-
挥发性有机物(volatile organic compounds,简称VOCs)大都具有刺激性和毒性,对人体眼睛、呼吸道和皮肤都具有很大的危害;当VOCs浓度过高时,会导致人体大脑、神经中枢、肾脏、肝脏等产生不可逆损害. 同时,VOCs在光照条件下还能发生光化学反应形成二次污染物[1]. 目前,吸收法、吸附法、燃烧法、光催化法、等离子体等技术在VOCs末端处理中都有应用[2],其中催化燃烧法因处理温度低、产物无毒无害而受到青睐[3].
分子筛具有独特孔道结构、高比表面积、酸性可调、热稳定性良好等特点[4],因此被广泛用于VOCs的催化氧化技术. 段明华等[5]以苯为探针反应物,将氧化钴负载至不同种类分子筛(MCM-41、MCM-48、SBA-15)上,发现孔径较大并且氧化还原性能较好的SBA-15载体呈现出更好的催化活性. 袁金芳[6]以Zr-Ce-SBA-15为载体,水热负载活性组分Cu—Mn,以甲苯为探针反应物,发现复合介孔载体能够综合微孔、介孔分子筛各自的孔道特点,从而促进活性组分在载体内部的分散,提高催化剂活性. He等[7]在研究不同分子筛载体对甲苯催化氧化活性时发现,微孔分子筛表面的酸性位是影响分子筛类催化剂催化活性的主要因素之一.
贵金属因其对H—H、C—H、C—O及O—H化学键具有较高的活化效果,常用做负载型催化剂的活性组分. 贵金属Ru作为铂系金属中的贵金属元素,其电子排布为4d75s1,氧化态较多,存在+2、+3、+4、+6等不同价态,因此能够构成多种配合物,并在许多反应中显示出独特性质.金属态的Ru呈六角密积的晶体结构,极易被氧化成RuO2. 相较于其余电子轨道,dn轨道上的电子更容易被还原,其轨道上的氧化物化学性质相较于d0轨道上的氧化物更加活跃. Ru(4+)的电子排布为4d4,因此其氧化物RuO2具有很强的活性,能加速催化反应进程[8]. Dai等[9]研究发现,相较于其余贵金属Au、Pt、Pd而言,Ru的催化活性差异不大,但价格相对低廉. Mitsui等[10]分别在CeO2上负载Ru、Pt、Pd、Rh,并以乙酸乙酯为探针反应物,发现Ru/CeO2的催化活性明显优于其他催化剂体系.
不同结构的分子筛对催化反应性能的影响较大,其具体作用机理仍需进一步研究;同时贵金属Ru化学性质活跃且价格相对低廉. 因此本研究选取不同结构的分子筛(β、MCM-41、Y、ZSM-5)为载体,通过浸渍法负载贵金属Ru,制备Ru/β、Ru/MCM-41、Ru/ZSM-5、Ru/Y催化剂,探究4种催化剂对甲苯的催化性能差异. 利用现代表征技术,从微观上对催化剂进行分析,构建催化剂物化结构与VOCs催化性能之间的构效关系,为分子筛类催化剂在VOCs废气治理的应用提供实验和理论依据.
-
Ru负载型催化剂的具体制备方法:按Ru质量负载量为0.6%,称取一定量β分子筛粉末,溶解于RuCl3的水溶液中,搅拌混合,并将混合液于烘箱中恒温烘干后置于马弗炉内,450 ℃高温焙烧得到所需Ru/β催化剂. 同理制得Ru/MCM-41、Ru/Y、Ru/ZSM-5催化剂.
-
催化剂的晶体结构由X射线衍射(X-ray diffraction,XRD)进行表征,所用仪器为日产Rigaku D/MAXRAX射线多晶衍射仪,在40 kV和120 mA的条件下工作,扫描范围为5°—90°. 催化剂的比表面积以及介孔采用美国Quantachrome Instruments Quadrasorb EVO进行表征,微孔部分采用麦克默瑞提克ASAP2460 4MP进行表征.SEM表征使用日本日立公司生产的S4800冷场发射扫描电镜进行分析. 程序升温脱附(temperature programmed desorption,NH3-TPD)使用美国麦克AUTO Chem Ⅱ 2920仪器,用于表征催化剂表面酸性. 程序升温还原(temperature program reduction,H2-TPR)使用美国麦克AUTO Chem Ⅱ 2920,用于表征催化剂的氧化还原性能. X射线光电子能谱分析(X-ray photo electron spectroscopy,XPS)使用美国赛默飞世尔科技公司ESCALAB仪器,得到催化剂表面化学组成及其化学态的相关数据.
