-
PM2.5是影响城市大气环境和人类健康的主要污染物之一,并受到社会的广泛关注[1]。PM2.5中含有多种有害物质,对人体健康和生态环境具有很大危害,PM2.5中附着的一些重金属,具有降解难、反应活性高和毒性大等特点,可通过呼吸和摄食进入人体,是目前城市人群呼吸系统、心血管疾病和癌症发病的主要因素之一[2]。此外,一些重金属元素还可通过干湿沉降影响陆地和水生生态系统,从而破坏生态坏境[3]。有研究表明,PM2.5中元素的分布与其来源密切相关[4],研究PM2.5元素的浓度水平、分布特征、来源和传输途径对于深入理解其对人类健康和生态环境的影响具有重要科学意义。
近年来的大量研究表明,对PM2.5中的元素进行分析可识别重污染天气污染来源和对人类健康的影响。刘可可等[5]通过对比研究合肥市重污染期和清洁期颗粒物的元素组成差异,发现重污染天的Si、Al、Mg和Ca等地壳元素的含量明显降低,表明静稳天气下扬尘源对颗粒物的贡献明显减少,而S元素浓度明显增高,说明煤炭燃烧 是导致合肥市大气污染的主要原因。陈展乐等[6]分析了黄冈市重污染过程中PM2.5的元素组分,发现在静稳、高湿的天气条件下,煤炭燃烧、机动车尾气和工业排放是导致重污染天气形成的主要原因。Cui等[7]通过对新冠疫情时期京津之间乡村地区PM2.5元素组分的高时间分辨率分析,发现停工停产和交通管控措施导致了大气颗粒物微量元素的浓度下降。何瑞东等[8]通过对郑州市某生活区内的PM2.5中重金属进行健康评估,发现Mn对当地人群具有非致癌风险,Cd和As则具有致癌风险;Hassan等[9]通过对埃及吉萨市多次大气污染期间气溶胶化学特征的分析,发现沙尘暴期间该地PM2.5的质量浓度最高,且地壳元素与重金属的浓度均高于正常日;Mohsenibandpi等[10]对伊朗德黑兰细颗粒物中附着的重金属进行了健康风险评价,发现城区As的致癌风险高于Cd和Cr。以上研究为深入理解我国人口密集地区的中东部地区大气污染特征、来源及健康风险具有重要参考价值。
济南市地处华北地区,是我国重要的区域性经济中心,也是京津冀大气污染重要传输通道城市(“2+26”城市)之一。近年来,随着经济的不断发展,该市的大气环境污染依然十分严重,在2019年全国大气质量排名的168个城市中,济南市空气质量排在倒数第12名(https://www.aqistudy.cn/)。目前已有关于济南市大气颗粒物污染的研究,主要集中于水溶性无机离子、碳质组分和有机化合物等方面[11-14],而有关济南市PM2.5中元素的分布及来源,尤其是重金属污染特征和健康风险评价方面的研究尚不深入。因此,该研究旨在深入分析济南市冬季PM2.5中元素的污染特征和来源,尤其是重金属的污染特征及其健康风险,以期为济南市环境空气治理提供科学依据和制定居民的健康指南提供数据支撑。
济南市冬季PM2.5中元素的污染特征、来源及健康风险评价
Pollution characteristics, sources and health risk assessment of elements in PM2.5 during wintertime in Jinan city
-
摘要: 为探究济南市冬季PM2.5中元素的污染特征、来源及健康风险,于2019年1—2月在山东大学中心校区分昼、夜采集PM2.5样品,利用能量色散X射线荧光光谱仪(energy dispersive X-ray fluorescence spectrometer, ED-XRF)分析19种元素的含量,并采用富集因子法、正定矩阵因子模型和潜在源贡献因子法分析其来源,再利用环境健康风险评估模型对重金属的健康风险进行评价。结果表明,济南市冬季PM2.5中地壳元素(Ca、Na、Mg、Al、K、Ti和Fe)和重金素元素(V、Cr、Mn、Co、Ni、Cu、Zn、As、Ba和Pb)的总浓度分别为(11.5±1.4) μg·m-3和(432.3±165) ng·m-3,分别占元素总质量浓度的80.4%和3.0%;污染期元素的总质量浓度是清洁期的1.2倍,但元素总浓度在PM2.5中的占比却从污染期的9.6%上升至清洁期的28.2%,说明元素的富集不是PM2.5升高的原因;污染期重金属元素的富集因子(enrichment factors, EFs)显著高于清洁期,表明人为污染物的排放是导致灰霾形成的主要原因;PM2.5中的元素主要来自扬尘与工业源(36.3%)、交通源(27.9%)、煤炭燃烧源(19.4%)和生物质燃烧源(16.4%);济南市的潜在源分析的结果表明,不同来源贡献的潜在源区差异较为明显,济南市冬季PM2.5中的元素不仅受到济南周边城市的影响,还受邻近省份远距离传输的影响;济南市的重金属对人群不具有非致癌风险,Cr、Co、Ni和As对人群均存在致癌风险,尤其是Cr对成年男性具有不可忽视致癌风险。