Processing math: 100%

基于无人机研究长三角化工园区颗粒物垂直廓线

袁锴彬, 庞小兵, 李晶晶, 陈浪, 韩张亮, 陈建孟, 张宝峰, 王军良. 基于无人机研究长三角化工园区颗粒物垂直廓线[J]. 环境化学, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
引用本文: 袁锴彬, 庞小兵, 李晶晶, 陈浪, 韩张亮, 陈建孟, 张宝峰, 王军良. 基于无人机研究长三角化工园区颗粒物垂直廓线[J]. 环境化学, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
YUAN Kaibin, PANG Xiaobing, LI Jingjing, CHEN Lang, HAN Zhangliang, CHEN Jianmeng, ZHANG Baofeng, WANG Junliang. Vertical profiles of particulate matter in a chemical industrial park of Yangtze River Delta studied by a sensor on an unmanned aerial vehicle[J]. Environmental Chemistry, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
Citation: YUAN Kaibin, PANG Xiaobing, LI Jingjing, CHEN Lang, HAN Zhangliang, CHEN Jianmeng, ZHANG Baofeng, WANG Junliang. Vertical profiles of particulate matter in a chemical industrial park of Yangtze River Delta studied by a sensor on an unmanned aerial vehicle[J]. Environmental Chemistry, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002

基于无人机研究长三角化工园区颗粒物垂直廓线

    通讯作者: Tel:0571-88320032,E-mail:pangxb@zjut.edu.cn E-mail:121316990@qq.com; 
  • 基金项目:
    浙江省“领雁”研发攻关计划项目(2022C03073),浙江省自然科学基金(LZ20D050002), 浙江省重点研究计划项目(2021C03165),杭州市科技计划项目(20191203B65)和绍兴市科技计划项目(2020B33003)资助

Vertical profiles of particulate matter in a chemical industrial park of Yangtze River Delta studied by a sensor on an unmanned aerial vehicle

    Corresponding authors: PANG Xiaobing, pangxb@zjut.edu.cn ;  LI Jingjing, 121316990@qq.com
  • Fund Project: the Leading Goose Research and Development Program of Zhejiang Province(2022C03073),Natural Science Foundation of Zhejiang Province(LZ20D050002),Key Research Program of Zhejiang Province(2021C03165),Hangzhou Science and Technology Project(20191203B65) and Shaoxing Science and Technology Project(2020B33003).
  • 摘要: 化工园区的颗粒物污染非常严重,但目前对化工园区的颗粒物垂直廓线研究甚少,导致无法科学地评估化工园区的颗粒物排放对周边地区的影响。在2020年8月—2021年3月期间于杭州湾上虞经济技术开发区开展了23d,共计151次的颗粒物(PM1.0、PM2.5、PM10)垂直观测实验。利用无人机搭载微型检测仪研究化工园区0—500 m高度内颗粒物在不同季节及一天中的不同时间点(9、11、13、15、17时)的分布特征。结果表明,颗粒物平均浓度大小为冬季>秋季>春季>夏季,且秋冬季颗粒物浓度远大于春夏季,最高可达152.00 μg·m−3。由相关性分析可知,颗粒物分别与大气温度和相对湿度呈正相关,与风速呈负相关关系。颗粒物浓度总体随高度的升高而降低,由于粒径和质量影响,下降速率呈现为PM10>PM2.5>PM1.0。由粒径分析可知,在颗粒物浓度最高的当天,颗粒物数浓度主要由0.38—0.54 μm细粒子组成。由日变化可知,颗粒物浓度一般在9时达到最高,在13时达到最低。
  • 随着人类健康越来越受到人们的重视,农用地土壤安全性问题已然成为亟待解决的关键问题之一。土壤重金属因其难降解性、易移动且具毒性的特性[1-2],直接或者间接通过土壤、动物以及植物循环到人类身体内,给广大居民的生命安全造成威胁。除大气和水体外,土壤是重金属汇集的另一个重要场所[3],土壤累积重金属达到阀值或国家给定的标准后,不仅会影响土壤的组成成分、结构以及理化性质,而且会极大地威胁到人类赖以生存的环境,并最终造成土壤重金属污染。农用地土壤污染是多要素、多尺度、多过程相互影响的结果,镉、汞、铅、砷、铬、铜、镍和锌是土壤重金属污染中最常见的8类元素。近几年,土壤中重金属的累积状况以及由此带来的生态风险,成为土壤环境研究领域的一个热点问题[4]

    在进行污染程度评价时,多数研究利用单因子指数[5]、内梅罗综合污染指数法[6-7]、地累积指数法[8-9]等方法对污染程度进行评价,在此基础上,本研究利用最新的土壤环境质量评价标准对土壤污染程度进行评价。许多的研究集中于时间或者空间上的土壤重金属含量变化,少数研究将时空叠加进行动态土壤污染状况分析,如对土壤重金属含量进行空间预测[10-12]、在时间序列下土壤重金属浓度的变化[13-14]、污染源解析[15-16]等,这些研究在一定程度上可以反映污染现状以及污染趋势。由于土壤重金属有很强的迁移性和聚集性,空间分布大多是由历史和现在的人为活动造成的,因此,在目前土壤环境问题日趋严峻的形势下,土壤环境的保护和治理迫切需要准确掌握区域土壤重金属含量的时空变化信息,将历史数据和现今数据进行比对,分析出土壤重金属污染是属于加强型、减弱型还是保持不变型,这对土壤重金属污染解析以及今后在管理控制方面均有很大的帮助。同时,土壤重金属含量是评价土壤环境质量的重要因素,掌握土壤重金属的空间分布以及变化趋势对评价土壤环境质量类别具有重要的理论和实际意义。

    本研究描述了2008年和2018年研究区内土壤中8类重金属浓度的空间格局和时间变化,初步反应耒水流域土壤重金属含量分布状况;采用不同的方法评价2期土壤重金属的污染程度,从而阐明2个时间段研究区内重金属污染情况;叠加分析2期数据的时空变异情况,重点分析出研究区污染加强位置,为今后土壤污染治理以及管控提供参考。

    耒水流域位于湖南省的东南部,同时也位于湘江流域的东南部,地理坐标为112°38′~113°26′E,25°28′~26°21′N,流经永兴县、资兴市、苏仙区、北湖区、桂阳县和耒阳市6个行政区。湘江流域(郴州)内支流众多,由于研究尺度的原因,本研究选取西河和部分耒水流域(东江镇至塘门口镇)作为本次研究的研究区。西河为湘江的2级支流,被苏仙区人民亲切的称之为“母亲河”。其发源于北湖石鼓山,止于永兴塘市,全长136 km(都在郴州市境内),流域面积2 037 km2(郴州市境内1 618 km2)[17];耒水为湘江的一级支流,发源于湖南省桂东县烟竹堡,于衡阳市珠晖区汇入湘江。西河是耒水中重要的支流之一,耒水干流全长453 km,河道平均坡降0.077%,流域面积11 783 km2,其河道特点是坡降大,多局部弯曲,总体属于山溪性河流[18]。研究区内矿产资源丰富,其中有色金属矿包括铅、锌、铜、锡、钼、铋、锑、钨、镁等,黑色金属包括铁、锰等。西河和耒水沿河企业分布众多,主要为黑色有色金属冶炼和延压业、黑色有色金属矿采选业以及化学原料和化学制品业(图1)。第一产业的大力推进不仅为经济发展做了贡献,也推动了当地民生的发展,但排放的工业“三废”也进入土壤,使土壤环境质量发生恶化。本研究主要以研究区内西河和耒水2条河流为线索,进而比对2期土壤重金属数据的变化。

    图 1  研究区沿河企业分布
    Figure 1.  Distribution of enterprises along the river in the survey region

    现场确定采样点位后,以确定点位为中心划定采样区域,采样范围一般为20 m×20 m;当地形地貌及土壤利用方式复杂,样点代表性差时,则扩大至100 m×100 m。以确定点位为中心,此次采样采用双对角线5点采样法,5点采样量基本一致,采样量总计不少于2 500 g,每个采样点均为土壤混合样,2008年和2018年采样点分别为157个和121个。农用地土壤的采样深度一般为0~20 cm,工矿用地以及城镇周围土壤采集深度为0~60 cm,果园林地类土壤样品采集深度也为0~60 cm。2008年和2018年2期采样点空间分布如图2所示。