-
催化性能测试在实验室自主搭建的催化氧化装置上进行. 将甲苯、N2、O2通过流量计进入缓冲罐进行混合,混合气体进入反应炉,在装有催化剂的石英反应管中进行催化氧化,尾气由气相色谱在线检测.
本研究所采用的实验配气组成为总流量100 mL·min−1,其中1800 mg·m−3的甲苯,10%的O2,N2为平衡气体;反应温度为100—350 ℃. 将0.1 g催化剂与0.4 g石英砂均匀混合后置于反应管中部. T50和T90分别表示甲苯转化率为50%和90%时对应的温度.
甲苯的活性用甲苯的转化率表示,计算如式1所示:
式中,
CC7H8in 表示甲苯进口浓度,mg·m−3;CC7H8out 表示甲苯出口浓度,mg·m−3.CO2 选择性用CO2 的产率表示,计算如式2所示:式中,
CCO2 表示CO2 的浓度,mg·m−3;CCO 表示CO 的浓度,mg·m−3.反应中副产物的选择性用副产物的产率表示,计算如式3所示:
催化反应中的转化频率(Turnover Frequency, TOF)表示单位时间单个活性位点转化的反应物的量,以催化剂表面Ru原子数近似催化活性位点数,计算如式4所示:
式中,
XToluene 表示某一温度下甲苯的转化率;FToluene 表示甲苯气体摩尔速度,mmol·s−1;MRu 表示Ru的摩尔质量,101.07 g·mol−1;mCat 表示催化剂质量,g;XRu 表示催化剂Ru的负载量;DRu 表示Ru颗粒的分散度. -
图1为4种催化剂的XRD衍射图谱. 其中Ru/β分子筛在7.9°、22.4°出现明显的BETA相特征衍射峰,与文献中报道的β分子筛XRD谱图一致[11]. Ru/MCM-41属于典型介孔材料,通常介孔材料的孔壁具有非晶态的结构,即广角XRD不具备其特征衍射峰,仅在20°—25°之间有一宽峰,归属于无定形SiO2的特征峰[12]. Ru/Y分子筛在6.3°、10.2°、12.1°、15.8°、18.7°、20.5°、23.8°、27.3°和31.6°出现明显的特征衍射峰,这归因于Y分子筛的FAU结构. Ru/ZSM-5分子筛在7.9°、8.8°、9.8°、23.1°、23.8°、24.3°和25.8°有明显的ZSM-5特征峰,与文献中报道的ZSM-5分子筛XRD谱图一致[13]. 同时,4种样品中均没有Ru金属单质或其氧化物的特征衍射峰,说明Ru在4种分子筛表面可能高度分散[14].
-
图2为Ru/M(M=β/MCM-41/Y/ZSM-5)的N2吸附-脱附等温线. Ru/Y与Ru/ZSM-5具备典型的Ⅰ型等温线的特点,在低压段出现N2吸附量的明显上升,这归属于微孔结构对于N2的吸附,由此推断两种催化剂具有一定的微孔结构;在高压段均出现H1型滞回环,其中Ru/Y的滞回环较Ru/ZSM-5而言更为明显,说明Ru/Y存在一定的介孔,而Ru/ZSM-5的介孔结构则相对较不显著.
Ru/MCM-41呈Ⅳ型等温线,为典型的介孔材料吸脱附曲线[15],与报道的MCM-41的吸脱附曲线较吻合. Ru/β同时具有Ⅰ型和IV型等温线的特点,低压段N2的吸附量明显上升,是由于微孔结构产生的吸附作用[16],说明Ru/β中存在较丰富微孔结构;高压段存在明显的H4型滞后环,表示Ru/β存在一定介孔结构[17].