Abstract: To investigate the pollution characteristics, sources, and health risks of elements in PM2.5 during the wintertime in Jinan City, PM2.5 samples were collected from January to February of 2019 on a day/night basis at the central campus of Shandong University. Nineteen kinds of elements in PM2.5 were measured by energy dispersive X-ray fluorescence spectrometer. The sources of the elements were analyzed by enrichment factors (EFs), positive matrix factorization (PMF), and potential source contribution function (PSCF). In addition, the United States Environmental Protection Agency’s (EPA) health risk assessment method was used to evaluate the health risks of the trace elements. The results showed that the mass concentration of crustal elements including Ca、Na、Mg、Al、K、Ti, and Fe) and trace elements including V, Cr, Mn, Co, Ni, Cu, Zn, As, Ba, and Pb were (11.5±1.4) μg·m-3 and (432.3±165) ng·m-3, which accounted for 80.4% and 3.0% of the total concentrations of elements ,respectively. Compared with the clean days, the total concentration of elements in haze days was 1.2 times that in the cleaning days, but the proportion of the total concentrations in PM2.5 increased from 9.6% in the haze days to 28.2% in the cleaning days, indicating that the accumulation of metal elements was not the main factor for the increase of PM2.5. The EFs value of the majority of pollution elements were higher in haze days than those in clean days, indicating that the increase of anthropogenic pollution sources may be the dominant factor leading to the occurrence of haze days.The results of PMF showed that the fugitive dust plus industrial emission, traffic source, coal burning, and biomass burning were the primary sources of elements5 in Jinan City, which accounted for 36.3%, 27.9%, 19.4%, and 16.4%, respectively. The results of PSCF indicated that the concentrations of elements during the wintertime in Jinan were significantly affected by the surrounding regions and the long-distance transport. The results of health risk assessment suggested that heavy metals do not posed non-carcinogenic risk to people, whereas Cr, Co, Ni, and As had a carcinogenic risk to three kinds of people. Cr had an intolerable to adult men.
