82 −147.4 24 −16.55 −152.3 63 3 雅江(RMD)温泉YJ泉眼 — — — −18.45 −162.3 78 4 查当微(CDW)温泉CDW泉眼 −22.22 −148.5 18 −19.12 −148.6 17 5 拉布普(LBP)温泉LBP泉眼 −20.54 −165.4 42 −18.37 −165.8 36 6 碧碧龙(BBL)喷泉BBL泉眼 −21.65 −165.7 91 −15.30 −165.0 85 7 欧布堆(OBD)温泉OBD1泉眼 −21.63 −170.1 72 −16.47 −167.3 66 8 欧布堆(OBD)温泉OBD2泉眼 −21.75 −178.9 39 −15.91 −166.8 28 9 金嘎(JG)温泉JG1泉眼 −20.27 −149.3 43 −18.22 −149.4 40 10 金嘎(JG)温泉JG3泉眼 −21.78 −149.3 39 −19.11 −153.5 40 11 康布(KB)温泉A泉眼 −17.41 −108.2 50 −14.93 −110.2 54 12 康布(KB)温泉B泉眼 −16.85 −107.9 47.5 −14.92 −108.6 52 13 康布(KB)温泉C泉眼 −16.97 −109.8 48 −14.93 −110.3 51 14 康布(KB)温泉D泉眼 −16.16 −108.8 44.5 −14.51 −109.1 48 15 康布(KB)温泉E泉眼 −15.92 −107.9 44 −14.65 −109.1 49 16 康布(KB)温泉F泉眼 −15.88 −107.6 44 −14.88 −110.1 45 17 康布(KB)温泉G泉眼 −16.13 −109 43 −14.79 −110.1 41.5 18 康布(KB)温泉I泉眼 −15.99 −109.9 48 −14.80 −110.3 50 19 康布(KB)温泉J泉眼 −15.36 −108.7 42 −14.72 −110.5 46 20 康布(KB)温泉K泉眼 −15.63 −108.9 45 −14.76 −110.8 50 21 康布(KB)温泉M泉眼 −15.17 −107.3 39 −14.78 −110.1 43 22 塔杰(TJ)温泉TJ泉眼 −19.69 −155.2 53 −18.30 −155.8 50 23 龙中(LZ)温泉LZ1泉眼 −19.27 −154 37 −18.01 −155.8 77 24 龙中(LZ)温泉LZ2泉眼 −18.74 −153.2 42 −17.76 −153.8 41 25 龙中(LZ)温泉LZ3泉眼 −19.19 −155.4 88 −18.01 −154.8 84.5 26 孔玛(KM)温泉KM1泉眼 −18.65 −158.4 43 −17.04 −158.0 45 27 孔玛(KM)温泉KM2泉眼 — — — −16.84 −156.5 53 28 东拉(DL)温泉DL泉眼 −23.28 −174.3 44 −22.34 −176.3 40 29 果琼(GQ)温泉GQ泉眼 −18.97 −160.6 60 −17.82 −160.3 57 30 卡嘎(KG)温泉KG泉眼 −20.98 −167.1 55 −20.30 −168.3 48 31 卡乌(KW)沸泉KW1泉眼 −20.93 −169.8 87 −17.63 −165.5 75 32 卡乌(KW)沸泉KW2泉眼 −17.3 −158.2 22 −17.87 −163.3 39 33 卡乌(KW)沸泉KW3泉眼 −19.47 −173.2 61 −18.04 −164.3 54 34 芒普(MP)温泉MP1泉眼 −21.69 −167.1 44 −20.90 −168.0 40 35 芒普(MP)温泉MP2泉眼 −21.91 −168.5 46 −21.20 −169.1 45 36 锡钦(XQ)温泉XQ泉眼 −22.04 −182.1 53 −20.43 −171.6 50 37 尼夏(NX)温泉NX泉眼 −22.97 −172.7 50 −20.83 −169.7 48 38 鲁鲁(LL)温泉LL1泉眼 −20.94 −169.1 58 −19.70 −169.0 61 39 鲁鲁(LL)温泉LL2泉眼 −19.38 −166.1 57 −17.23 −165.9 66 40 鲁鲁(LL)温泉LL3泉眼 — — — −19.18 −167.2 32 41 鲁鲁(LL)温泉LL4泉眼 −19.84 −167.1 44 −18.44 −168.4 43 42 参木达(CDW)温泉CDM泉眼 −20.33 −161.4 39.5 −19.84 −165.0 44 43 搭格架(DGJ)间歇喷泉DGJ1泉眼 −19.44 −158.2 91 −18.73 −158.4 87 44 搭格架(DGJ)间歇喷泉DGJ2泉眼 −19.48 −159.6 84 −18.51 −159.4 78 45 搭格架(DGJ)间歇喷泉DGJ3泉眼 −20.13 −162.1 81 −18.59 −159.8 85 46 热龙(RL)温泉RL泉眼 −19.24 −156.7 37 −18.98 −159.6 41 47 阿当微(ADW)温泉ADW泉眼 −18.04 −131.9 18 −15.22 −133.5 19 48 仲玛(ZM)低温温泉ZM泉眼 −19.66 −161.1 48.5 −17.80 −150.0 13 49 卡龙(KL)温泉KL泉眼 −18.93 −160.5 42.5 −15.35 −155.3 40 50 如角(RJ)沸泉RJ1泉眼 −21.63 −172.2 84 −16.85 −166.5 79 51 如角(RJ)沸泉RJ2泉眼 −21.59 −166.2 75 −16.73 −167.0 70 52 如角(RJ)沸泉RJ3泉眼 — — — −16.81 −168.0 80 53 斯冲(SC)温泉SC1泉眼 −20.38 −159.2 32 −15.90 −162.9 32 54 斯冲(SC)温泉SC2泉眼 −20.51 −161.4 35 −20.53 −161.1 21 表 3 西藏日喀则区域康布(KB)温泉补给区高程计算结果统计表
Table 3. Statistical table of elevation calculation results of Khambu (KB) hot spring supply area in Shigatse region, Tibet
泉眼编号
Spring numberδG(18O)/‰ δP(18O)/‰ 采样高程/m
Sampling elevationK/‰ H/m 平均高程/m
Average elevation公式1
Formula 1公式2
Formula 2公式3
Formula 3A −16.17 −13 4254 −0.31 4264 2740 5172 4058.67 B −15.885 −13 4292 −0.31 4301 2708 5014 4007.67 C −15.95 −13 4261 −0.31 4271 2768 5050 4029.67 D −15.335 −13 4260 −0.31 4268 2732 4708 3902.67 E −15.285 −13 4260 −0.31 4267 2717 4681 3888.33 F −15.38 −13 4263 −0.31 4271 2728 4733 3910.67 G −15.46 −13 4259 −0.31 4267 2752 4778 3932.33 I −15.395 −13 4263 −0.31 4271 2770 4742 3927.67 J −15.04 −13 4252 −0.31 4259 2753 4544 3852.00 K −15.195 −13 4245 −0.31 4252 2762 4631 3881.67 M −14.975 −13 4257 −0.31 4263 2723 4508 3831.33 表 4 西藏日喀则区域康布(KB)温泉补给区温度估算结果
Table 4. Estimation results of Khambu(KB) hot spring supply area temperature in Shigatse region, Tibet
泉眼编号
Spring numberδ18O/‰ δD/‰ t/℃ 平均值/℃
Average value公式4
Formula 4公式5
Formula 5公式6
Formula 6A −16.17 −109.20 0.06 −6.07 −1.91 −2.64 B −15.89 −108.25 0.08 −5.53 −1.90 −2.45 C −15.95 −110.05 0.06 −6.10 −1.91 −2.65 D −15.34 −108.95 0.86 −5.70 −1.31 −2.05 E −15.29 −108.50 0.60 −5.70 −1.51 −2.21 F −15.38 −108.85 0.15 −6.03 −1.84 −2.57 G −15.46 −109.55 0.33 −6.03 −1.71 −2.47 I −15.40 −110.10 0.31 −6.10 −1.73 −2.51 J −15.04 −109.60 0.46 −6.17 −1.61 −2.44 K −15.20 −109.85 0.38 −6.27 −1.67 −2.52 M −14.98 −108.70 0.35 −6.03 −1.70 −2.46 -
[1] ZOUABI-ALOUI B, ADELANA S M, GUEDDARI M. Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: A simulation approach [J]. Environmental Monitoring and Assessment, 2015, 187(5): 292. doi: 10.1007/s10661-015-4509-3 [2] 王茜. 四川稻城温泉同位素、元素水文地球化学特征研究[D]. 成都: 成都理工大学, 2002. WANG Q . Study on the thermal spring character of isotope and element hydrogeochemistry in Daocheng, Sichuan[D]. Chengdu: Chengdu University of Technology, 2002(in Chinese).