图3为Ru/M(M=β/MCM-41/Y/ZSM-5)的孔径分布曲线,其中为了更准确的表征样品的孔道特征,本研究采用BJH算法计算分析介孔孔径及分布,如图3(a)所示;采用HK算法计算分析微孔孔径及分布,如图3(b)所示.
由图3(b)可知,Ru/β在0.7 nm左右出现明显峰值,且该峰分布窄且峰强度高(约0.72 cm3·g−1·nm−1),因此可知其内部微孔结构以0.7 nm的微孔为主;而在图3(a)中的介孔分布曲线中,14.9 nm处出现较为平整的宽峰,推测是由纳米颗粒堆积形成的晶间介孔[17-18];同时,Ru/β介孔分布峰强度低(约0.022 cm3·g−1·nm−1)且分布宽泛,说明Ru/β的介孔孔径并不均一,在2—30 nm区间内变化.
根据图3(a),Ru/MCM-41孔径分布峰主要出现在2.7 nm处,孔径分布峰窄且强,因此推断其孔径分布较为集中,以2.7 nm的介孔结构为主;结合其微孔分布(图3(b)),发现Ru/MCM-41的微孔分布峰较宽且峰强度较低.
通过图3(b)可得,Ru/Y在0.65 nm和0.83 nm处出现明显峰值,表明其内部存在两种较为明显的微孔孔径;同时,结合图3(a),发现Ru/Y在2 nm左右出现明显峰且宽度较窄,说明存在一定数量2 nm左右的介孔结构.
如图3(b)所示,Ru/ZSM-5在0.65 nm处出现较强且分布较窄的峰,同时在其介孔分布曲线(图3(a))中可观察到2 nm左右出现较小的峰,证明Ru/ZSM-5为较典型的微孔结构,仅存在少量介孔.
Ru/M(M=β/MCM-41/Y/ZSM-5)的比表面积依次为Ru/Y>Ru/MCM-41>Ru/β>Ru/ZSM-5,其数值依次为764.44、686.72、547.45、381.66 m2·g−1. 通常而言,催化剂比表面积越大,有利于反应物分子的吸附与催化[19].
本研究以甲苯分子为反应物,为了更好的反应孔道尺寸对于催化性能的影响,本文构建了甲苯-催化剂孔道尺寸模型,将甲苯分子的动力学尺寸[17](0.67 nm)与分子筛的孔道尺寸进行对比,结果如图4所示. 通过图4,可以直观看出,Ru/β呈十二元环孔道结构,Ru/MCM-41呈六方有序孔道结构,Ru/Y呈立体笼状结构,Ru/ZSM-5呈十元环孔道结构. Ru/MCM-41孔道尺寸明显大于甲苯的分子直径,Ru/β与Ru/Y孔道尺寸与甲苯分子较为接近,而Ru/ZSM-5内部则存在大量小于甲苯分子尺寸的孔道结构.
-
图5为Ru/M(M=β/MCM-41/Y/ZSM-5)的扫描电镜图.
如图5(a)所示,Ru/β呈表面较为粗糙的不规则的球形状,球形颗粒互相交联形成网状结构,颗粒尺寸约为17 nm;同时存在较明显的团聚现象. 如图5(b)所示,Ru/MCM-41呈表面较为粗糙的珊瑚状,颗粒尺寸约为36 nm,颗粒之间的团聚现象较为严重,不利于催化降解[20]. 如图5(c)所示,Ru/Y颗粒呈表面光滑的规则立方形,颗粒相互交联形成多孔状结构,同时颗粒之间互相堆积形成明显介孔,颗粒尺寸约为9 nm. 如图5(d)所示,Ru/ZSM-5颗粒呈片层结构,颗粒尺寸约为17 nm,排列紧密,较少出现微孔堆积的情况,同时存在少量的明显大孔.