-
Key words:
- PM2.5 /
- heavy metals /
- sources /
- potential source contribution function /
- health risk assessment
-
表 1 济南市与中国其他城市大气PM2.5中主要元素的平均质量浓度对比(ng·m−3)
Table 1. Average concentrations of major elements in PM2.5 from Jinan and other cities in China(ng·m−3)
组分
Component济南(本研究)
Jinan (this study)武汉[21]
Wuhan成都[22]
Chengdu北京[1]
Beijing上海[23]
ShanghaiNa 1712.1±187.6 n.a. 70.4 ± 34.8 n.a. 334.4 Mg 81.9±30.4 n.a. 74.4 ± 26.3 506.5 46.9 Al 1345.4±432.4 n.a. 300.0±129.9 810.8 722.9 K 894.2±326.9 3733.5 ± 3249.2 3002.2 ± 2485.6 2372.4 646.1 Ca 6758.7±692.8 1792.5 ± 2043.4 535.8 ± 187.8 1738.3 n.a. Ti 44.5±9.5 n.a. 36.8 ± 13.5 n.a. n.a. Fe 712.5±208.0 1820.8 ± 1458.5 366.2 ± 110.9 1323.1 507.7 S 1253.3±846.9 n.a. 2103.5 ± 1409.4 n.a. 5649.7 Cl 1036.2±905.1 n.a. 613.0 ± 607.8 n.a. n.a. V 2.7±2.0 6.4 ± 9.0 1.1 ± 1.3 16.2 9.4 Cr 20.8±3.8 9.8 ± 13.9 5.7 ± 3.2 7.7 23.6 Mn 29.8±12.7 76.5 ± 50.9 22.6 ± 8.0 58.8 55.2 Co 15.5±2.8 8.1 ± 3.5 2.7 ± 1.4 8.8 0.4 Ni 12.2±2.3 3.6 ± 3.4 11.5 ± 9.8 n.a. 7.5 Cu 39.9±30.4 30.1 ± 23.3 27.6 ± 9.4 185.2 18.9 Zn 157.5±91.4 419.2 ± 388.2 250.9 ± 69.1 185.3 232.5 As 7.1±7.8 27.8 ± 27.9 76.1 ± 41.0 10.6 17.9 Ba 87.8±33.9 103.2 ± 79.2 n.a. n.a. 10.2 Pb 59.1±32.1 180.8 ± 128.8 106.5 ± 30.3 154.3 117.4 ∑地壳元素/(μg·m−3) 11.5±1.4 n.a. n.a. n.a. n.a. ∑重金属/ (ng·m−3) 432.3±165.0 n.a. n.a. n.a. n.a. ∑元素/(μg·m−3) 14.3±3.9 n.a. n.a. n.a. n.a. 注:n.a.表示数据缺失.
Note: n.a. indicates missing data.表 2 采样期间不同污染条件下的元素浓度与富集因子
Table 2. Concentration and enrichment factor of elements and ratio in different pollution conditions during sampling periods
元素
Elements浓度
Concentration富集因子
Enrichment factor清洁期
Clean污染期
Pollution清洁/污染
Clean/ Pollution清洁期
Clean污染期
Pollution整个采样期
Total地壳元素/(ng·m−3)
Crustal elementsNa 1664.6±197.2 1732.5±181.9 0.96 13.7 13.3 13.4 Mg 78.9±31.6 83.2±30.2 0.95 0.9 0.9 0.9 Al 1360.4±431.9 1338.9±437.6 1.02 1.9 1.8 1.8 K 676±195.9 987.7±328.7 0.68 3.4 4.6 4.3 Ca 6652.4±711.1 6804.3±688.4 0.98 56.6 54.0 54.7 Ti 42.3±7.9 45.4±10.1 0.93 1.0 1.0 1.0 Fe 582.5±128.2 768.2±211.8 0.76 1.9 2.3 2.2 ∑地壳元素 11057.1±1395 11760.3±1315.6 0.94 污染元素/(ng·m−3)
Pollutant elementsS 608.9±235.9 1529.5±865.2 0.40 Cl 504.9±260.4 1263.8±986.8 0.40 V 2.2±1.6 2.9±2.1 0.78 Cr 20.1±3.7 21.1±3.8 0.95 31.1 30.4 30.6 Mn 20.1±6.2 33.9±12.5 0.59 3.1 4.9 4.4 Co 15.8±2.8 15.3±2.8 1.03 115.1 103.8 107.0 Ni 11.8±2.1 12.3±2.4 0.95 41.1 40.2 40.5 Cu 29.5±15.3 44.4±34.2 0.66 126.6 177.5 163.0 Zn 94±34.6 184.7±94.9 0.51 134.5 246.3 214.4 As 2.5±4.1 9.1±8.2 0.27 26.6 70.3 57.0 Ba 82.7±29.7 90±35.7 0.92 16.3 16.5 16.5 Pb 36.3±11.7 68.9±33.1 0.53 155.8 275.7 241.5 ∑重金属 314.8±75.9 482.6±167.7 0.65 ∑污染元素 1428.6±526.9 3275.9±1777.5 0.44 ∑元素/(ng·m−3) 12485.7±1680.6 15036.2±2585.3 0.83 PM2.5/(μg·m−3) 44.3 155.6 0.28 表 3 重金属金属元素在不同天气条件下的非致癌风险