[3] 王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991. WANG H C. Introduction to Isotope Hydrogeology [M]. Beijing: Geological Publishing House, 1991(in Chinese).
[4] 王洁青. 云南西北部温泉氢、氧稳定同位素研究[D]. 北京: 中国地质大学, 2017. WANG J Q. A study of hydrogen and oxygen stable isotopes of the hot springs in nonthwestern Yunnan[D]. Beijing: China University of Geosciences, 2017(in Chinese).
[5] 谭梦如, 周训, 张彧齐, 等. 云南勐海县勐阿街温泉水化学和同位素特征及成因 [J]. 水文地质工程地质, 2019, 46(3): 70-80. TAN M R, ZHOU X, ZHANG Y Q, et al. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai County of Yunnan [J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70-80(in Chinese).
[6] 张磊, 郭丽爽, 刘树文, 等. 四川鲜水河-安宁河断裂带温泉氢氧稳定同位素特征 [J]. 岩石学报, 2021, 37(2): 589-598. doi: 10.18654/1000-0569/2021.02.16 ZHANG L, GUO L S, LIU S W, et al. Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone, Sichuan Province, China [J]. Acta Petrologica Sinica, 2021, 37(2): 589-598(in Chinese). doi: 10.18654/1000-0569/2021.02.16
[7] CRAIG H. Isotopic variations in meteoric waters [J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 [8] ETZEL T M, BOWMAN J R, MOORE J N, et al. Oxygen isotope systematics in an evolving geothermal system: Coso hot springs, California [J]. Journal of Volcanology and Geothermal Research, 2017, 329: 54-68. doi: 10.1016/j.jvolgeores.2016.11.014 [9] KITAOKA K, YUSA Y, KAMIYAMA K, et al. Migration processes of geothermal fluids in the beppu geothermal system, Japan, estimated from stable isotope ratios [J]. Journal of Groundwater Hydrology, 1993, 35(4): 287-305. doi: 10.5917/jagh1987.35.287 [10] 钱会, 马致远, 李培月. 水文地球化学[M]. 2版. 北京: 地质出版社, 2012. QIAN H, MA Z Y, LI P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012(in Chinese).
[11] 周立. 西藏中部典型温泉特征[D]. 北京: 中国地质大学, 2012. ZHOU L. Characteristics of the typical hot springs in the central Tibet[D]. Beijing: China University of Geosciences, 2012(in Chinese).
[12] 郭宁. 西藏江达县典型地热显示区水化学特征及成因研究[D]. 石家庄: 河北地质大学, 2020. GUO N. Hydrogeochemical characteristics and genetic of geothermal water in Jiangda, Tibet[D]. Shijiazhuang: Hebei GEO University, 2020(in Chinese).
[13] 廖昕, 蒋翰, 徐正宣, 等. 西藏东部阿旺地下热水化学特征及其成因初探 [J]. 工程地质学报, 2020, 28(4): 916-924. LIAO X, JIANG H, XU Z X, et al. Hydrogeochemical characteristics and genesis mechanism of geothermal water in awang, eastern Tibet [J]. Journal of Engineering Geology, 2020, 28(4): 916-924(in Chinese).
[14] 刘昭. 西藏尼木—那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院, 2014.
LIU Z. The forming mechanism of typical high-temperature geothermal systems in Nimu-Naqu geothermal belt, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2014(in Chinese).[15] 刘明亮. 西藏典型高温水热系统中硼的地球化学研究[D]. 武汉: 中国地质大学, 2018. LIU M L. Boron geochemistry of the geothermal waters from typical hydrothermal systems in Tibet[D]. Wuhan: China University of Geosciences, 2018(in Chinese).