-
图6为Ru/M(M=β/MCM-41/Y/ZSM-5)的O1s的XPS图谱,O1s的XPS光谱主要分为2个峰,其中较高结合能的峰归属于表面吸附氧Osur,结合能较低的峰对应表面晶格氧Olat[21]. 4种催化剂的表面氧物种相对含量(Olat/Osur)比值按从大到小排序为Ru/MCM-41>Ru/β>Ru/Y>Ru/ZSM-5,如表1所示.
据研究表明[22-23],甲苯的氧化反应过程中同时存在Langmuir-Hinshelwood和Mars-van Krevelen两种反应机理;在低温阶段遵循Langmuir-Hinshelwood机理,该阶段以表面吸附氧直接参与甲苯氧化反应为主;随着温度升高,反应逐渐转为遵照Mars-van Krevelen机理,此阶段中,表面晶格氧为主要的活性氧物种,对甲苯氧化起重要作用.
图7(a)为Ru/M(M=β/MCM-41/Y/ZSM-5)的Ru3d的XPS图谱.
由图7(a)所示,Ru3d3/2出峰位置在284.8 eV左右,与C1s重叠,因此选择Ru3d5/2作为研究对象,如图7(b)所示. Ru3d5/2在279—283 eV之间被分解为两个峰,分别归属于Ru(0)和Ru(4+),分别代表金属Ru和金属氧化物RuO2,Ru(0)的结合能相对Ru(4+)而言较低. 研究发现,RuO2呈现独特的金红石构型[24],为催化反应的还原中心,其浓度与催化活性呈正相关[25]. 在图7(b)中,Ru/Y的Ru(4+)特征峰最为明显,Ru/β和Ru/ZSM-5次之,Ru/MCM-41则较不明显.
-
催化剂的催化性能与其表面酸性位息息相关. 由于甲苯分子中的
π66 键属于给电子体[26-27],而催化剂表面的酸性位表现出吸电子的特性,因而有利于二者之间发生相互作用,形成氢键,激活甲苯分子,促进甲苯分子的吸附[28],进而有利于其与催化剂活性组分发生反应,形成催化产物[29]. 肖丽[30]研究表明,针对甲苯分子的催化氧化而言,催化剂酸性与催化活性呈正相关,酸量越大代表能够给反应提供越多的酸性位[31],从而增强催化剂的催化氧化活性.NH3-TPD图谱一般用于表征催化剂的酸性,脱附温度越高,对应酸性位酸性越强;脱附峰面积越大,对应酸性位酸量越多.
由图8可得,Ru/β脱附峰集中出现在184 ℃附近,同时在573 ℃左右出现较小脱附峰,说明Ru/β具有较多弱酸位以及少量强酸位;Ru/MCM-41的脱附峰整体不显著,仅在158 ℃和470 ℃之间出现较小脱附峰,说明Ru/MCM-41表面酸性位少;Ru/Y仅在175 ℃处出现较明显脱附峰,说明Ru/Y以弱酸位为主;Ru/ZSM-5在183 ℃和403 ℃出现明显脱附峰,说明Ru/ZSM-5表面具有丰富弱酸位和强酸位. Ru/M(M=β/MCM-41/Y/ZSM-5)的总酸量排序依次为 Ru/Y>Ru/ZSM-5>Ru/β>Ru/MCM-41,其数值 对应为 59.22、55.26、41.94、35.20 mmol·g−1
-
Ru/M(M=β/MCM-41/Y/ZSM-5)的H2-TPR结果见图9. 对于钌催化剂而言,一般的还原过程存在两种Ru物种的还原峰,其中,低温段对应的是催化剂表相的Ru物种(RuOx)或高度分散的Ru粒子的H2消耗峰,而高温段则对应了催化剂体相内的Ru粒子(RuO2)的还原[32-33].
由图9所示,Ru/β在180 ℃左右出现小的还原峰,对应的是Ru/β催化剂表面的表相Ru物种的还原,而Ru/Y、Ru/MCM-41、Ru/ZSM-5在低温段均未出现明显峰值,说明其催化剂表面表相Ru物种可能较少或是在催化剂表面高度分散[32-33]. 同时,4种分子筛在高温段(300—800 ℃)之间均出现了明显的H2还原峰,该峰归属于分子筛内部体相Ru物种的还原峰. Ru/β在373 ℃附近出现明显峰值较大的还原峰;而Ru/MCM-41整体曲线较平整,仅在418 ℃出现较小还原峰;Ru/Y的还原峰出现于408 ℃、526 ℃以及768 ℃,且3个还原峰的峰面积大小排序与其出峰位置温度高低排序保持一致;Ru/ZSM-5整体在中高温阶段出现面积较大的还原峰,基本集中于433 ℃附近.