    图 2  2008年和2018年采样点空间分布
    Figure 2.  Distribution of sampling points in 2008 and 2018

    所有样品均在室温下风干,去杂,研磨,然后过100目尼龙筛(孔径约0.149 mm),处理后的样品要及时放入冷藏箱,在4 ℃以下避光保存,最后封存测试。所有用来盛放样品或反应物的容器都要用4 mol·L−1的HNO3浸泡过夜,然后用超声波双频清洗机进行清洗,最后用去离子水反复清洗。所用药品全部为分析纯。本次土壤样品的测定指标为Cd、Hg、As、Pb、Cr、Cu、Ni、Zn 8类重金属全量含量。按照GB 15618-2018标准中推荐的方法[19]测定Hg和As重金属的全量含量,依据HJ 766-2015标准中推荐的方法[20]测定Cd、Pb、Ni、Cu、Zn和Cr重金属全量。

    表层土壤样品测定指标包括8类重金属元素的全量含量。Hg和As元素利用原子荧光光谱法(atomic fluorescence spectrometry,AFS)进行测定,检出限分别为0.002 mg·kg−1和0.01 mg·kg−1;Cd、Pb、Ni和Cu分析元素利用电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)进行测定[21],检出限分别为0.03、2.0、0.6和0.3 mg·kg−1;Zn和Cr分析元素利用电感耦合等离子体原子发射光谱法(inductively coupled plasma atomic emission spectrometer,ICP-AES)进行测定,检出限分别为0.4 mg·kg−1和2.0 mg·kg−1;在测定过程中,每测定10个样品用重金属标准溶液进行标准曲线的校正,以保证仪器测定误差范围控制在2%以内。另外,样品分析所用试剂均为优级纯,在质量控制方面,分析测试时加入国家标准物质土壤样品GSS系列,测定结果均在误差允许范围内。属于同一批次的样品在测试时,分析元素需要满足回收率为90%~110%,均在国标标准[22]范围之内,然后进行样品测试。

    目前,应用广泛的土壤重金属污染评价方法主要有以下5种:单因子污染评价指数法;综合污染指数法(又称内梅罗综合污染指数法);地积累指数法[23];生态危害指数法[24];生态环境部国家市场监督管理总局最新发布的《土壤环境质量 农用地 土壤污染风险管控标准(试行)》(GB 15618-2018)中的评价方法。本研究选用单因子评价指数法、综合污染指数法以及土壤环境质量类别法来评价土壤污染程度。

    单因子污染评价指数按式(1)计算。

    Pi=CiSi (1)

    式中:Pi为土壤中单项重金属i的污染指数;Ci为重金属i的实测值,mg·kg −1Si为根据需要选取的重金属i评价标准,mg·kg −1,本研究选取湖南省土壤环境背景值为标准。将污染程度通常作如下划分[21]Pi ≤1.00为非污染;1.00<Pi≤2.00为轻度污染;2.00<Pi≤3.00为中度污染;Pi>3.00为重度污染。

    综合污染指数法(内梅罗综合污染指数法)按式(2)计算。

    P=(pi,max)2+(¯pi)22 (2)

    式中:P为所有重金属元素的内梅罗综合污染指数;pi,max为单因子污染指数的最大值;¯pi为单因子污染指数的平均值。通常将污染程度作如下划分[25]P≤0.70为安全;0.70<P≤1.00为警戒;1.00<P≤2.00为轻度污染;2.00<P≤3.00为中度污染;P>3.00为重度污染。

    依据《土壤环境质量农用地 土壤污染风险管控标准(试行)》(GB 15618-2018)中的筛选值Si和管制值Gi,基于表层土壤中Cd、Hg、As、Pb、Cr、Cu、Zn、Ni的含量Ci,评价农用地土壤污染的风险(本研究将此方法称为土壤环境质量类别评估法),Cd、Hg、As、Pb、Cr分为Ⅰ类、Ⅱ类和Ⅲ类,Cu、Zn、Ni分为Ⅰ类和Ⅱ类,土壤环境质量类别具体划分如下。

    Ⅰ类:CiSi,土壤污染风险低,可忽略,应划为优先保护类。

    Ⅱ类:Si < CiGi,可能存在土壤污染风险,但风险可控,应划为安全利用类。

    Ⅲ类:Ci > Gi,土壤存在较高污染风险,应划为严格管控类。

    对2008年的157个历史点位数据和2018年最新采集的121个土壤样品进行重金属元素描述性统计分析,得出Cd、Hg、As、Pb、Cr、Cu、Ni、Zn等8类土壤重金属元素含量的最大值、最小值、平均值、标准偏差、峰态系数、偏度系数以及变异系数(见表1)。

    表 1  2008年和2018年土壤重金属含量统计分析
    Table 1.  Statistical analysis of soil heavy metals in 2008 and 2018
    采样年份分析元素最小值/(mg·kg−1)最大值/(mg·kg−1)平均值/(mg·kg−1)标准偏差峰态系数偏度系数变异系数%湖南省土壤背景值/(mg·kg−1)全国土壤背景值/(mg·kg−1)
    2008Cd0.085 10.900 1.1341.52524.4194.592134.4920.1260.097
    Hg0.0280.6840.1810.1094.0401.75860.5320.1160.065
    As3.697639.05032.29454.343101.7199.379168.27415.70011.200
    Pb20.9002 950.000126.701267.24381.6538.238210.92429.70026.000
    Cr15.600190.00068.19528.7772.0920.90742.19871.40061.000
    Cu7.640205.00035.42623.09623.8754.05365.19627.30022.600
    Zn26.0001 638.000169.353212.34928.2414.966125.38894.40074.200
    Ni6.010112.90031.98519.1574.2291.82259.89431.90026.900
    2018Cd0.17419.7801.5812.46929.1564.920156.1570.1260.097
    Hg0.0590.7410.1580.1079.1992.62267.6840.1160.065
    As5.175146.15733.90028.0526.6642.44582.75115.70011.200
    Pb19.1002 794.000165.054331.82939.1415.853201.04329.70026.000
    Cr26.000156.00070.78020.7772.4311.06729.35471.40061.000
    Cu12.000323.00040.66634.67640.8565.78185.27127.30022.600
    Zn41.0002 801.000227.016347.40932.2265.319153.03394.40074.200
    Ni8.115117.40032.39515.8866.3161.90049.04031.90026.900
     | Show Table
    DownLoad: CSV

    湖南省Cd、Hg、As、Pb、Cr、Cu、Ni、Zn 8类土壤重金属元素的土壤环境背景值[26]均超过了国家土壤环境背景值[27]。除Cr外(Cr的含量平均数超过了湖南省土壤环境背景值但未超过国家土壤环境背景值),2期8类土壤重金属元素的含量平均数均超过了湖南省土壤环境背景值和国家土壤环境背景值:2008年8类土壤重金属元素的含量平均数分别是湖南省土壤环境背景值的9.00、1.56、2.06、4.27、0.96、1.30、1.79、1.00倍,是全国土壤背景值的11.69、2.78、2.88、4.87、1.12、1.57、2.28、1.19倍;2018年8类土壤重金属元素的含量平均数分别是湖南省土壤环境背景值的12.55、1.36、2.16、5.56、0.99、1.49、2.40、1.02倍,是国家土壤环境背景值的16.30、2.44、3.03、6.35、1.16、1.80、3.06、1.20倍,这说明表层土壤整体表现为以Cd和Pb为主的土壤重金属聚集。当土壤重金属元素的变异系数小于20%时,被定义为低变异度;变异系数为21%~50%,被定义为中变异度;变异系数为51%~100%,被定义为高变异度;变异系数高于100%时,被定义为极高变异度[28]。2008年,仅Cr为中度变异,Hg、Cu和Ni为高度变异,Cd、As、Pb和Zn为极高变异度,2018年,Cr和Ni属于中变异度,Hg、As和Cu属于高变异度,Cd、Pb和Zn属于极高变异度;2期变异系数比对说明,研究区8类土壤重金属含量值变化幅度较大,连续性较弱,空间变异性较大,Cd和Pb受外界因子影响较为明显。

