-
随着人们生活水平的提高,在冰箱在成为家庭必需品的同时,人们对于冰箱的要求也不断提高,冰箱中的异味影响着人们使用冰箱的体验和身体健康。冰箱的异味主要来源于储藏食物散发出的气味及其腐败变质过程中不断发出的臭味。如蛋乳类腐败的硫化氢、肉类腐败的氨、鱼类腐败的三甲胺、果菜类的甲硫醇[1]。当前,对于冰箱异味净化主要采用物理吸附法、化学反应法、掩盖法、杀菌式除味等[2-4]。光催化氧化技术作为化学反应法中的一种,适合在低温下彻底去除有气味的化合物,其中,二氧化钛(TiO2)光催化反应具有反应条件温和、设备结构简单、操作条件易控制等优点,已广泛应用于光催化领域,但存在催化效率低等问题[5]。
石墨烯是一种由单层碳原子紧密堆积而成的二维蜂窝状新型碳材料,近年来,由于石墨烯具有比表面积大、促进分散、可以将异味吸附富集的优点,并且其表面富含大量的活性基团,容易和氧化物纳米结构材料结合形成复合物,氧化石墨烯(GO)和氧化物复合材料已经被大量研究[6-7]。将石墨烯与TiO2复合后,可使光诱导的电子进入石墨烯相,达到抑制电子-空穴对复合的目的。此外石墨烯还具有比表面积大、促进分散,且具有一定吸附作用,可以将异味富集的优点。另外贵金属沉积在二氧化钛表面可以掺杂可在半导体表面引入缺陷位置或改变结晶度, 影响电子与空穴的复合或拓展光的吸收波段, 从而影响 TiO2的光催化活性。目前有一些工作将石墨烯和贵金属结合起来改性二氧化钛。Junin等[8]制备了Pt/GO/TiO2,并比较了不同比例的Ag和GO掺杂对罗丹明B降解的影响,发现最佳比例为5% 的Ag和0.5% GO,2 h后对罗丹明B的降解率可达到78.86%。Neppolian等[9]利用超声辅助方法合成了纳米尺寸的 Pt/GO/TiO2光催化剂,测试了对十二烷基苯磺酸盐的降解性能。与纯二氧化钛相比,Pt/GO/TiO2对十二烷基苯磺酸盐的降解效率提高了3倍。
目前对贵金属二氧化钛石墨烯对水体污染的光催化研究较多[10-11],而很少有人对异味气体降解方面进行研究。本文将选用了银(Ag)、铂(Pt)、钯(Pd)等3种贵金属,将其负载GO/TiO2,并以甲硫醇三甲胺为异味代表物,研究其表征及光催化降解性能。
贵金属负载氧化石墨烯二氧化钛光催化消除甲硫醇三甲胺性能探究
Research on the photocatalytic elimination of methyl mercaptan trimethylamine by noble metal-doped graphene oxide TiO2
-
摘要: 利用沉积法将Ag、Pt、Pd等3种贵金属负载GO/TiO2,利用X射线衍射、扫描电镜和X射线光电子能谱等对催化剂的结构、组成、形貌进行表征。将催化剂用于光催化动态和静态实验降解甲硫醇、三甲胺气体,考察不同贵金属的负载对催化效果的影响。结果表明,贵金属均匀沉积在GO/TiO2上,减少了光生电子空穴对复合,与GO/TiO2相比光催化效率得到显著提升。催化效果顺序为:Pd/GO/TiO2>Pt/GO/TiO2>Ag/GO/TiO2>GO/TiO2。Abstract: GO/TiO2 was doped with three noble metals, including Ag, Pt and Pd. The crystal structure, composition, morphology of the catalyst were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Photocatalytic dynamic or static experiment toward degradation of methyl mercapatan and trimethylamine were carried out based on the acquired catalysts. The performance of the catalysts doped with different noble metals were investigated. It indicates that the noble metals are uniformly deposited on GO/TiO2. Herein, the recombination of photo-generated electrons and holes are dramatically reduced, and the photocatalytic efficiency of the acquired catalysts are significantly improved compared with GO/TiO2. The activity order of the catalysts was as follows: Pd/GO/TiO2>Pt/GO/TiO2>Ag/GO/TiO2>GO/TiO2.
-
Key words:
- titanium dioxide /
- graphene oxide /
- photocatalysis /
- methyl mercaptan /
- trimethylamine.
