-
抗生素的大量使用使得其会通过直接或间接途径进入水体引起污染. 四环素(TC)是水体检出浓度和检出频率最高的抗生素之一[1]. 水体中的四环素会诱导微生物逐渐产生抵抗力,造成抗药性菌群和抗性基因的产生[2]. 常规生物法、生物电化学法、高级氧化法、膜分离法、吸附法、微生物降解等是水体中四环素去除的主要方法[3-6] . 其中,高级氧化法(AOPs)已经被证明能有效的去除水中的四环素,因为具有高度活性的自由基的存在,包括硫酸根自由基(
${\rm{SO}}_4^{-}\cdot $ )和羟基自由基(·OH).基于
${\rm{SO}}_4^{-}\cdot $ 自由基的高级氧化技术是通过过二硫酸盐(PDS)或过一硫酸盐(PMS)的活化来降解水体中的污染物. 与·OH相比,${\rm{SO}}_4^{-}\cdot $ 具有较长的半衰期 (30—40 μs 对比10−3 μs),更高的氧化还原电势 (2.5—3.1 V对比 1.8—2.7 V)、更宽pH的适应性[7]. 其中,PMS 过氧键两侧的电荷分布是不对称的,更容易受到各种亲核试剂的亲核攻击,PMS 能被过渡金属更有效地活化以生成${\rm{SO}}_4^{-}\cdot $ . PMS 在含碳材料和贵金属催化剂氧化有机物方面也比PDS 更有效[8-11]. 催化剂的选择和制备是PMS活化技术能否成功应用的关键.研究显示,生物炭有作为高级氧化反应催化剂的潜力[12]. 但是原状生物炭的催化能力有限,需要对原状生物炭进行改性以进一步提升其对污染物的降解效果[13]. 其中,生物炭负载铁作为催化剂的研究报道最多,因为纳米铁氧化物能有效的启动催化降解反应[14]. 过渡金属活化PMS可以在常温常压下进行,且反应迅速、操作简便,被认为是活化效果最好的一种活化方式. 但同时在反应过程中也存在着过渡金属易团聚、重复利用性差和金属离子流失等问题[15]. 因此,如何改性提升生物炭的催化降解能力亟需进一步研究. 与此同时,氮改性生物炭也引起了更多关注,因为引入了含氮官能团和可以改变生物炭的结构[16]. 氮修饰生物炭更多的应用于生物炭的催化降解领域[17],因为氮具有局部未成对电子:(1) 改善周围碳原子的电子密度;(2)提高共轭增强sp2碳中π电子流;(3)进入更多的官能团和缺陷;(4)增加碳材料的表面亲水性能有效的结合极性吸附质. 因此,可以考虑铁氮共改性以提升生物炭的降解性能.
近年来,铁氮共改性生物炭在高级氧化领域的应用也逐渐引起了研究,作为催化剂被用于降解废水中有机污染物,包括酸性橙7 [18]、异丙甲草胺[19]、罗丹明B [20]、双酚A [21-22]、双酚F [23]和磺胺噻唑 [24]. 仅有Yu等[25]研究了铁氮改性生物炭活化过硫酸盐(PS)降解四环素的效果及机理. 上述研究均显示铁氮共改性碳材料可以有效的降解废水中的有机污染物. 然而,铁氮共改性生物炭活化PMS降解TC的研究报道还较少,降解的机理也尚不清楚.
因此,本研究以典型的农林废弃物—水稻秸秆为对象,选择氯化铁、尿素为改性剂,通过热解制备出铁氮改性生物炭,同时制备原状生物炭作为对照,对生物炭进行SEM、TEM、BET、EA、XPS、FTIR、Raman和VSM进行全面的表征,考察铁氮改性对生物炭理化性质的影响,探究对水体中四环素的降解行为及机理,以期为秸秆的资源化的利用及水体中四环素的去除提供理论依据和技术参考.