Table 3. Non-carcinogenic risks of heavy metal elements in different meteorological condition
清洁期
Clean污染期
Pollution男性
Male(adult)女性
Female(adult)儿童
Child男性
Male(adult)女性
Female(adult)儿童
ChildV 1.15×10−4 9.78×10−5 1.25×10−4 1.17×10−4 9.99×10−5 1.28×10−4 Mn 4.63×10−1 3.94×10−1 5.04×10−1 7.39×10−1 6.28×10−1 8.04×10−1 Cu 2.49×10−4 2.12×10−4 2.71×10−4 3.32×10−4 2.82×10−4 3.61×10−4 Zn 1.07×10−4 9.11×10−5 1.17×10−4 1.86×10−4 1.58×10−4 2.02×10−4 Ba 1.29×10−4 1.10×10−4 1.40×10−4 1.37×10−4 1.17×10−4 1.49×10−4 Pb 3.45×10−3 2.94×10−3 3.76×10−3 5.97×10−3 5.08×10−3 6.50×10−3 表 4 重金属元素在不同天气条件下的致癌风险
Table 4. Carcinogenic risks of heavy metal elements in meteorological condition
清洁期
Clean污染期
Pollution男性
Male(adult)女性
Female(adult)儿童
Child男性
Male(adult)女性
Female(adult)儿童
ChildCr 1.12×10−4 9.51×10−5 2.43×10−5 1.16×10−4 9.86×10−5 2.52×10−5 Co 2.02×10−5 1.72×10−5 4.41×10−6 1.98×10−5 1.68×10−5 4.30×10−6 Ni 1.29×10−6 1.10×10−6 2.81×10−7 1.36×10−6 1.16×10−6 2.97×10−7 As 6.23×10−6 5.30×10−6 1.36×10−6 1.76×10−5 1.49×10−5 3.83×10−6 -
[1] 乔宝文, 刘子锐, 胡波, 等. 北京冬季PM2.5中金属元素浓度特征和来源分析 [J]. 环境科学, 2017, 38(3): 876-883. QIAO B W, LIU Z R, HU B, et al. Concentration characteristics and sources of trace metals in PM2.5 during wintertime in Beijing [J]. Environmental Science, 2017, 38(3): 876-883(in Chinese).
[2] KHAN M F, HWA S W, HOU L C, et al. Influences of inorganic and polycyclic aromatic hydrocarbons on the sources of PM2.5 in the Southeast Asian urban sites [J]. Air Quality, Atmosphere & Health, 2017, 10(8): 999-1013. [3] WRIGHT L P, ZHANG L M, CHENG I, et al. Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems - A review [J]. Aerosol and Air Quality Research, 2018, 18(8): 1953-1992. doi: 10.4209/aaqr.2018.03.0107 [4] HAO Y F, MENG X P, YU X P, et al. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources [J]. Atmospheric Research, 2018, 213: 550-561. doi: 10.1016/j.atmosres.2018.07.006 [5] 刘可可, 张红, 刘桂建. 合肥市PM2.5和PM10中元素组成特征及重污染成因分析 [J]. 环境科学, 2019, 40(8): 3415-3420. LIU K K, ZHANG H, LIU G J. Elemental composition characteristics of PM2.5 and PM10, and heavy pollution analysis in Hefei [J]. Environmental Science, 2019, 40(8): 3415-3420(in Chinese).