    由2期表层土壤重金属单因子指数(图3表2)可知,2008年和2018年的单因子指数Pi平均值按大小排序为Cd> Pb > As >Zn > Hg > Cu > Ni >Cr和Cd> Pb > Zn >As> Cu >Hg> Ni >Cr。2期数据排前2位的均为Cd和Pb,排最后2位的均为Ni和Cr;2期数据Cd的重度污染点位均超过80%,Cr和Ni的非污染点位均超过60%。根据单因子指数平均值做出下列分级:2008年,Cd和Pb属于重度污染,As属于中度污染,Hg、Cu、Zn和Ni属于轻度污染,Cr属于非污染;2018年,Cd和Pb属于重度污染且Cd无非污染点位,As和Zn属于中度污染,Hg、Cu和Ni属于轻度污染,仅Cr属于非污染。由单因子指数法对2期数据比对可知,Cd和Pb在2008—2018年一直处于重度污染状态,且重度污染占比有所上升;Cr一直处于非污染状态,各部分比例总体上保持不变,说明Cr基本无外源输入;Zn由原来的轻度污染状态转变为中度污染状态,说明Zn可能受到了外界的影响,导致超标点位增加;其余元素的等级均未发生变化,超标点位略有波动,总体上保持稳定。

    表 2  研究区土壤重金属单因子指数统计
    Table 2.  Statistics of single factor index of heavy metals in soil of survey region
    采样年份分析元素不同评价结果所占比例/%
    非污染轻度污染中度污染重度污染
    2008Cd1.275.107.6485.99
    Hg28.6650.3214.017.01
    As29.9438.8521.0210.19
    Pb4.4635.6724.8435.03
    Cr63.6934.391.910.00
    Cu38.2254.144.463.18
    Zn30.5750.969.558.92
    Ni61.1531.215.731.91
    2018Cd0.002.486.6190.91
    Hg44.6340.508.266.61
    As21.4937.1923.1418.18
    Pb0.8328.9320.6649.59
    Cr61.1638.020.830.00
    Cu23.9766.125.794.13
    Zn20.6647.1117.3614.88
    Ni60.3334.714.130.83
     | Show Table
    DownLoad: CSV
    图 3  基于单因子指数评价法的表层土壤重金属污染评价结果
    Figure 3.  Assessment of heavy metal pollution in top soil based on the single factor index method

    由研究区内梅罗综合污染指数评价结果(表3)可知,2008年,内梅罗综合污染指数大于3和介于1~2的样本数量最多,分别为324个和691个,说明2008年研究区污染状况总体呈轻度污染;2018年,内梅罗综合污染指数同样是大于3和介于1~2的样本数量最多,分别为248个和526个,表明研究区整体仍处于轻度污染。经过2期数据比对可知,研究区内全部采样点综合指数均超过了安全值,2008—2018年,警戒和轻度污染比例略有下降,中度污染比例明显增加,这进一步说明研究区有增强污染的趋势。

    表 3  土壤重金属的内梅罗综合污染指数评价结果
    Table 3.  Assessment of soil heavy metal pollution based on Nemerow comprehensive index
    年份安全警戒轻度污染中度污染重度污染
    2008016.5655.022.6325.80
    2018015.0854.344.9625.62
     | Show Table
    DownLoad: CSV

    以Cd、Hg、As、Pb、Cr、Cu、Ni、Zn为基础,对研究区2期表层土壤点位评判结果进行统计分析(表4)。从总体上看,2008年,除Cd以外,Hg、As、Pb、Cr、Cu、Ni、Zn优先保护类占比最大,均大于60%;仅Cd、As、Pb元素存在严格管控类,Cd严格管控类占9.55%,安全利用类占78.34%,As严格管控类占1.27%,Pb严格管控类占1.91%。2018年,除Cd和Pb外,Hg、As、Cr、Cu、Ni、Zn优先保护类占比最大,优先保护类点位均超过60%,存在严格管控类点位分别为Cd、As、Pb,其中Cd严格管控类占13.22%,安全利用类占82.64%,As严格管控类占2.48%,Pb严格管控类占3.31%。2018年较2008年,环境质量类别数据评价结果Cd、As、Pb严格管控类点位比例均变大,这与单因子指数评价的结果相吻合,出现变化较大的是Zn。2008年,Zn的安全利用类占比15.92%,2018年Zn的安全利用类占比97.54%,安全利用类比例变化幅度为81.62%,在单因子指数评价中,Zn非污染占比降低,污染占比升高,与环境质量类别法评价结果相一致,说明研究区土壤中存在Cd、As、Pb污染,也存在Zn污染趋势。

    表 4  土壤重金属环境质量类别评价结果
    Table 4.  Assessment results of soil heavy metal based on environmental quality categories
    采样年份分析元素质量类别
    优先保护类安全利用类严格管控类
    采样数量/个比例%采样数量/个比例%采样数量/个比例%
    2008Cd1912.1012378.34159.55
    Hg157100.000000
    As9862.425736.3121.27
    Pb10667.524830.5731.91
    Cr15598.7321.2700
    Cu14592.36127.64
    Zn13284.082515.92
    Ni14894.2795.73
    2018Cd54.1310082.641613.22
    Hg121100.000000
    As7864.464033.0632.48
    Pb7360.334436.3643.31
    Cr121100.000000
    Cu11595.0464.96
    Zn32.4611997.54
    Ni121100.0000
     | Show Table
    DownLoad: CSV

    对2期数据进行空间插值得出表层土壤重金属的空间分布图(图4)。克里金插值法(Kriging)和反距离加权插值法(IDW)是2种常用插值方法。与克里金插值法不同的是,IDW不需要数据遵循正态分布[29]。IDW是一种相对简单和广泛使用的方法,它不需要基于对数据统计分布的任何假设[30]。REIMANN等[31]研究表明,不太依赖统计假设的技术应该是首选。因此,我们使用IDW来绘制研究区内土壤重金属的空间分布图。2期数据的污染分布格局基本一致,因此,本研究只将2018年的土壤重金属空间分布图列出。从整体上看,Cd和As,Hg和Pb,Cu和Zn,Cr和Ni两两空间分布格局相似。Cd和As高值区主要集中于研究区的西南部和东北部,即西河中上游地区和耒水下游以及2河交汇处,污染程度较轻的主要分布与西河上游的源头区、西河中下游以及耒水中部;Hg和Pb高值区主要分布于西河中上游地区、北湖区的西部和苏仙区的东北部;Cu和Zn除西河中上游地区有部分高值区,其余地区污染均不显著;Cr和Ni污染分布格局基本一致,西河中上游和中游地区零星地分布着几块高值区,其余地区均为非污染状态。高值区主要是由于这些区域分布了大量的重工业企业(见图1),其排放的“三废”通过大气沉降、污水倾倒以及固体废物的堆积等方式使得重金属进入土壤,造成土壤重金属超标,从而影响土壤环境质量。

    图 4  2018年表层土壤重金属空间分布
    Figure 4.  Spatial distribution of heavy metals in top soil in 2018