H2-TPR的出峰位置及峰面积代表催化剂的氧化还原性能,出峰位置对应温度越低,还原峰峰面积越大,表明催化剂的氧化还原性能越好. 因此,4 种催化剂的氧化还原性能如下:Ru/β>Ru/Y>Ru/ZSM-5>Ru/MCM-41.
-
4种催化剂的表观催化活性如图10、表2所示,以Y为载体的催化剂对甲苯的表观催化活性最优,其T50和T90分别为227 ℃和290 ℃,在300 ℃左右甲苯基本完全降解. Ru/β次之,Ru/ZSM-5和Ru/MCM-41则相对较差.
为探究4种催化剂催化氧化甲苯的本征活性,对其进行了动力学分析.在过氧条件下(本文中氧气占比10%),贵金属等催化材料上的甲苯催化燃烧反应为一级反应,通过对低转化率的条件下的实验数据进行线性计算,得到其反应活化能Ea以及转化频率TOF[34-35].
由图11和表2可知,4组数据线性拟合后R2值均大于0.99,说明拟合线性效果好,拟合数据可信度高.催化燃烧反应为放热反应,活化能越小越有利于反应的进行. 4种催化剂的反应活化能Ea大小为:Ru/Y<Ru/β<Ru/ZSM-5<Ru/MCM-41,与上述表观活性规律基本一致. 同时,4种催化剂的TOF值也表现出类似的规律:Ru/Y的TOF值最高,为5.71 mmoltoluene·molRu−1·s−1,说明其催化反应的速率最快,从而具有较好的催化活性;Ru/β次之,Ru/MCM-41和Ru/ZSM-5的较差.
-
Ru/Y的催化活性最好,起活温度在180 ℃左右,200—260 ℃之间,转化率迅速增加,300 ℃左右完全催化.根据XPS、NH3-TPD、H2-TPR的结果可知,Ru/Y具有最高的Ru(4+)/Ru(0)之比,较多酸性位和较好的氧化还原性能,可为反应提供充足的活性中心. 较大的比表面积可增加甲苯分子与催化剂的接触面积,促进活性组分的分散[6];同时丰富的微孔和介孔结构为甲苯的催化氧化提供良好的扩散条件[36]. 由图3可知,Ru/Y的微孔主要是0.65 nm和0.83 nm两种尺寸,并以0.83 nm的微孔为主,因此受甲苯分子(0.67 nm)择型限制较小[37]. 根据分子筛的“限域”效应[38],当分子筛的孔道尺寸与甲苯分子较为接近时,孔道内甲苯分子受“限域”效应影响,给电子能力得到提升,有利于其与催化剂表面酸性位点形成氢键,促进甲苯分子的吸附;同时“限域”效应还提高了反应过程中间过渡态的静电稳定性,降低反应活化能[39],有利于催化反应的进行,所以Ru/Y表现出最优的催化性能.
Ru/β的活性次于Ru/Y,200 ℃左右开始反应,320 ℃左右甲苯转化率达到99%以上. Ru/β具有较高的Ru(4+)/Ru(0)之比、最优的氧化还原性能和丰富的微孔结构. 其微孔孔径集中分布在0.7 nm左右,大于甲苯分子的动力学尺寸(0.67 nm),因而受择型催化的限制较小[37];同时,内部孔道尺寸与甲苯分子较为接近,限域效应显著[38],有效提升整体催化性能;但结合图8可知,Ru/β的整体酸量较Ru/Y而言较少,所以表现出Ru/β整体活性次于Ru/Y的情况.