铁氮生物炭的制备及催化过一硫酸盐(PMS)降解水体中四环素
Preparation of Fe-N modified biochar and its application in tetracycline degradation activated by peroxymonosulfate
-
摘要: 本文以水稻秸秆为对象,六水合氯化铁和尿素为改性剂,在700℃热解制备成铁氮改性秸秆生物炭(Fe-N-RSBC),同时制备原状生物炭(RSBC)作为对照. 采用SEM、TEM、EA、BET、XRD 、FTIR、Raman、XPS和VSM对生物炭的理化性质进行全面的表征. 研究铁氮改性生物炭催化过一硫酸盐(PMS)降解水体中的四环素(TC),考察溶液pH、固液比、PMS量、TC浓度和阴离子类型的影响. 采用淬灭实验和EPR测定揭示Fe-N-RSBC催化PMS降解TC的微观机制. 研究结果表明,铁氮共改性使得生物炭具有更大的比表面积和孔体积、更多微孔体积,赋予更丰富的官能团,并引入磁性组分,但破坏了部分石墨碳结构. Fe-N-RSBC可以有效的活化PMS降解溶液中的TC. 在吸附/降解体系中,150 min内,Fe-N-RSBC/PMS对TC的去除率可达87%(四环素浓度为50 mg∙L-1,固液比0.2 g∙L−1,PMS (浓度为1 mmol·L−1) 添加量0.2 mL,溶液pH=7),降解效果与pH、PMS量、催化剂量、TC初始浓度和阴离子类型有关. Fe-N-RSBC催化PMS降解TC的机理是包括自由基路径和非自由基路径,其中1O2非自由基作用占据主导地位. 因此,铁氮生物炭有作为催化剂降解废水中四环素的潜力.Abstract: Rice straw was mixed with FeCl3∙6H2O and urea to prepare a Fe-N modified biochar (Fe-N-RSBC). Meanwhile, pristine biochar (RSBC) was synthesized to serve as control. SEM, TEM, EA, BET, XRD, FTIR, Raman, XPS and VSM were used to characterize the physico-chemical properties of biochars. Furthermore, Fe-N-RSBC was applied for the TC degradation activated by peroxymonosulfate. The effect of factors on TC degradation were investigated, including pH, dosage, PMS amount, TC concentration and anion types. Quenching experiment and EPR was combined to reveal the degradation mechanisms. The results showed that Fe-N modification significantly affected the properties of biochar, involving increasing surface area and pore volume, creating more functional groups, destroying the graphited carbon structure, introducing more magnetic components. The Fe-N-RSBC effectively activated PMS to degrade TC in solution. The removal rate of TC reached 87% (TC: 50 mg∙L−1, catalyst: 0.2 g∙L−1, PMS: 0.2 mL (1 mmol·L−1), pH=7) under adsorption/degradation system in 150 min. The degradation effect was related to the pH, dosage, PMS amount, TC concentration and anion types. The degradation mechanisms included radical and non-radical pathways. The 1O2 played a key role for the TC degradation. Therefore, Fe-N-RSBC has the potential to act as a catalyst to degrade TC in wastewater.
-
Key words:
- rice straw /
- biochar /
- Fe-N modification /
- TC degradation /
- singlet oxygen
-
表 1 生物炭的比表面积及孔隙参数
Table 1. Surface area and pore parameters of biochars
生物炭
BiocharBET /( m2·g−1 ) Smicro /( m2·g−1 ) Vtotal /( cm3·g−1) Vmicro /( cm3·g−1) Vmicro/Vtotal/% 孔径/nm
Pore sizeRSBC 177.71 141.62 0.11 0.066 59.60 2.48 Fe-N-RSBC 606.62 341.29 0.33 0.15 45.93 2.21 表 2 元素组成、灰分含量及表面电荷
Table 2. Element, ash content and zeta potential
生物炭
Biochar元素/%
ElementH/C O/C (N + O) / C 灰分/%
AshZeta 电位/mV
Zeta potentialC N H O RSBC 56.97 0.71 1.63 6.70 0.03 0.12 0.13 33.99 -43.89 Fe-N-RSBC 23.74 4.35 1.68 7.07 0.07 0.30 0.48 63.16 -29.45 O%=100%-C-N-H-ash -
[1] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review [J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. doi: 10.1007/s10311-013-0404-8 [2] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review [J]. Science of the Total Environment, 2021, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975 [3] GOPAL G, ALEX S A, CHANDRASEKARAN N, et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques [J]. RSC Advances, 2020, 10(45): 27081-27095. doi: 10.1039/D0RA04264A [4] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices - A review [J]. Journal of Environmental Management, 2011, 92(10): 2304-2347. doi: 10.1016/j.jenvman.2011.05.023 [5] SAADATI F, KERAMATI N, GHAZI M M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 757-782. doi: 10.1080/10643389.2016.1159093 [6] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. doi: 10.13227/j.hjkx.201908179 FAN S S, LIU W P, WANG J T, et al. Preparation of Tea Waste Biochar and Its Application in Tetracycline removalfrom Aqueous Solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese). doi: 10.13227/j.hjkx.201908179
[7] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks [J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [8] ZHAO C H, SHAO B B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review [J]. Chemical Engineering Journal, 2021, 416: 128829. doi: 10.1016/j.cej.2021.128829 [9] 梁锦芝, 许伟城, 赖树锋, 等. 磁性生物炭的制备及其活化过一硫酸盐的研究进展 [J]. 环境化学, 2021, 40(9): 2901-2911. doi: 10.7524/j.issn.0254-6108.2021022301 LIANG J Z, XU W C, LAI S F, et al. Research progress on preparation and peroxymonosulfate activation of magnetic biochar [J]. Environmental Chemistry, 2021, 40(9): 2901-2911(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022301