    空间插值可以整体反映土壤重金属含量的分布情况,而空间地图几何分析可以将2期空间插值结果进行叠加分析,本研究利用这种方法将研究区2008年和2018年反距离空间插值结果进行对比,从而分析出土壤重金属污染变化状况;利用空间地图几何分析法得出2008—2018年研究区土壤重金属的含量的时空变异图(图5)。可以看出,8类表层土壤重金属在3个高值区(西河中上游地区、耒水上游地区和耒水下游地区)均为污染增强型,说明2008—2018年3个工业聚集区土壤的污染程度进一步增加。按8类土壤重金属含量的增幅排序,结果为Pb(25.47%)>Hg(22.08%)>Ni(16.05%)>Zn(11.83%)>Cu(5.75%)>Cr(5.23%)>Cd (4.53%)>As(3.71%),重金属元素含量都存在增强的趋势,其中Pb的增幅最大,Hg次之,说明这10年间Pb和Hg在土壤中累积较为严重,研究区内以冶炼和矿物开采企业为主,矿物开采也能引起Pb、Cd和Zn在土壤中富集[32],工业区会以Cd和Pb累积为主[33],进而形成以Pb等元素为主导的污染分布。按8类土壤重金属含量面积增加的百分比排序,结果为Zn> Pb> Cu>As>Cr>Ni>Cd>Hg,其中Zn、Cu和Hg含量增加区主要位于西河上游、西河下游和耒水下游;Pb和As增长区主要位于西河中上游以及耒水西部;Cr的增加区较为分散,主要集中于西河的上中游和耒水中游的东部地区;Ni主要分布于西河和耒水东部区域;Cd主要集中于耒水下游和西河中上游区域。

    图 5  2008—2018年表层土壤重金属时空变异分布
    Figure 5.  Distribution of temporal and spatial variation on heavy metals in top soil from 2008 to 2018

    1)研究区整体存在土壤重金属污染,研究区内除Cr外,其余7类表层土壤重金属元素均存在点位超标的情况,含量均值都超过湖南省土壤环境背景值和国家土壤环境背景值的1倍以上,其中Cd超标最严重,超过了国家土壤环境背景值10倍以上;2期数据中Cd、Pb、Zn的变异系数均大于100%,说明这3种元素受外界因素影响很大,企业影响概率较大。

    2)从整体来看,有企业分布的土壤环境质量大幅下降。从单因子评价指数角度出发,除Cr外,Cd、Hg、As、Pb、Cu、Ni、Zn 7类元素均在不同程度上表现出一定的污染性,其中Cd、As、Pb尤为突出;从内梅罗综合污染指数角度出发,研究区内全部采样点综合指数均超过了安全值,中度污染比例明显增加,研究区有增强污染的趋势;从环境质量类别法角度出发,2008—2018年均只有Cd、As、Pb有严格管控类点位且点位占比均增大,其中Cd严格管控类点位占比最大,这3种元素污染程度均较高。

    3) 2期数据的污染分布格局基本一致,从整体上看,Cd和As,Hg和Pb,Cu和Zn,Cr和Ni两两空间分布格局具有相似性,单个元素之间存在差异性;2期数据的空间地图几何分析表明,在企业分布密度较大的3个高值区内,Pb和Hg在10年内聚集明显,Pb污染面积进一步增大,Hg污染分布格局基本保持不变。为防止污染面积扩大,建议相关部门应引起足够重视;重金属含量是土壤环境质量评价中的一个重要指标,对土壤环境质量评价的主要目的是减弱重金属对生态以及人体的危害,因此,在进行土壤重金属污染评价时,应考虑更多的贡献因素,以准确评价土壤环境质量。

  • 图 1  上虞园区PM采样点位置示意图

    Figure 1.  Location diagram of PM sampling points in Shangyu District

    图 2  UAV搭载微型检测仪及PM传感器

    Figure 2.  UAV equipped with micro-detector and PM sensor (Alphasense, OPC-N2)

    图 3  PM1.0、PM2.5、PM10在不同季节的浓度变化

    Figure 3.  Variation in concentrations of PM1.0, PM2.5 and PM10 in different seasons

    图 4  PM1.0、PM2.5和PM10在不同季节及一天中的不同时间点的垂直浓度分布

    Figure 4.  Vertical concentration distribution of PM1.0, PM2.5 and PM10 in different seasons and at different time points in a day

    图 5  PM浓度在地面9时的日变化情况

    Figure 5.  Diurnal variation of particulate concentration at 9 o 'clock on the ground

    图 6  不同粒径PM在9时的月平均垂直浓度分布图

    Figure 6.  Vertical profile of the monthly average concentration of particles of different sizes in 9 hours

    图 7  不同粒径PM在不同时间点每升颗粒数随高度变化

    Figure 7.  Variation in different particle sizes per liter with height in different time

    表 1  实验期间气象参数记录情况

    Table 1.  Meteorological parameter record table during the experiment

    日期Date最低—最高温度/℃Minimum - maximum temperatureRH/%风速风向
    2020.08.1927—3655东南风2级
    2020.08.2027—3757东南风2级
    2020.08.2127—3560东南风2级
    2020.10.2015—2283东北风2级
    2020.10.2116—1986西北风2级
    2020.10.2412—1969东北风2级
    2020.10.2510-—1880东南风1级
    2021.01.258—1590西北风1级
    2021.01.269—1091西北风2级
    2021.01.278—990东北风2级
    2021.01.287—1270西北风3级
    2021.01.295—1062东北风2级
    2021.01.305—1564东南风1级
    2021.03.2312—2953东南风2级
    2021.03.2413—2967东南风2级
    2021.03.2512—2975东北风1级
      注:风速0.3—1.5 m·s−1为1级风,1.6—3.3m/s为2级风,3.4—5.4m/s为3级风  Note: Wind speeds of 0.3—1.5 m·s−1 are force 1, 1.6—3.3 m·s−1 are Force 2, and 3.4—5.4 m·s−1 are force
    日期Date最低—最高温度/℃Minimum - maximum temperatureRH/%风速风向
    2020.08.1927—3655东南风2级
    2020.08.2027—3757东南风2级
    2020.08.2127—3560东南风2级
    2020.10.2015—2283东北风2级
    2020.10.2116—1986西北风2级
    2020.10.2412—1969东北风2级
    2020.10.2510-—1880东南风1级
    2021.01.258—1590西北风1级
    2021.01.269—1091西北风2级
    2021.01.278—990东北风2级
    2021.01.287—1270西北风3级
    2021.01.295—1062东北风2级
    2021.01.305—1564东南风1级
    2021.03.2312—2953东南风2级
    2021.03.2413—2967东南风2级
    2021.03.2512—2975东北风1级
      注:风速0.3—1.5 m·s−1为1级风,1.6—3.3m/s为2级风,3.4—5.4m/s为3级风  Note: Wind speeds of 0.3—1.5 m·s−1 are force 1, 1.6—3.3 m·s−1 are Force 2, and 3.4—5.4 m·s−1 are force
    下载: 导出CSV

    表 2  PM浓度在不同季节每上升百米的变化情况

    Table 2.  Variation of particulate matters concentration in different seasons for each rising by 100m

    PM1.0/(μg·m−3PM2.5/(μg·m−3PM10/(μg·m−3
    夏(2020年8月)Summer−0.37−1.04−11.70
    秋(2020年10月)Autumn0.980.860.60
    冬(2021年1月)Winter−4.852.6740.08
    春(2021年3月)Spring−0.74−1.02−1.96
      注:负值代表PM浓度随着高度升高而减小.  Note: Negative values indicate that the concentration of particles decreases with the increase of height.
    PM1.0/(μg·m−3PM2.5/(μg·m−3PM10/(μg·m−3
    夏(2020年8月)Summer−0.37−1.04−11.70
    秋(2020年10月)Autumn0.980.860.60
    冬(2021年1月)Winter−4.852.6740.08
    春(2021年3月)Spring−0.74−1.02−1.96
      注:负值代表PM浓度随着高度升高而减小.  Note: Negative values indicate that the concentration of particles decreases with the increase of height.
    下载: 导出CSV

    表 3  不同粒径PM相关性分析

    Table 3.  Correlation analysis of particles of different sizes

    平均值Average value标准差Standard deviationPM1.0PM2.5PM10
    PM1.055.0933.621.00
    PM2.572.7444.480.99*1.00
    PM1087.7153.160.96*0.99*1.00
      * P<0.05.
    平均值Average value标准差Standard deviationPM1.0PM2.5PM10
    PM1.055.0933.621.00
    PM2.572.7444.480.99*1.00
    PM1087.7153.160.96*0.99*1.00
      * P<0.05.
    下载: 导出CSV
  • [1] WANG D F, HUO J T, DUAN Y S, et al. Vertical distribution and transport of air pollutants during a regional haze event in Eastern China: A tethered mega-balloon observation study [J]. Atmospheric Environment, 2021, 246: 118039. doi: 10.1016/j.atmosenv.2020.118039
    [2] HAN B, LIU Y T, WU J H, et al. Characterization of industrial odor sources in Binhai New Area of Tianjin, China [J]. Environmental Science and Pollution Research, 2018, 25(14): 14006-14017. doi: 10.1007/s11356-018-1596-z
    [3] DING A J, HUANG X, NIE W, et al. Significant reduction of PM2.5 in Eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018 [J]. Atmospheric Chemistry and Physics, 2019, 19(18): 11791-11801. doi: 10.5194/acp-19-11791-2019
    [4] 王彤华. 基于无人机的颗粒物监测系统开发及应用研究[D]. 杨凌: 西北农林科技大学, 2020.