[16] 张敏, 王晓丽, 马玉寿, 等. 西藏日喀则地区牧草供需研究 [J]. 草地学报, 2021, 29(10): 2332-2338. ZHANG M, WANG X L, MA Y S, et al. Study on the supply and demand of forage in Shigatse region, Tibet [J]. Acta Agrestia Sinica, 2021, 29(10): 2332-2338(in Chinese).
[17] 徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 1996: 48-63. XU J H. Mathematical Methods in Modern Geography [M]. Beijing: Higher Education Press, 1996: 48-63(in Chinese).
[18] 徐宗学, 巩同梁, 赵芳芳. 近40年来西藏高原气候变化特征分析 [J]. 亚热带资源与环境学报, 2006, 1(3): 24-32. doi: 10.3969/j.issn.1673-7105.2006.03.004 XU Z X, GONG T L, ZHAO F F. Analysis of climate change in Tibetan Plateau over the past 40 years [J]. Journal of Subtropical Resources and Environment, 2006, 1(3): 24-32(in Chinese). doi: 10.3969/j.issn.1673-7105.2006.03.004
[19] 熊兴容. 西藏日喀则市农业种植结构变化及影响因素 [J]. 耕作与栽培, 2020, 40(4): 39-43. XIONG X R. Variation of agricultural planting structure and influence factor in Shigatse, Tibet [J]. Tillage and Cultivation, 2020, 40(4): 39-43(in Chinese).
[20] 中国科学院青藏高原综合科学考察队. 西藏地热[M]. 北京: 科学出版社, 1981. Chinese Academy of Sciences Qinghai-Tibet Plateau Comprehensive Scientific Expedition Team. Tibet Water Conservancy [M]. Beijing: Science Press, 1981(in Chinese).
[21] 熊德清, 崔笑烽. 喜马拉雅山脉地震带主要地质灾害与地形地貌关系: 以西藏日喀则地区为例 [J]. 地质通报, 2021, 40(11): 1967-1980. doi: 10.12097/j.issn.1671-2552.2021.11.014 XIONG D Q, CUI X F. The relationship between main geological hazard and topography in the Himalayan seismic belt: A case study in the Xigaze area, Tibet [J]. Geological Bulletin of China, 2021, 40(11): 1967-1980(in Chinese). doi: 10.12097/j.issn.1671-2552.2021.11.014
[22] 佟伟. 西藏温泉志[M]. 北京: 科学出版社, 2000: 5-9. TONG W. Thermal springs in Tibet[M]. Beijing: Science Press, 2000: 5-9(in Chinese).
[23] 吴燕芹. 西藏日喀则地区冷泉碳酸盐岩综合研究[D]. 北京: 中国地质大学(北京), 2016. WU Y Q. Synthetic study in cold seep area, Shigatse, Tibet[D]. Beijing: China University of Geosciences, 2016(in Chinese).
[24] 朱菲菲. 雅鲁藏布江中游谢通门南北向活动断裂带特征及工程效应研究[D]. 成都: 成都理工大学, 2008. ZHU F F. The research of the north-south active fault belt in xiatongmoin in the middle reaches of the Yarlung zangbo river and effection engineering[D]. Chengdu: Chengdu University of Technology, 2008(in Chinese).
[25] 雷生学, 李振海, 张文朋, 等. 西藏日喀则拉堆—乃东与毕定—甲舍拉断裂的活动性分析研究 [J]. 地震工程学报, 2018, 40(4): 785-793. doi: 10.3969/j.issn.1000-0844.2018.04.785 LEI S X, LI Z H, ZHANG W P, et al. Activity analysis of the Ladui—Naidong and Biding—Jiashela Faults in Xigaze, Tibet [J]. China Earthquake Engineering Journal, 2018, 40(4): 785-793(in Chinese). doi: 10.3969/j.issn.1000-0844.2018.04.785
[26] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地热资源地质勘查规范: GB/T 11615—2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Geologic exploration standard of geothermal resources: GB/T 11615—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
[27] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[28] 周训, 金晓媚, 梁四海. 地下水科学专论: 彩色版[M]. 2版. 北京: 地质出版社, 2017. ZHOU X, JIN X M, LIANG S H. Monograph on groundwater science (color version) [M]. Beijing: Geological Publishing House, 2017(in Chinese).