Ru/MCM-41在280 ℃之前的转化率低于20%,低温催化活性差;300 ℃后转化率大幅上升,在320 ℃左右完全催化. Ru/MCM-41的整体酸量较少,无法为反应提供足够酸性位;同时,氧化还原性能较差、Ru(4+)/Ru(0)之比小,因此低温催化活性较差. 根据甲苯的催化氧化特性,其在高温阶段遵循Mars-van Krevelen 机理,以表面晶格氧为主要的活性氧物种,结合XPS表征结果可知,Ru/MCM-41的Olat/Osur比值较大,因此随着温度升高,其表面晶格氧的优势开始显现[22],加之孔道结构的特点以及较大的比表面积,有利于甲苯分子扩散,所以300 ℃后,Ru/MCM-41的催化活性开始增强.
Ru/ZSM-5在280 ℃之前的转化率低于20%,低温催化活性较差,但随着温度升高,活性缓慢上升,在350 ℃左右完全催化. 由图3和图4可知,Ru/ZSM-5以0.65 nm微孔为主,小于甲苯分子的动力学直径(0.67 nm),基于择型催化理论[37],甲苯分子难以进入孔道内部,限制了甲苯分子的催化. 300 ℃之后,由于温度升高,分子筛的骨架和反应物分子的伸缩、振动加快,传输阻力降低,加之二者均非刚性,因此动力学直径较孔径略大的反应物分子能在高温下顺利通过低温时无法通过的分子筛孔道[40]. 结合图8,Ru/ZSM-5酸量丰富,但受限于孔径尺寸,低温阶段难以发挥其优势;随着温度升高,传输阻力降低,甲苯分子顺利进入孔道内部,接触酸性位点,因此300 ℃后,Ru/ZSM-5酸性位的优势开始显现,催化活性得以提升.
由图10可知,Ru/Y与Ru/β在260—280 ℃之间均出现了明显的失活现象.结合图8,发现Ru/Y和Ru/β均具有丰富的酸性位. 据报道[40],酸中心不仅是催化反应的活性中心,同时也有利于分子筛上积炭反应的发生;催化剂的酸量越大,越容易导致积碳的生成并覆盖活性位点,阻碍其与反应物接触,导致活性下降,出现失活.由此可推测,两种催化剂的低温失活与积碳的生成密切相关. 280 ℃后,随反应温度升高,可促使易生成积炭的中间副产物高温分解,从而催化活性回升. Ru/MCM-41和Ru/ZSM-5均没有出现较为明显的失活现象,结合图3、图4和图8可知,Ru/MCM-41因整体酸量较少,不利于积碳的生成;而Ru/ZSM-5虽然酸性位多,但由于孔道尺寸的限制,低温阶段催化活性差,甲苯基本没有催化,因此积碳无法生成.
综上所述,催化剂的载体孔道结构和酸性位对催化性能影响相对较大. 在孔道结构方面,基于择型催化的限制,当甲苯分子的尺寸大于催化剂孔道尺寸时,难以进入孔道内部,反之则可以顺利通过;对于孔道内部的甲苯分子而言,当孔道尺寸与分子尺寸较为接近时,受限域效应影响,不仅可以增强甲苯分子给电子能力,还可以提高中间过渡体的静电稳定性,降低反应活化能,促进催化反应进行. 在酸性位方面,甲苯分子中的
π66 键易与催化剂表面的酸性位点形成氢键,有利于甲苯分子的吸附;但酸性位也会导致积碳的生成并覆盖活性位,造成低温阶段催化剂失活. 同时结合比表面积、氧化还原性能等因素,使得不同分子筛载体催化剂最终呈现出截然不同的催化性能. -
通过图12可以看出,4种催化剂的CO2选择性在320 ℃之后都能达到99%,即高温下,4种催化剂对于CO2的选择性均较好. 通过图13可以看出,Ru/ZSM-5和Ru/MCM-41副产物产量较少,均在20%以下. 而Ru/Y和Ru/β在280 ℃前有大量的副产物生成;280 ℃后副产物大幅减少,与图10中280—300 ℃催化活性回升相呼应,证明了催化剂的低温失活是由于积碳的生成;高温下副产物生成显著减少,从而活性回升;300 ℃以后副产物几乎为0,即高温下对于甲苯的催化均比较完全.