    WANG T H. Development and application of UAV particle monitoring system[D]. Yangling: Northwest A & F University, 2020(in Chinese).

    [5] 曹云擎, 王体健, 高丽波, 等. 基于无人机垂直观测的南京PM2.5污染个例研究 [J]. 气候与环境研究, 2020, 25(3): 292-304.

    CAO Y Q, WANG T J, GAO L B, et al. A case study of PM2.5 pollution in Nanjing based on unmanned aerial vehicle vertical observations [J]. Climatic and Environmental Research, 2020, 25(3): 292-304(in Chinese).

    [6] CHAN C K, YAO X H. Air pollution in mega cities in China [J]. Atmospheric Environment, 2008, 42(1): 1-42. doi: 10.1016/j.atmosenv.2007.09.003
    [7] 常毅, 刘得守, 刘文君. 兰州城市大气中PM1.0污染特征研究 [J]. 中国环境监测, 2020, 36(4): 45-52.

    CHANG Y, LIU D S, LIU W J. Study on the pollution characteristics of PM1.0 in Lanzhou City [J]. Environmental Monitoring in China, 2020, 36(4): 45-52(in Chinese).

    [8] 林瑜, 叶芝祥, 杨怀金, 等. 成都市中心城区大气PM1的污染特征及来源解析 [J]. 中国环境科学, 2017, 37(9): 3220-3226. doi: 10.3969/j.issn.1000-6923.2017.09.003

    LIN Y, YE Z X, YANG H J, et al. Pollution level and source apportionment of atmospheric particles PM1 in downtown area of Chengdu [J]. China Environmental Science, 2017, 37(9): 3220-3226(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.003

    [9] 王东生, 彭仲仁, 李白, 等. 基于多旋翼无人机平台的大气PM2.5垂直结构观测技术 [J]. 装备环境工程, 2019, 16(6): 35-40.

    WANG D S, PENG Z R, LI B, et al. Vertical atmospheric structure observation technology based on multi-rotor unmanned aerial vehicle (UAV) platform [J]. Equipment Environmental Engineering, 2019, 16(6): 35-40(in Chinese).

    [10] 王红丽, 高雅琴, 景盛翱, 等. 基于走航监测的长三角工业园区周边大气挥发性有机物污染特征 [J]. 环境科学, 2021, 42(3): 1298-1305. doi: 10.13227/j.hjkx.202007265

    WANG H L, GAO Y Q, JING S G, et al. Characterization of volatile organic compounds (VOCs) using mobile monitoring around the industrial parks in the yangzte river delta region of China [J]. Environmental Science, 2021, 42(3): 1298-1305(in Chinese). doi: 10.13227/j.hjkx.202007265

    [11] HUANG Y Z, GAO S, WU S J, et al. Stationary monitoring and source apportionment of VOCs in a chemical industrial park by combining rapid direct-inlet MSs with a GC-FID/MS [J]. Science of the Total Environment, 2021, 795: 148639. doi: 10.1016/j.scitotenv.2021.148639
    [12] CHEN R N, LI T Z, HUANG C T, et al. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park [J]. Environmental Pollution, 2021, 289: 117893. doi: 10.1016/j.envpol.2021.117893
    [13] HIGGINS C W, WING M G, KELLEY J, et al. A high resolution measurement of the morning ABL transition using distributed temperature sensing and an unmanned aircraft system [J]. Environmental Fluid Mechanics, 2018, 18(3): 683-693. doi: 10.1007/s10652-017-9569-1
    [14] LIU B, WU C, MA N, et al. Vertical profiling of fine particulate matter and black carbon by using unmanned aerial vehicle in Macau, China [J]. Science of the Total Environment, 2020, 709: 136109. doi: 10.1016/j.scitotenv.2019.136109
    [15] ŠTRBOVÁ K, RACLAVSKÁ H, BÍLEK J. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration [J]. Journal of Environmental Management, 2017, 203: 1190-1198. doi: 10.1016/j.jenvman.2017.06.001
    [16] HAN S, ZHANG Y, WU J, et al. Evaluation of regional background particulate matter concentration based on vertical distribution characteristics [J]. Atmospheric Chemistry and Physics, 2015, 15(19): 11165-11177. doi: 10.5194/acp-15-11165-2015
    [17] RAN L, DENG Z Z, XU X B, et al. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain [J]. Atmospheric Chemistry and Physics, 2016, 16(16): 10441-10454. doi: 10.5194/acp-16-10441-2016
    [18] STRAWBRIDGE K B, SNYDER B J. Daytime and nighttime aircraft lidar measurements showing evidence of particulate matter transport into the Northeastern valleys of the Lower Fraser Valley, BC [J]. Atmospheric Environment, 2004, 38(34): 5873-5886. doi: 10.1016/j.atmosenv.2003.10.036
    [19] LUO Y H, DOU K, FAN G Q, et al. Vertical distributions of tropospheric formaldehyde, nitrogen dioxide, ozone and aerosol in Southern China by ground-based MAX-DOAS and LIDAR measurements during PRIDE-GBA 2018 campaign [J]. Atmospheric Environment, 2020, 226: 117384. doi: 10.1016/j.atmosenv.2020.117384
    [20] XUE L K, DING A J, GAO J, et al. Aircraft measurements of the vertical distribution of sulfur dioxide and aerosol scattering coefficient in China [J]. Atmospheric Environment, 2010, 44(2): 278-282. doi: 10.1016/j.atmosenv.2009.10.026
    [21] SCHUYLER T, GUZMAN M. Unmanned aerial systems for monitoring trace tropospheric gases [J]. Atmosphere, 2017, 8(10): 206. doi: 10.3390/atmos8100206
    [22] VILLA T F, SALIMI F, MORTON K, et al. Development and validation of a UAV based system for air pollution measurements [J]. Sensors (Basel, Switzerland), 2016, 16(12): 2202. doi: 10.3390/s16122202
    [23] 赵晓飞. 开封市近地层大气颗粒物垂直分布研究[D]. 开封: 河南大学, 2011.

    ZHAO X F. Vertical distribution of atmospheric particles in the ground layer in Kaifeng[D]. Kaifeng: Henan University, 2011(in Chinese).

    [24] PENG Z R, WANG D S, WANG Z Y, et al. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China [J]. Atmospheric Environment, 2015, 123: 357-369. doi: 10.1016/j.atmosenv.2015.10.074
    [25] 赵晨曦, 王云琦, 王玉杰, 等. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系 [J]. 环境科学, 2014, 35(2): 418-427.

    ZHAO C X, WANG Y Q, WANG Y J, et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing [J]. Environmental Science, 2014, 35(2): 418-427(in Chinese).

    [26] 王妘涛, 张强, 温肖宇, 等. 运城市PM2.5时空分布特征和潜在源区季节分析 [J]. 环境科学, 2022, 43(1): 74-84.

    WANG Y T, ZHANG Q, WEN X Y, et al. Spatiotemporal distribution and seasonal characteristics of regional transport of PM2.5 in Yuncheng City [J]. Environmental Science, 2022, 43(1): 74-84(in Chinese).