[29] 肖阳, 李守义, 刘计良, 等. 弧形钢闸门支承钢梁横向加劲肋布置研究 [J]. 水资源与水工程学报, 2019, 30(5): 189-193. XIAO Y, LI S Y, LIU J L, et al. Study on the arrangement of the bearing steel beams transverse stiffeners of the radial steel gate [J]. Journal of Water Resources and Water Engineering, 2019, 30(5): 189-193(in Chinese).
[30] 焦艳军, 王广才, 崔霖峰, 等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征 [J]. 环境化学, 2014, 33(6): 962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023 JIAO Y J, WANG G C, CUI L F, et al. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan Basin [J]. Environmental Chemistry, 2014, 33(6): 962-968(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.023
[31] 马致远, 钱会. 环境同位素地下水文学[M]. 西安: 陕西科学技术出版社, 2004. MA Z Y, QIAN H. Environmental isotope groundwater literature [M]. Xi'an: Shaanxi Science & Technology Press, 2004(in Chinese).
[32] 汪集栘. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993. WANG J Y. Low-medium temperature geothermal system of convective type[M]. Beijing: Science Press, 1993(in Chinese).
[33] 赵健宇. 西藏雨季主要水体氢、氧同位素特征的研究[D]. 长沙: 湖南农业大学, 2017. ZHAO J Y. Tibet study on hydrogen and oxygen isotope characteristics of main water body in Tibetan rainy season[D]. Changsha: Hunan Agricultural University, 2017(in Chinese).
[34] 毛龙富, 付舒, 刘宏, 等. 基于氢氧稳定同位素的喀斯特泉水补给来源分析[J/OL]. 地球科学: 1-13[2022-02-11].http://kns.cnki.net/kcms/detail/42.1874.P.20211015.1031.002.html MAO L F, FU S, LIU H, et al. Analysis of karst spring water supply sources based on stable isotopes of hydrogen and oxygen [J/OL]. Earth Science: 1-13 [2022-02-11].http://kns.cnki.net/kcms/detail/42.1874.P.20211015.1031.002.html(in Chinese).
[35] GAT J R. Paleoclimate conditions in the Levant as revealed by the isotopic composition of paleowaters[J]. Israel Meteorological Research Papers, 1981. [36] DANSGAARD W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993 [37] 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例 [J]. 成都理工学院学报, 2001, 28(3): 251-254. YIN G, NI S J, ZHANG Q C. Deuterium excess parameter and geohydrology significance—taking the geohydrology researches in Jiuzaigou and yele, Sichuan for example [J]. Journal of Chengdu University of Technology, 2001, 28(3): 251-254(in Chinese).
[38] 包宇飞. 雅鲁藏布江水文水化学特征及流域碳循环研究[D]. 北京: 中国水利水电科学研究院, 2019. BAO Y F. The study of hydrochemical characteristics and carbon cycles in the Yarlung zangbo river basin[D]. Beijing: China Academy of Water Resources and Hydropower, 2019(in Chinese).
[39] 仁增拉姆, 罗珍, 叶浠倩, 等. 西藏年楚河流域温泉水水化学特征及其环境意义[J/OL]. 水生态学杂志: 1-17[2022-03-29].DOI:10.15928/j.1674-3075.202103290085. REN Z L M, LUO Z, YE X Q, et al. The chemical characteristics of hot spring water in the Nianchu River Basin in Tibet and its environmental significance [J/OL]. Journal of Water Ecology: 1-17 [2022-03-29].DOI:10.15928/j.1674-3075.202103290085(in Chinese).
[40] 李继荣, 赵健宇, 杨乐, 等. 西藏雨季主要水体氢、氧同位素特征 [J]. 干旱区研究, 2017, 34(2): 411-415. LI J R, ZHAO J Y, YANG L, et al. Stable hydrogen and oxygen isotopes in waters in Tibet [J]. Arid Zone Research, 2017, 34(2): 411-415(in Chinese).