[6] 陈展乐, 田倩, 毛瑶, 等. 华中地区黄冈市一次重度污染期间PM2.5中12种微量元素特征及来源解析 [J]. 环境科学, 2020, 41(8): 3475-3483. CHEN Z L, TIAN Q, MAO Y, et al. Characteristics and sources of 12 trace amount elements in PM2.5 during a period of heavy pollution in Huanggang, central China [J]. Environmental Science, 2020, 41(8): 3475-3483(in Chinese).
[7] CUI Y, JI D S, MAENHAUT W, et al. Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin [J]. Science of the Total Environment, 2020, 744: 140840. doi: 10.1016/j.scitotenv.2020.140840 [8] 何瑞东, 张轶舜, 陈永阳, 等. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估 [J]. 环境科学, 2019, 40(11): 4774-4782. HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou City [J]. Environmental Science, 2019, 40(11): 4774-4782(in Chinese).
[9] HASSAN S K, KHODER M I. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt [J]. Atmospheric Environment, 2017, 150: 346-355. doi: 10.1016/j.atmosenv.2016.11.026 [10] MOHSENIBANDPI A, ESLAMI A, GHADERPOORI M, et al. Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran [J]. Data in Brief, 2018, 17: 347-355. doi: 10.1016/j.dib.2018.01.018 [11] 别淑君, 杨凌霄, 高颖, 等. 济南市背景区域大气PM2.5污染特征及其对能见度的影响 [J]. 环境科学, 2019, 40(9): 3868-3874. BIE S J, YANG L X, GAO Y, et al. Characteristics of atmospheric PM2.5 pollution and its influence on visibility in background areas of ji'nan [J]. Environmental Science, 2019, 40(9): 3868-3874(in Chinese).
[12] 刘晓迪, 孟静静, 侯战方, 等. 济南市夏、冬季PM2.5中化学组分的季节变化特征及来源解析 [J]. 环境科学, 2018, 39(9): 4014-4025. LIU X D, MENG J J, HOU Z F, et al. Analysis of seasonal variations in chemical characteristics and sources of PM2.5 during summer and winter in ji'nan city [J]. Environmental Science, 2018, 39(9): 4014-4025(in Chinese).
[13] 杨雨蒙, 杨凌霄, 张俊美, 等. 济南市冬季灰霾日PM1.0和PM1.0-2.5污染特征 [J]. 山东大学学报(工学版), 2017, 47(2): 111-116. YANG Y M, YANG L X, ZHANG J M, et al. Characteristics of PM1.0 and PM1.0-2.5 in haze days during winter in Jinan [J]. Journal of Shandong University (Engineering Science), 2017, 47(2): 111-116(in Chinese).
[14] GU J X, DU S Y, HAN D W, et al. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China [J]. Air Quality, Atmosphere & Health, 2014, 7(3): 251-262. [15] TAN J H, DUAN J C, MA Y L, et al. Source of atmospheric heavy metals in winter in Foshan, China [J]. Science of the Total Environment, 2014, 493: 262-270. doi: 10.1016/j.scitotenv.2014.05.147 [16] 姬亚芹, 朱坦, 冯银厂, 等. 用富集因子法评价我国城市土壤风沙尘元素的污染 [J]. 南开大学学报(自然科学版), 2006, 39(2): 94-99. JI Y Q, ZHU T, FENG Y C, et al. Application of the enrichment factor to analyze the pollution of elements in soil dust in China [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2006, 39(2): 94-99(in Chinese).
[17] 陆平, 赵雪艳, 殷宝辉, 等. 临沂市PM2.5和PM10中元素分布特征及来源解析 [J]. 环境科学, 2020, 41(5): 2036-2043. LU P, ZHAO X Y, YIN B H, et al. Distribution characteristics and source apportionment of elements bonded with PM2.5 and PM10 in Linyi [J]. Environmental Science, 2020, 41(5): 2036-2043(in Chinese).