[10] 彭建彪, 贺冰冰, 顾梦瑶, 等. 磁性氧化石墨烯活化过一硫酸盐去除水中阿托伐他汀 [J]. 环境化学, 2020, 39(10): 2869-2877. doi: 10.7524/j.issn.0254-6108.2020060702 PENG J B, HE B B, GU M Y, et al. Efficient removal of atorvastatin in aqueous solution via peroxymonosulfate activated by magnetic graphene oxide [J]. Environmental Chemistry, 2020, 39(10): 2869-2877(in Chinese). doi: 10.7524/j.issn.0254-6108.2020060702
[11] 刘萌, 胡莉敏, 张广山, 等. Co/Zn双金属氧化物活化过一硫酸盐降解双酚A的性能研究 [J]. 环境化学, 2018, 37(4): 753-760. doi: 10.7524/j.issn.0254-6108.2017081605 LIU M, HU L M, ZHANG G S, et al. Activation of peroxymonosulfate by the Co/Zn bimetallic oxide for the degradation of bisphenol A [J]. Environmental Chemistry, 2018, 37(4): 753-760(in Chinese). doi: 10.7524/j.issn.0254-6108.2017081605
[12] ZHAO Y L, YUAN X Z, LI X D, et al. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process [J]. Journal of Hazardous Materials, 2021, 409: 124893. doi: 10.1016/j.jhazmat.2020.124893 [13] ZHOU X R, ZHU Y, NIU Q Y, et al. New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes [J]. Chemical Engineering Journal, 2021, 416: 129027. doi: 10.1016/j.cej.2021.129027 [14] SONG G, QIN F Z, YU J F, et al. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks [J]. Journal of Hazardous Materials, 2022, 424: 127663. doi: 10.1016/j.jhazmat.2021.127663 [15] NIDHEESH P V, GOPINATH A, RANJITH N, et al. Potential role of biochar in advanced oxidation processes: A sustainable approach [J]. Chemical Engineering Journal, 2021, 405: 126582. doi: 10.1016/j.cej.2020.126582 [16] YE S J, ZENG G M, TAN X F, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer [J]. Applied Catalysis B:Environmental, 2020, 269: 118850. doi: 10.1016/j.apcatb.2020.118850 [17] LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: An overview [J]. Bioresource Technology, 2020, 298: 122286. doi: 10.1016/j.biortech.2019.122286 [18] LI X, JIA Y, ZHOU M H, et al. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation [J]. Journal of Hazardous Materials, 2020, 397: 122764. doi: 10.1016/j.jhazmat.2020.122764 [19] LIU C, CHEN L W, DING D H, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor [J]. Applied Catalysis B:Environmental, 2019, 254: 312-320. doi: 10.1016/j.apcatb.2019.05.014 [20] ZHU K, BIN Q, SHEN Y Q, et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants [J]. Chemical Engineering Journal, 2020, 402: 126090. doi: 10.1016/j.cej.2020.126090 [21] XU L, FU B R, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application [J]. Chemical Engineering Journal, 2020, 400: 125870. doi: 10.1016/j.cej.2020.125870 [22] LI Y, YANG T, QIU S H, et al. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species [J]. Chemical Engineering Journal, 2020, 389: 124382. doi: 10.1016/j.cej.2020.124382 [23] WU S H, LIU H Y, YANG C P, et al. High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2020, 392: 123683. doi: 10.1016/j.cej.2019.123683 [24] CHEN L K, HUANG Y F, ZHOU M L, et al. Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation [J]. Chemosphere, 2020, 250: 126300. doi: 10.1016/j.chemosphere.2020.126300 [25] YU J F, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism [J]. Chemical Engineering Journal, 2019, 364: 146-159. doi: 10.1016/j.cej.2019.01.163 [26] LI Y C, XING B, WANG X L, et al. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption [J]. Energy & Fuels, 2019, 33(12): 12459-12468. [27] YAN X H, XU B Q. Mesoporous carbon material co-doped with nitrogen and iron (Fe–N–C): High-performance cathode catalyst for oxygen reduction reaction in alkaline electrolyte [J]. J Mater Chem A, 2014, 2(23): 8617-8622. doi: 10.1039/C3TA15300B [28] LIU J H, KANG X, HE X, et al. Temperature-directed synthesis of N-doped carbon-based nanotubes and nanosheets decorated with Fe (Fe3O4, Fe3C) nanomaterials [J]. Nanoscale, 2019, 11(18): 9155-9162. doi: 10.1039/C9NR01601E [29] DONG X P, CHEN H R, ZHAO W R, et al. Synthesis and magnetic properties of mesostructured γ-Fe2O3/carbon composites by a co-casting method [J]. Chemistry of Materials, 2007, 19(14): 3484-3490. doi: 10.1021/cm0709065 [30] AI T, JIANG X J, LIU Q Y, et al. Single-component and competitive adsorption of tetracycline and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: Studies on the kinetics, isotherms, and mechanism [J]. RSC Advances, 2020, 10(35): 20427-20437. doi: 10.1039/D0RA02346A [31] RONG X, XIE M, KONG L S, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation [J]. Chemical Engineering Journal, 2019, 372: 294-303. doi: 10.1016/j.cej.2019.04.135 [32] WANG Y B, ZHAO H Y, ZHAO G H. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants [J]. Applied Catalysis B:Environmental, 2015, 164: 396-406. doi: 10.1016/j.apcatb.2014.09.047 [33] XU Z H, ZHOU Y W, SUN Z H, et al. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon [J]. Chemosphere, 2020, 241: 125120. doi: 10.1016/j.chemosphere.2019.125120 [34] XU Y, LUO G Q, HE S W, et al. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste [J]. Fuel, 2019, 239: 982-990. doi: 10.1016/j.fuel.2018.11.102 [35] CHEN Y, DU L, LI S G, et al. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar [J]. Journal of Hazardous Materials, 2021, 402: 123826. doi: 10.1016/j.jhazmat.2020.123826 [36] TSANEVA V N, KWAPINSKI W, TENG X, et al. Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy [J]. Carbon, 2014, 80: 617-628. doi: 10.1016/j.carbon.2014.09.005 [37] OH W D, LISAK G, WEBSTER R D, et al. Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites [J]. Applied Catalysis B:Environmental, 2018, 233: 120-129. doi: 10.1016/j.apcatb.2018.03.106 [38] MIAN M M, LIU G J. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism [J]. Chemical Engineering Journal, 2020, 392: 123681. doi: 10.1016/j.cej.2019.123681 [39] LI L, LAI C, HUANG F L, et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides [J]. Water Research, 2019, 160: 238-248. doi: 10.1016/j.watres.2019.05.081 [40] LU Z W, LIU B C, DAI W L, et al. Carbon network framework derived iron-nitrogen co-doped carbon nanotubes for enhanced oxygen reduction reaction through metal salt-assisted polymer blowing strategy [J]. Applied Surface Science, 2019, 463: 767-774. doi: 10.1016/j.apsusc.2018.08.231 [41] LI Q, ZHU W L, FU J J, et al. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene [J]. Nano Energy, 2016, 24: 1-9. doi: 10.1016/j.nanoen.2016.03.024 [42] LONG Y K, HUANG Y X, WU H Y, et al. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight [J]. Chemical Engineering Journal, 2019, 369: 542-552. doi: 10.1016/j.cej.2019.03.097 [43] LI K X, CHEN W, YANG H P, et al. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials [J]. Bioresource Technology, 2019, 280: 260-268. doi: 10.1016/j.biortech.2019.02.039 [44] LI Z H, XING B, DING Y, et al. A high-performance biochar produced from bamboo pyrolysis with in situ nitrogen doping and activation for adsorption of phenol and methylene blue [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2872-2880. doi: 10.1016/j.cjche.2020.03.031 [45] YANG Z, WANG Z W, LIANG G W, et al. Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural manganese ore-cornstalk biochar composite activated peroxymonosulfate [J]. Chemical Engineering Journal, 2021, 426: 131777. doi: 10.1016/j.cej.2021.131777 [46] 韩仪, 黄明杰, 周涛, 等. 氧化铜活化过硫酸盐的界面反应机理 [J]. 环境化学, 2020, 39(3): 735-744. doi: 10.7524/j.issn.0254-6108.2019110101 HAN Y, HUANG M J, ZHOU T, et al. Interfacial reaction mechanism of copper oxide activating persulfate [J]. Environmental Chemistry, 2020, 39(3): 735-744(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110101
[47] YIN R L, GUO W Q, WANG H Z, et al. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms [J]. Chemical Engineering Journal, 2018, 335: 145-153. doi: 10.1016/j.cej.2017.10.063 [48] CHEN X, ZHOU J, YANG H W, et al. PMS activation by magnetic cobalt-N-doped carbon composite for ultra-efficient degradation of refractory organic pollutant: Mechanisms and identification of intermediates [J]. Chemosphere, 2022, 287: 132074. doi: 10.1016/j.chemosphere.2021.132074 [49] ZHANG Z L, DING H, LI Y, et al. Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: Mechanism insight and performance assessment [J]. Separation and Purification Technology, 2022, 283: 120136. doi: 10.1016/j.seppur.2021.120136 [50] DING Y B, WANG X R, FU L B, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective [J]. Science of the Total Environment, 2021, 765: 142794. doi: 10.1016/j.scitotenv.2020.142794