    [27] LIU C, FEDOROVICH E, HUANG J P. Revisiting entrainment relationships for shear-free and sheared convective boundary layers through large-eddy simulations [J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(716): 2182-2195. doi: 10.1002/qj.3330
    [28] LIU C, HUANG J P, WANG Y W, et al. Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event [J]. Science of the Total Environment, 2020, 704: 135329. doi: 10.1016/j.scitotenv.2019.135329
    [29] YOO H J, KIM J, YI S M, et al. Analysis of black carbon, particulate matter, and gaseous pollutants in an industrial area in Korea [J]. Atmospheric Environment, 2011, 45(40): 7698-7704. doi: 10.1016/j.atmosenv.2011.02.049
    [30] MASON E L, SMITH M D. Temperature fluctuations and boundary layer turbulence as seen by Mars Exploration Rovers Miniature Thermal Emission Spectrometer [J]. Icarus, 2021, 360: 114350. doi: 10.1016/j.icarus.2021.114350
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 9.5 %DOWNLOAD: 9.5 %HTML全文: 90.3 %HTML全文: 90.3 %摘要: 0.2 %摘要: 0.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 98.2 %其他: 98.2 %XX: 1.0 %XX: 1.0 %三亚: 0.2 %三亚: 0.2 %北京: 0.2 %北京: 0.2 %天水: 0.2 %天水: 0.2 %贵阳: 0.2 %贵阳: 0.2 %其他XX三亚北京天水贵阳Highcharts.com
图( 7) 表( 3)
计量
  • 文章访问数:  3256
  • HTML全文浏览数:  3256
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-01-20
  • 刊出日期:  2023-04-27
袁锴彬, 庞小兵, 李晶晶, 陈浪, 韩张亮, 陈建孟, 张宝峰, 王军良. 基于无人机研究长三角化工园区颗粒物垂直廓线[J]. 环境化学, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
引用本文: 袁锴彬, 庞小兵, 李晶晶, 陈浪, 韩张亮, 陈建孟, 张宝峰, 王军良. 基于无人机研究长三角化工园区颗粒物垂直廓线[J]. 环境化学, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
YUAN Kaibin, PANG Xiaobing, LI Jingjing, CHEN Lang, HAN Zhangliang, CHEN Jianmeng, ZHANG Baofeng, WANG Junliang. Vertical profiles of particulate matter in a chemical industrial park of Yangtze River Delta studied by a sensor on an unmanned aerial vehicle[J]. Environmental Chemistry, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002
Citation: YUAN Kaibin, PANG Xiaobing, LI Jingjing, CHEN Lang, HAN Zhangliang, CHEN Jianmeng, ZHANG Baofeng, WANG Junliang. Vertical profiles of particulate matter in a chemical industrial park of Yangtze River Delta studied by a sensor on an unmanned aerial vehicle[J]. Environmental Chemistry, 2023, 42(4): 1270-1279. doi: 10.7524/j.issn.0254-6108.2021111002

基于无人机研究长三角化工园区颗粒物垂直廓线

    通讯作者: Tel:0571-88320032,E-mail:pangxb@zjut.edu.cn;  E-mail:121316990@qq.com; 
  • 1. 浙江工业大学环境学院,杭州,310014
  • 2. 浙江绍兴生态环境监测中心,绍兴,312099
  • 3. 浙江省杭州生态环境监测中心,杭州,310005
基金项目:
浙江省“领雁”研发攻关计划项目(2022C03073),浙江省自然科学基金(LZ20D050002), 浙江省重点研究计划项目(2021C03165),杭州市科技计划项目(20191203B65)和绍兴市科技计划项目(2020B33003)资助

摘要: 化工园区的颗粒物污染非常严重,但目前对化工园区的颗粒物垂直廓线研究甚少,导致无法科学地评估化工园区的颗粒物排放对周边地区的影响。在2020年8月—2021年3月期间于杭州湾上虞经济技术开发区开展了23d,共计151次的颗粒物(PM1.0、PM2.5、PM10)垂直观测实验。利用无人机搭载微型检测仪研究化工园区0—500 m高度内颗粒物在不同季节及一天中的不同时间点(9、11、13、15、17时)的分布特征。结果表明,颗粒物平均浓度大小为冬季>秋季>春季>夏季,且秋冬季颗粒物浓度远大于春夏季,最高可达152.00 μg·m−3。由相关性分析可知,颗粒物分别与大气温度和相对湿度呈正相关,与风速呈负相关关系。颗粒物浓度总体随高度的升高而降低,由于粒径和质量影响,下降速率呈现为PM10>PM2.5>PM1.0。由粒径分析可知,在颗粒物浓度最高的当天,颗粒物数浓度主要由0.38—0.54 μm细粒子组成。由日变化可知,颗粒物浓度一般在9时达到最高,在13时达到最低。

English Abstract

  • 长三角是中国经济发展最活跃和城市化程度最高的地区之一,同时也是全国最早成立化工园区的地区之一[1]。随着长三角地区近年来城市经济的快速发展,城市工业化水平不断提高,而化工园区作为各项产业的集聚地,在工业生产过程中会产生大量的大气污染物,是城市空气污染的重要污染源[2]。颗粒物(particulate matter,PM)作为其排放的主要大气污染物导致雾霾事件在秋冬季节频繁发生[3]。PM具有粒径小、比表面积大、活性强、易富集有毒、有害物质等特点[4]。PM2.5和PM10(空气动力学当量直径分别≤2.5 μm和≤10 μm的PM[5])是当前长三角地区的首要污染物[6],并与近年来频发的雾霾天气有着密切的关系[4]。PM1.0被称为可入肺PM[7],容易渗透到呼吸道并沉积在肺部,对人体健康的影响极大[8]。研究表明,短期或长期暴露于雾霾天气中,会引发一系列健康危害,包括皮肤、心血管和呼吸道疾病等[9]。目前国内外对化工园区污染研究以VOCs(volatile organic compounds,VOCs)为主,如王红丽等[10]通过走航监测研究了化工园区VOCs的污染水平,发现园区周边的VOCs是城市环境大气浓度的3倍左右。Huang等[11]利用气相色谱-氢火焰/质谱对化工园区VOCs进行了监测分析并检测到了12种有害物质,主要以芳烃为主。Chen等[12]调查研究了大型化工园区中卤代烃的来源,发现工业溶剂使用、工业过程和车辆废气排放是环境空气中卤代烃的主要来源。垂直廓线代表了区域输送、垂直混合、与大气边界层的积累以及卷吸等多种因素的综合效应[13]。Liu等[14]利用无人机对中国澳门的细PM和黑炭进行了垂直分布分析,发现了平流和对流输送对PM污染物的垂直廓线有显著影响。Strbova等[15]研究了欧洲一个工业区内PM的垂直分布,发现垂直分布中PM浓度春季明显高于夏季,并在地面120—135 m观察到了逆温层的存在。我国化工园区对于PM垂直分布研究较少,对于大气PM的时空变化特征缺乏深度的研究分析,因此对于化工园区的PM垂直分布研究具有重要意义。

    PM的垂直分布研究通常通过气象塔[16]、系留气球[17]、遥感[18]、多轴差分吸收光谱仪结合激光雷达[19]和载人飞行器[20]进行调查。气象塔是传统的监测方式,但其具有监测范围和高度有限等局限性。系留气球则是搭载不同仪器对垂直高空的污染物进行了监测,但其价格昂贵,并且只能用于垂直方向的观测。遥感虽然探测范围大、能在不同时空尺度上反映污染物的宏观分布情况,但是其监测高度位于300 m以上,监测的时间受卫星轨道限制,难以进行日常的实时监测。载人飞行器也可以进行大范围的监测,但其成本相对较高,一般不用于实验研究。无人飞机(unmanned aerial vehicle,UAV)是载人飞行器的良好替代品,针对PM污染物的垂直廓线测量,具有高效率[21]、灵活性和机动性[22]

    综上,化工园区是重要的大气污染源,而我国针对化工园区的PM垂直分布研究较少,对于化工园区大气PM的时空分布特征尚不清晰。本研究拟通过对长三角典型化工园区PM的时空分布特征进行调查分析,为我国化工园区的大气环境颗粒污染物监测及治理提供理论支持,有利于为相关部门制定相关大气污染治理的政策和标准提供科学依据[23]