[18] 高阳, 韩永贵, 黄晓宇, 等. 基于后向轨迹模式的豫南地区冬季PM2.5来源分布及传输分析 [J]. 环境科学研究, 2021, 34(3): 538-548. GAO Y, HAN Y G, HUANG X Y, et al. PM2.5 source distribution and transmission in winter in southern Henan Province based on backward trajectory model [J]. Research of Environmental Sciences, 2021, 34(3): 538-548(in Chinese).
[19] 环境保护部. 中国人群暴露参数手册-成人卷, Adults: 成人卷 Adults[M]. 北京: 中国环境出版社, 2013. Environmental Protection. Exposure factors handbook of Chinese population[M]. Beijing: China Environmental Science Press, 2013(in Chinese).
[20] 李雪梅, 牟玲, 田妹, 等. 山西大学城PM2.5中元素特征、来源及健康风险评估 [J]. 环境科学, 2020, 41(11): 4825-4831. LI X M, MU L, TIAN M, et al. Characteristics, sources, and health risks of elements in PM2.5 in Shanxi university town [J]. Environmental Science, 2020, 41(11): 4825-4831(in Chinese).
[21] ACCIAI C, ZHANG Z Y, WANG F J, et al. Characteristics and source Analysis of trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring [J]. Aerosol and Air Quality Research, 2017, 17(9): 2224-2234. doi: 10.4209/aaqr.2017.06.0207 [22] 杨怀金, 杨德容, 叶芝祥, 等. 成都西南郊区春季PM2.5中元素特征及重金属潜在生态风险评价 [J]. 环境科学, 2016, 37(12): 4490-4503. YANG H J, YANG D R, YE Z X, et al. Characteristics of elements and potential ecological risk assessment of heavy metals in PM2.5 at the southwest suburb of Chengdu in spring [J]. Environmental Science, 2016, 37(12): 4490-4503(in Chinese).
[23] 胡鸣, 张懿华, 赵倩彪. 上海市冬季PM2.5无机元素污染特征及来源分析 [J]. 环境科学学报, 2015, 35(7): 1993-1999. HU M, ZHANG Y H, ZHAO Q B. Characteristics and sources of inorganic elements in PM2.5 during wintertime in Shanghai [J]. Acta Scientiae Circumstantiae, 2015, 35(7): 1993-1999(in Chinese).
[24] 周安琪, 刘建伟, 周旭, 等. 北京大气PM2.5载带金属浓度、来源及健康风险的城郊差异 [J]. 环境科学, 2021, 42(6): 2595-2603. ZHOU A Q, LIU J W, ZHOU X, et al. Concentrations, sources, and health risks of PM2.5 carrier metals in the Beijing urban area and suburbs [J]. Environmental Science, 2021, 42(6): 2595-2603(in Chinese).
[25] AMATO F, VIANA M, RICHARD A, et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants [J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2917-2931. doi: 10.5194/acp-11-2917-2011 [26] 李丽娟, 温彦平, 彭林, 等. 太原市采暖季PM2.5中元素特征及重金属健康风险评价 [J]. 环境科学, 2014, 35(12): 4431-4438. LI L J, WEN Y P, PENG L, et al. Characteristic of elements in PM2.5 and health risk assessment of heavy metals during heating season in Taiyuan [J]. Environmental Science, 2014, 35(12): 4431-4438(in Chinese).