-
本文以4种不同分子筛为载体,浸渍法负载贵金属Ru,通过XRD、BET、XPS、NH3-TPD、H2-TPR等表征手段分析催化剂的物化性质,探究其与催化活性之间的构效关系,得出以下结论:
(1)载体的结构对于Ru催化剂的甲苯催化氧化性能影响较大,4种不同分子筛载体催化剂的催化性能依次为Ru/Y>Ru/β>Ru/MCM-41>Ru/ZSM-5. 以Y分子筛为载体的Ru催化剂催化活性明显高于其他载体,起活温度为180 ℃左右,200—260 ℃之间,转化率迅速上升,在260—280 ℃之间虽然出现失活,但高温下活性迅速恢复,并在300 ℃左右完全催化.
(2)甲苯催化氧化性能与催化剂的载体结构息息相关,其中孔道结构和酸性位影响最大. 孔道结构的影响主要体现在择型催化和限域效应上. 酸性位有利于甲苯的吸附催化,但过多的酸性位会导致低温阶段积碳的生成,造成催化剂的低温失活. 另外,较大的比表面积可增加甲苯分子与催化剂的接触面积,同时促进活性组分的分散,从而提高催化性能.高浓度的Ru(4+)能为催化反应提供更多还原中心,提升催化剂的氧化还原性能,有利于催化反应进行. 综上,具有较大比表面积、较高氧化还原性能、丰富酸性位以及孔径适中的Ru/Y催化剂表现出最优的催化性能.
负载型分子筛催化剂对甲苯的催化性能
Catalytic performance of supported molecular sieve catalysts for toluene
-
摘要: 采用不同类型分子筛浸渍负载活性组分Ru制备Ru/M(M=β、MCM-41、Y、ZSM-5)催化剂,考察其对甲苯的催化性能,并通过XRD、BET、SEM、XPS、H2-TPR、NH3-TPD等表征,分析催化剂的孔道结构、酸性位等物化结构对催化活性的影响.结果发现以贵金属Ru为活性组分,Y为载体的催化剂催化性能最优,在300 ℃左右,甲苯基本完全降解,CO2选择性接近99%,几乎无副产物生成.由此说明,适宜的孔径尺寸、丰富的酸性位、较好的氧化还原性能和较大的比表面积能有效促进分子筛催化剂对甲苯的催化氧化.Abstract: Ru/M (M=β, MCM-41,Y, ZSM-5) catalysts were prepared by impregnating the active component Ru with different types of molecular sieves to investigate their catalytic performance for toluene. The effect of physical and chemical structures such as pore structure and acid site on catalytic activity was analyzed by XRD, BET, SEM, XPS, H2-TPR and NH3-TPD.The results showed that the catalyst with precious metal Ru as the active component and Y as the carrier exhibited the best catalytic performance. At about 300 ℃, toluene was almost completely degraded, and the selectivity of CO2 was close to 99% with almost no by-product. This indicates that appropriate pore size, abundant acid sites, good redox performance and large specific surface area can effectively promote the catalytic oxidation of toluene by molecular sieve catalysts.