    • 杭州湾上虞经济技术开发区(以下简称为上虞园区)创建于1998年,地处杭州湾南岸,位于上海、杭州、宁波三大城市圈中心位置,紧邻嘉绍跨江大桥。具体位置位于上虞园区的水处理发展有限公司(30°9′45″N,120°54′16″E)(图1)。采样点位于整个化工园区的中心地带,并且较为空旷,没有高大的建筑物,能够很好地采集化工园区扩散出的大气污染物,以便较为全面的反映上虞化工园区的PM污染情况。

    • UAV平台搭载的检测装置为自主研制的低成本微型大气检测仪,其内置有OPC-N2传感器(OPC-N2,Alphasense,英国)(图2)。该传感器的质量仅为0.1 kg,检测原理为激光散射,粒径检测范围为0.38—17 μm,0—10000 μg·m−3,检测流量为1 L·min−1。传感器与微型电脑集成,每1 s输出一个PM数据。UAV平台是一款搭载DJI-A3飞控的六旋翼UAV,它的最大起飞重量为35 kg,载荷能力≤6 kg,本研究最高飞行高度为500 m[14]

    • 实验在2020年8月19—21日,2020年10月20、21、24、25日,2020年12月2—8日、2021年1月25—30日、以及2021年3月23—25日开展,共计23d,累计进行了151次飞行。飞行时间为上午9时至下午5时。实验开始前,记录相关气象数据,设置相应软件参数,实验中UAV以2 m·s−1速度匀速上升至500 m,并悬停2 min。然后以1.5 m·s−1的速度匀速下降,在至400、300 、200 、100、50 、0 m处均悬停2 min对PM(PM1.0、PM2.5和PM10)进行检测,并记录抵达各高度时刻,检查软件运行情况。

      气象条件对于PM浓度的影响十分明显,温度和相对湿度(relative humidity,RH)是影响PM浓度变化的主要因素[24]。实验当天所记录的相应气象参数如表1所示,数据来源于中国气象数据网站。

    • 将3月、8月、10月和1月作为春季、夏季、秋季、和冬季的代表月份进行PM垂直观测,选取化工园区的PM1.0、PM2.5、PM10为典型PM,对其在不同季节的浓度变化进行分析(每次取不同垂直高度监测数据的平均值),结果如图3所示。

      图3可知,PM1.0、PM2.5、PM10的浓度最大值、中位数和平均值均呈现为冬季>秋季>春季>夏季,不同粒径PM的季节浓度变化特征一致,相关性较好。由于箱线图中出现了较多异常值(当最大值超出箱线图合理上限时定义为异常值),导致平均值受到较大影响,本文取PM的中位数进行比较。PM10的中位数67.82(冬季)>60.21(秋季)>26.01(春季)>24.95 μg·m−3(夏季);PM2.5的中位数52.15(冬季)>47.98(秋季)>20.24(春季)>14.61 μg·m−3(夏季);PM1.0的中位数41.59(冬季)>32.12(秋季)>16.93(春季)>12.65 μg·m−3(夏季)。由此可见,季节变化对PM浓度影响十分明显。这可能是由于春夏季温度较高,污染扩散较快,而秋冬季节较为寒冷,污染扩散比较缓慢造成PM的累积。此外,秋冬季燃煤等需求增加[25],致使PM污染物排放增加,这也是导致PM污染在秋冬季更加严重的重要原因。PM2.5与PM10的比值可以反映区域内大气细PM与粗PM的占比[26],园区PM2.5/PM10的季节中位数变化特征为:秋季(0.80)>春季(0.78)>冬季(0.77)>夏季(0.58),说明园区内春秋冬季节排放的PM以细PM为主,夏季排放的粗PM占比显著提高,其浓度值接近细PM,造成夏季粗PM比例最高的原因可能有自然源和人为源两方面影响,PM10受自然源和人为源双重影响,而PM2.5主要受人为源影响,夏季由于温度较高,大气湍流增强,PM整体较低,而夏季为东南风主导,来自海上的气团中多携带着PM较大的海盐粒子,这可能造成夏季粗PM比例最高。

    • 上虞园区在不同季节高度每上升百米PM1.0、PM2.5和PM10平均浓度变化情况(监测高度为0—500 m)如表2所示。由表2可知,春季和夏季的PM浓度随高度升高而降低,最大幅度为每百米降低了11.70 μg·m−3。在秋季,PM浓度每升高百米增加的范围为0.60—0.98 μg·m−3。在冬季,随着高度的升高,PM2.5和PM10浓度均增大,PM10浓度每百米上升高达40.08 μg·m−3

      为了了解该化工园区在四季不同高度及一天中不同时间点(9、11、13、15、17时)PM的浓度及变化情况,对0、50、100、200、300、400、500 m处的PM1.0、PM2.5和PM10浓度进行了分析,结果见图4

      利用相关分析来研究PM1.0、PM2.5以及PM10之间的相关关系,使用Pearson相关系数来表示相关关系的强弱情况,结果如表3。由表3可知,PM1.0和PM2.5之间的相关系数值为0.99,并且呈现出0.05水平的显著性,因而说明PM1.0和PM2.5之间有着显著的正相关关系。PM1.0和PM10之间的相关系数值为0.96,并且呈现出0.05水平的显著性,说明PM1.0和PM10之间也有着显著的正相关关系。PM2.5与PM10的相关系数值也为0.99,同样呈现出0.05水平的显著性。因此PM1.0、PM2.5以及PM10三者均存在着显著的正相关关系。

      以PM10为例,对PM在垂直廓线的浓度变化进行探讨(图4)。在春、夏、冬季,PM(PM10)浓度在0—50 m随高度升高而降低,春季从40.63 μg·m−3降低到32.41 μg·m−3,夏季从74.76 μg·m−3降低到17.64 μg·m−3,冬季从119.64 μg·m−3降低到99.41 μg·m−3。在秋季,PM(PM10)浓度从70.34 μg·m−3升高到76.38 μg·m−3,这可能是由于秋季50 m高度出现了逆温(气温随着高度增加而升高的反常现象),使污染物无法向上扩散。从50—500 m,春夏季PM浓度也随着高度上升而下降,春季从32.41 μg·m−3降低至29.11 μg·m−3,夏季从17.64 μg·m−3降低到16.28 μg·m−3,浓度变化均较小。这可能是因为在日间对流条件下,由于产生浮力湍流和剪切产生湍流的强烈湍流运动,在大气边界层内可以很好地垂直混合[27]。秋冬季的PM浓度则随高度升高,在50—500 m的不同高度层,浓度有不同的变化。其中,浓度变化最剧烈的是在秋季的300 m到400 m,在这个范围内PM浓度从112.67 μg·m−3降低到65.65 μg·m−3。而在冬季的400 m到500 m范围内,PM浓度从139.11 μg·m−3增大到185.14 μg·m−3,这可能是由于实验地点西北部有大型烟囱排放污染,而冬季由西北风主导,排放的污染物通过区域水平输送引起[28],值得注意的是,细颗粒物相比粗颗粒物更易扩散,而从垂直分布图中发现PM1.0反而有所降低,本研究现有数据尚不能合理的解释这一现象,也无法排除偶尔误差的存在,这为后续的研究提供了一个新的关注点。