[41] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究 [J]. 科学通报, 1983, 28(13): 801-806. doi: 10.1360/csb1983-28-13-801 ZHENG S H, HOU F G, NI B L. Study on hydrogen and oxygen stable isotopes of atmospheric precipitation in my country [J]. Chinese Science Bulletin, 1983, 28(13): 801-806(in Chinese). doi: 10.1360/csb1983-28-13-801
[42] 于津生. 中国同位素地球化学研究[M]. 北京: 科学出版社, 1997. YU J S. Research on isotopic geochemistry in China [M]. Beijing: Science Press, 1997(in Chinese).
[43] PANG Z H, KONG Y L, LI J, et al. An isotopic geoindicator in the hydrological cycle [J]. Procedia Earth and Planetary Science, 2017, 17: 534-537. doi: 10.1016/j.proeps.2016.12.135 [44] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011. GU W Z. Isotope hydrology[M]. Beijing: Science Press, 2011(in Chinese).
[45] 罗绍强, 徐琳, 唐华, 等. 西藏日喀则市查孜地热田水化学及同位素特征研究 [J]. 中国地质调查, 2020, 7(5): 10-15. LUO S Q, XU L, TANG H, et al. Hydrochemical and isotopic characteristics of Chazi geothermal field in Shigatse in Tibet [J]. Geological Survey of China, 2020, 7(5): 10-15(in Chinese).
[46] 卫克勤, 林瑞芬, 王志祥. 西藏羊八井地热水的氢、氧稳定同位素组成及氚含量 [J]. 地球化学, 1983, 12(4): 338-346. doi: 10.3321/j.issn:0379-1726.1983.04.002 WEI K Q, LIN R F, WANG Z X. Hydrogen and oxygen stable isotopic composition and tritium content of waters from yangbajain geothermal area, Xizang, China [J]. Geochimica, 1983, 12(4): 338-346(in Chinese). doi: 10.3321/j.issn:0379-1726.1983.04.002
[47] 王贝贝, 卢国平, 胡晓农, 等. 粤西深大断裂温热泉水化学分析 [J]. 环境化学, 2019, 38(5): 1150-1160. WANG B B, LU G P, HU X N, et al. Hydrochemical characterization of thermal spring waters in the deep fault region in western Guangdong [J]. Environmental Chemistry, 2019, 38(5): 1150-1160(in Chinese).
[48] 朱炳球, 地热田地球化学勘查[M]. 北京: 地质出版社, 1992. ZHU B Q. Geochemical exploration of geothermal fields [M]. Beijing: Geological Publishing House, 1992(in Chinese).
[49] 王东升. 应用环境核素研究地下水污染问题 [J]. 勘察科学技术, 1993(4): 20-23. WANG D S. Application of environmental nuclide to study the groundwater contamination problem [J]. Site Investigation Science and Technology, 1993(4): 20-23(in Chinese).
[50] 张洪平. 我国大气降水稳定同位素背景值的研究 [J]. 勘察科学技术, 1989(6): 6-13. ZHANG H P. Study on the background value of stable iso opes in precipitations of China [J]. Site Investigation Science and Technology, 1989(6): 6-13(in Chinese).
[51] 于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征 [J]. 地球化学, 1980, 9(2): 113-121. doi: 10.3321/j.issn:0379-1726.1980.02.001 YU J S, ZHANG H B, YU F J, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang [J]. Geochimica, 1980, 9(2): 113-121(in Chinese). doi: 10.3321/j.issn:0379-1726.1980.02.001
[52] LIU W J, YI P Z, HONG M L, et al. Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China: A preliminary study [J]. Water Research, 2005, 39(5): 787-794. doi: 10.1016/j.watres.2004.12.002 [53] 曹入文, 周训, 陈柄桦, 等. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析 [J]. 地学前缘, 2021, 28(4): 361-372. CAO R W, ZHOU X, CHEN B H, et al. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province [J]. Earth Science Frontiers, 2021, 28(4): 361-372(in Chinese).