-
-
[1] SANGYOUL CHAE, YOUNGCHOOL KIM. 采用浸渍金属催化剂的活性炭过滤器去除冰箱内部食物中产生的异味//[C]. 中国家用电器协会, 2018年中国家用电器技术大会论文集, 2018: 7. SANGYOUL CHAE, YOUNGCHOOL KIM. Activated carbon filter impregnated with metal catalyst to remove peculiar smell from food inside refrigerator// [C]. China Household Electrical Appliances Association. Proceedings of the 2018 China Household Appliances Technology Conference, China Household Electrical Appliances Association: Electrical Appliances Magazine, 2018: 7(in Chinese).
[2] 王亚军. 食品储藏用冰箱异味成分分析及除味探索[D]. 杭州: 浙江大学, 2015. WANG Y J. Odor composition analysis and deodorize of refrigerator for food storage[D]. Hangzhou: Zhejiang University, 2015(in Chinese).
[3] 张文俊, 岑洁, 电冰箱用吸味剂的筛选和吸附效果研究[J]. 北京工商大学学报(自然科学版), 1998 (2): 16. ZHANG W J, CEN J, Screening and adsorption effect of odor absorbers for refrigerators [J]. Journal of Beijing Technology and Business University (Natural Science Edition), 1998 (2): 16(in Chinese).
[4] ZADI T, AZIZI M, NASRALLAH N, et al. Indoor air treatment of refrigerated food Chambers with synergetic association between cold plasma and photocatalysis: Process performance and photocatalytic poisoning [J]. Chemical Engineering Journal, 2020, 382: 122951. doi: 10.1016/j.cej.2019.122951 [5] 孙晓君, 蔡伟民, 井立强, 等. 二氧化钛半导体光催化技术研究进展 [J]. 哈尔滨工业大学学报, 2001, 33(4): 534-541. SUN X J, CAI W M, JING L Q, et al. Titanium dioxide photacatalystic technique at home and abroad [J]. Journal of Harbin Institute of Technology, 2001, 33(4): 534-541(in Chinese).
[6] ZHANG H, LV X J, LI Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2010, 4(1): 380-386. doi: 10.1021/nn901221k [7] ZHAO H M, SU F, FAN X F, et al. Graphene-TiO2 composite photocatalyst with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2012, 33(5): 777-782. [8] JUNIN C, WORAYINGYONG A, KONGMARK C, et al. A morphological investigation of Ag/graphite oxide/TiO2 composites for photocatalysis [J]. Solid State Phenomena, 2020, 302: 9-17. doi: 10.4028/www.scientific.net/SSP.302.9 [9] NEPPOLIAN B, BRUNO A, BIANCHI C L, et al. Graphene oxide based Pt-TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency [J]. Ultrasonics Sonochemistry, 2012, 19(1): 9-15. doi: 10.1016/j.ultsonch.2011.05.018 [10] HOU Y Q, PU S Y, SHI Q Q, et al. Ultrasonic impregnation assisted in situ photoreduction deposition synthesis of Ag/TiO2/rGO ternary composites with synergistic enhanced photocatalytic activity [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 139-150. doi: 10.1016/j.jtice.2019.08.023 [11] DAO A Q, ZHENG B J, LIU H W, et al. Facile synthesis of r-GO@Pd/TiO2 nanocomposites and its photocatalytic activity under visible light [J]. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3557-3563. doi: 10.1166/jnn.2016.11853 [12] LIAN J H, CHAI Y C, QI Y, et al. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation [J]. Chinese Journal of Catalysis, 2020, 41(4): 598-603. doi: 10.1016/S1872-2067(19)63453-4 [13] 唐甜. 贵金属修饰/石墨烯复合的二氧化钛纳米材料的制备及其光催化性能的研究[D]. 兰州: 西北师范大学, 2019. TANG T. Preparation of titanium dioxide nanomaterials by noble metals modified/graphene composite and its photocatalytic properties[D]. Lanzhou: Northwest Normal University, 2019(in Chinese).
[14] WANG H, WANG G, ZHANG Y, et al. Preparation of RGO/TiO2/Ag aerogel and its photodegradation performance in gas phase formaldehyde [J]. Scientific Reports, 2019, 9: 16314. doi: 10.1038/s41598-019-52541-7 [15] HUO J W, YUAN C, WANG Y. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants [J]. ACS Applied Nano Materials, 2019, 2(5): 2713-2724. doi: 10.1021/acsanm.9b00215 [16] GONG X Z, TEOH W Y. Modulating charge transport in semiconductor photocatalysts by spatial deposition of reduced graphene oxide and platinum [J]. Journal of Catalysis, 2015, 332: 101-111. doi: 10.1016/j.jcat.2015.08.028 [17] WEI Y C, WU Q Q, XIONG J, et al. Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO2 for enhanced catalytic activity during diesel soot combustion [J]. Chinese Journal of Catalysis, 2018, 39(4): 606-612. doi: 10.1016/S1872-2067(17)62939-5