[27] HSU C Y, CHIANG H C, CHEN M J, et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact [J]. Science of the Total Environment, 2017, 590/591: 204-214. doi: 10.1016/j.scitotenv.2017.02.212 [28] WANG J, HU Z M, CHEN Y Y, et al. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China [J]. Atmospheric Environment, 2013, 68: 221-229. doi: 10.1016/j.atmosenv.2012.10.070 [29] 代杰瑞, 喻超, 张明杰, 等. 淄博市区大气颗粒物重金属元素分布特征及其来源分析 [J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211. doi: 10.13278/j.cnki.jjuese.20160290 DAI J R, YU C, ZHANG M J, et al. Distribution characteristics and sources of heavy metals in urban atmospheric particulate matter in Zibo City [J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1201-1211(in Chinese). doi: 10.13278/j.cnki.jjuese.20160290
[30] LIN Y C, TSAI C J, WU Y C, et al. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, potential source, and fingerprinting metal ratio [J]. Atmospheric Chemistry and Physics, 2015, 15(8): 4117-4130. doi: 10.5194/acp-15-4117-2015 [31] 郑元铸, 葛琳琳, 郑旭军, 等. 温州市区PM2.5无机元素污染特征及来源分析 [J]. 环境化学, 2017, 36(1): 84-91. doi: 10.7524/j.issn.0254-6108.2017.01.2016051802 ZHENG Y Z, GE L L, ZHENG X J, et al. Characteristics and source apportionment of inorganic elements in PM2.5 in Wenzhou, Zhejiang [J]. Environmental Chemistry, 2017, 36(1): 84-91(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051802
[32] 虎彩娇, 成海容, 李锦伦, 等. 黄石市大气PM10和PM2.5中元素特征及重金属生态风险评价 [J]. 环境化学, 2018, 37(1): 138-145. doi: 10.7524/j.issn.0254-6108.2017053106 HU C J, CHENG H R, LI J L, et al. Characteristics of elements and ecological risk assessment of heavy metals in PM10and PM2.5in Huangshi [J]. Environmental Chemistry, 2018, 37(1): 138-145(in Chinese). doi: 10.7524/j.issn.0254-6108.2017053106
[33] GUO G H, LEI M, CHEN T B, et al. Effect of road traffic on heavy metals in road dusts and roadside soils [J]. Acta Scientiae Circumstantiae, 2008, 28(10): 1937-1945. [34] SHALTOUT A A, BOMAN J, HASSAN S K, et al. Elemental composition of PM 2.5 aerosol in a residential-industrial area of a Mediterranean megacity [J]. Archives of Environmental Contamination and Toxicology, 2020, 78(1): 68-78. doi: 10.1007/s00244-019-00688-9 [35] LIU J W, CHEN Y J, CHAO S H, et al. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective [J]. Science of the Total Environment, 2018, 644: 20-30. doi: 10.1016/j.scitotenv.2018.06.226 [36] XU J W, MARTIN R V, HENDERSON B H, et al. Simulation of airborne trace metals in fine particulate matter over North America [J]. Atmospheric Environment, 2019, 214: 116883. doi: 10.1016/j.atmosenv.2019.116883 [37] HSU C Y, CHIANG H C, LIN S L, et al. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan [J]. Science of the Total Environment, 2016, 541: 1139-1150. doi: 10.1016/j.scitotenv.2015.09.122 [38] LIU B S, SONG N, DAI Q L, et al. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China [J]. Atmospheric Research, 2016, 170: 23-33. doi: 10.1016/j.atmosres.2015.11.002 [39] 周变红, 王锦, 曹夏, 等. 宝鸡市冬季PM2.5中元素污染特征及健康风险评估 [J]. 生态毒理学报, 2020, 15(4): 299-311. ZHOU B H, WANG J, CAO X, et al. Characteristics and health risk assessments of elements in PM2.5 during winter in Baoji City [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 299-311(in Chinese).
[40] RAI P, FURGER M, SLOWIK J G, et al. Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing [J]. Environmental Pollution, 2021, 278: 116865. doi: 10.1016/j.envpol.2021.116865 [41] ZHANG J Z, ZHOU X H, WANG Z, et al. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment [J]. Science of the Total Environment, 2018, 621: 558-577. doi: 10.1016/j.scitotenv.2017.11.292