      从不同粒径PM来看,春季PM1.0浓度为15—30 μg·m−3,PM2.5浓度为20—40 μg·m−3,PM10浓度在25—50 μg·m−3。夏季PM浓度整体最低,但地面的PM10浓度却非常高,达到150 μg·m−3,并且在高度50 m显著降低,降低至20 μg·m−3以下,然后随着高度升高,没有明显变化,表明大气混合均匀。秋季PM1.0浓度在30—60 μg·m−3,PM2.5浓度在50—100 μg·m−3,PM10浓度在60—110 μg·m−3,但不够稳定,浓度变化较大。冬季是PM污染最严重的一个月份,PM1.0浓度在地面最高可达110 μg·m−3,高空则有所下降,大概在90 μg·m−3,而PM2.5和PM10的高空浓度反而要高于地面浓度,PM2.5高空浓度最高接近160 μg·m−3,PM10高空浓度最高接近了200 μg·m−3。从一天的各时间点看可以发现,春季PM浓度在9时和13时较高,在15时较低,同时我们注意到9时的300 m高度,PM浓度突然降低,这一情况也出现在秋季11时的400 m高度层,可能是由于这两个高度层当时有强风吹过,大气流动加强,导致污染物浓度下降。夏季的最高污染浓度出现在9时,最低污染浓度则是出现在靠近中午的11时,这可能是由于早晨9时汽车尾气排放增加[29],而中午时刻温度升高,边界层高度升高[30],PM扩散更加活跃所致。秋季的最高污染浓度出现在11时,秋季的9时污染浓度比较低,这可能是由于秋季实验部分时间为周末,上班来往车辆骤减,导致9时的污染浓度显著降低,而当有光化学烟雾的情况下,PM浓度容易从早晨开始一直上升到中午达到极大值。冬季PM浓度整体都较高,最高污染浓度还是出现在9时,并且污染浓度明显高于其他时刻,最高接近200 μg·m−3,污染非常严重。从一天的时间段来看,秋季的11时和15时,冬季的9时PM浓度远大于其他时刻秋季的11时对PM浓度的贡献为23.36%,15时贡献了22.72%,冬季的9时贡献了PM浓度的29.33%,这造成了秋冬季PM浓度整体较高。同样计算出其他季节在9时的贡献率,分别是春季22.99%,夏季24.16%,秋季20.35%,表明9时是一天中污染较为严重的时刻,值得关注。

    • 由于9时的污染情况最为严重,并且地面污染对人体有着直接的侵害,更加需要引起重视,所以选取了地面9时这一方向来展开研究。图5是2020年8月和10月,2021年1月和3月上虞园区在夏、秋、冬和春9时的地面PM浓度的日变化情况。

      图5能直观的看出冬季的地面PM浓度整体较高,其次是秋季。由表1可知,秋季和冬季的气温较低和RH较高导致地面PM浓度较高。这一情况与高空PM浓度整体变化情况一致,说明当高空污染较为严重的时候,地面污染程度也会相应的提高。不同粒径之间的地面PM浓度在夏季表现出较大差异,尤其是PM10在8月21日的浓度较高,接近了150 μg·m−3,远超过PM1.0浓度22.08 μg·m−3和PM2.5浓度31.89 μg·m−3。夏季,冬季和春季的地面不同粒径PM浓度变化大致呈相同的趋势,相关性较好,但是逐日变化均具有较大的波动,尤其是在冬季,地面PM浓度在1月28日最高,达到了275 μg·m−3,1月25日也达到了250 μg·m−3,而冬季其余实验日的地面PM浓度均在120 μg·m−3以下,实验期间地面PM最低浓度出现在3月24日,在25 μg·m−3以下,而在3月25日的地面PM浓度则突然升高,达到了100 μg·m−3,这可能与3月25日的气温较低并且RH较高有关,秋季的地面PM浓度在10月20日最高,也达到了100 μg·m−3,之后几天浓度降低,整体在50—75 μg·m−3之间,而2020年10月24日和10月25日虽然是周末,但PM污染并没有减轻太多,并且当天的气温较低,RH较高,地面PM容易积累,说明地面PM污染持续时间也较长,并没有得到很好的扩散。在这16d内,PM2.5浓度共有7d超过了国家二级标准(日均50 μg·m−3),超标倍数范围为1.10—5.32,PM10则有2d超过了国家二级标准(日均150 μg·m−3),分别是PM10国家二级标准的1.58倍和1.82倍,表明实验期间地面PM污染非常严重。

    • 图6是PM在9时的月平均浓度垂直布情况。图中各点代表了各月不同高度层的平均浓度以及相应的误差棒,误差棒表示的是一个月内不同实验日PM浓度之间的离散程度。

      图6可知,PM9时的月平均浓度整体呈现出冬季(1月)>秋季(10月)>春季(3月)>夏季(8月)的趋势。在不同的高度层,冬季9时的PM平均浓度均最大,是其他季节的2.29—4.29倍。春、夏、秋季9时PM浓度随高度升高而降低,浓度分别从47.29 μg·m−3降低到36.62 μg·m−3、80.84 μg·m−3降低到15.59 μg·m−3、83.15 μg·m−3降低到29.32 μg·m−3,而冬季9时PM浓度则在200 m处出现一个拐点,从0到500 m,浓度先从141.43μg·m−3降低到130.50 μg·m−3,200 m后从130.50 μg·m−3升高到148.82 μg·m−3,在500 m高度层出现了较高于地面的浓度。由误差棒可知,3月,8月和10月的平均浓度较为稳定,而1月整体偏差较大,并在500 m高度层达到最大,这可能是由于1月9时的个别实验期间出现了重污染,并发生在高空500 m处,导致1月PM平均浓度整体偏高,PM浓度随着高度升高无明显降低。

    • 从PM浓度逐日变化图中(图5)可知, 2021年1月28日的污染最严重。为了解当天污染由何种粒径的PM主导,对其进行了粒径分布分析。在计算PM数浓度时,发现粒径>1.59 μm的PM数量极少,可忽略不计,因此将粒径范围分为5个粒度级,分别是0.38—0.54 μm、0.54—0.78 μm、0.78—1.05 μm、1.05—1.34 μm和1.34—1.59 μm,不同粒径PM在不同时间点每升颗粒数随高度变化情况如图7所示。

      图7可知,1月28日的PM数浓度整体在9时最高,最高达到2.7×105个·L−1,在17时整体最低,低于1.0×105 个·L−1。同一时段的PM数浓度在地面达到最高,这可能是由于前一晚的PM向地面输送,增加了在地面的累积。所有时间段中,在0.38—0.54 μm粒径范围的PM数浓度最高,数浓度大小排序为0.38—0.54 μm>0.54—0.78 μm>0.78—1.05 μm>1.05—1.34 μm>1.34—1.59 μm,随着粒径增大,PM数浓度明显下降,0.38—0.54 μm的数浓度是0.54—0.78 μm数浓度的2.80倍,说明化工园区的PM主要以细粒子为主,特别是由0.54 μm以下的细粒子贡献。

    • PM浓度在秋冬季显著高于春夏季,PM浓度的中位数为67.82 μg·m−3(冬季)>60.21 μg·m−3(秋季)>26.01 μg·m−3(春季)>24.95 μg·m−3(夏季)。长三角化工园区的PM浓度在0—500 m范围,总体随高度的升高而下降,但2021年1月出现了PM浓度随高度升高而上升的现象,这可能是由于逆温影响或者发生了高空污染事件。最高或者最低PM污染浓度主要出现在300 m和400 m高度层,这可能是由于本化工园区的污染排放加上季节风向将众多污染聚集或吹散至这两个高度。在一天中,PM污染浓度往往在9时达到最高,13时达到最低,这可能是由于9时汽车尾气排放增加,而中午边界层升高,PM扩散更加活跃。由9时地面PM的逐日变化可知,在16 d内,PM2.5浓度共有7 d超过国家二级标准(日均50 μg·m−3),超标倍数范围为1.10—5.32,PM10则有2 d超过了国家二级标准(日均150 μg·m−3),分别是PM10国家二级标准的1.58倍和1.82倍。由粒径分析可知,在污染最为严重的当天,细PM(0.38—0.54 μm)在垂直剖面上的贡献最大,并且随高度升高而减少,粒径越大,颗粒数也越少。通过相关分析可知,PM1.0、PM2.5和PM10三者存在显著的正相关关系,大气PM的浓度分别与气温、RH呈正相关、与风速呈负相关的关系。本文研究将有利于相关学者更好的了解长三角典型化工园区大气PM的时空分布特征,为化工园区的大气环境颗粒污染物监测及治理提供理论支持,有利于为相关部门制定相关大气污染治理的政策和标准提供科学依据。

    参考文献 (30)

返回顶部

目录

/

返回文章
返回