-
Key words:
- catalytic oxidation /
- toluene /
- molecular sieve /
- ruthenium /
- pore structure
-
溶解空气气浮(DAF)已经被广泛应用于给水处理、废水处理和中水回用过程[1-2]。虽然DAF对COD、BOD5和TSS有一定程度的去除,但其限制了溶解性有机物的去除[3-4]。由于臭氧具有较强的氧化性,故其作为消毒剂和氧化剂也被广泛的应用于给水和废水处理中[5-6],臭氧氧化的主要目的是脱色和去除天然难降解有机物[7-8]。相比传统的深度处理工艺(混凝+沉淀+过滤),DOF工艺有着较高的脱色、脱臭和有机物去除率[9]。同时,由于DOF工艺将混凝、分离、脱色、除臭和消毒等多个过程集中于同1个操作单元[3],比常规深度处理工艺具有低于4倍的水力停留时间[9],节省了建设费用和土地成本。但臭氧气浮工艺对溶解性有机物的去除效果仍有一定的局限性,未能高效去除二级出水中的残余有机物。
目前,有关气浮工艺的研究大多仍处于基础操作条件的优化[10-11]和气泡大小的改变对气浮工艺去除性能的影响[12-14]。为了进一步提高气浮工艺的去除特性,之前的研究[15-18]着重于溶气水中气泡电荷性质及表面性质的改性对污染物去除特性的影响。ARABLOO等[19]和PASDAR等[20]分别研究了不同浓度表面活性剂和高分子聚合物对气泡理化性质及大小分布的影响。RAO等[21-22]从气泡Zeta电位和PAM剩余浓度等角度对比了聚合物甲基丙烯酸二甲胺基乙酯(N,N-dimethylaminoethyl methacrylate)和N,N-二烯丙基-N,N-二甲基氯化铵(N,N-diallyl-N,N-dimethylammonium chloride)对气泡表面电荷性质改善的效果,并揭示了PAM和微气泡的作用机理。
先前的研究对絮体表面性质的改性,依然停留在不同价态电解质对表面的改性阶段[23-24]。高分子聚合物PAM应用于气浮工艺中大多是改性气泡表面的性质[17-25],很少涉及对絮体表面特性改善的研究。而且,在气浮工艺中微气泡和絮凝体的结合特性通常用去除性能、接触角及絮体形态特征等表征[26-27],尚未从气载絮体的尺寸大小、形态特征等角度阐明气浮效果。本研究探究了阴阳离子型PAM对以腐殖酸为代表的天然有机物在DOF工艺中去除特性的影响,从去除性能、气载絮体大小及分形维数和接触角等多角度阐明污染物和微气泡的结合特性,揭示絮体表面性质对溶解性有机物去除性能的影响。
1. 材料与方法
1.1 水样、实验试剂与装置
原水用商品腐殖酸配制,称取10 g商品腐殖酸在pH=12的强碱条件溶解于5 L水中,充分搅拌24 h后,用0.45 μm的滤膜过滤保证水样中的有机物为溶解态。实验时水样的腐殖酸浓度为5 mg·L−1 TOC左右。
实验所用的主要试剂包括聚合氯化铝(PAC)和阴、阳离子型聚丙烯酰胺(ployacrylamide,PAM),电荷密度用电离度表示。阳离子型聚合物FO 4125 SSH分子质量为7×106 Da,电荷密度为2%;阴离子型聚合物AN 905 SH分子质量为11×106 Da,电荷密度为9%。
臭氧气浮工艺的实验装置见图1,主要由进水系统和溶气水系统2个部分组成。原水加入PAC后在管道混合器中充分混合,经快速混凝后进入接触区底部。回流水在溶气泵、溶气罐的作用下充分溶解臭氧气体,在接触区压力的释放产生大量的微气泡,与原水中的微小絮体结合形成气载絮体,到达分离区后继续上升至顶部形成浮渣。其中,DOF工艺中最重要的一部分是气载絮体的表征技术,利用抽吸装置将气载絮体溶液通过长45 cm和内径5 cm的有机玻璃圆柱体上升管缓慢抽吸到上部观察容器(10 cm×10 cm×15 cm),Nikon SMZ1270i体视显微镜放置在其上表面的正上方。单孔双光纤卤素灯冷光源(21 V,150 W)分别放置在CCD相机的对面和侧面,为图像捕捉提供合适的对比度。实验过程中DOF工艺的运行参数见表1。
表 1 臭氧气浮装置的操作条件Table 1. Standard operational condition for DOF reactor运行参数 数值 运行参数 数值 原水进水流速/(L·h−1) 120 分离区高度/m 1.5 管道混合时间/s 30 直径/m 0.3 臭氧投加量/(mL·min−1) 60 表面流速/(m·h−1) 2.21 回流水的流速/(L·h−1) 36 水力停留时间/min 40 压力/MPa 0.4 总体积/m3 0.10 1.2 分析方法
本实验涉及的测定项目主要包括Zeta电位、色度、UV254、TOC、气载絮体的尺寸大小、二维分形维数和接触角。其中,Zeta电位采用马尔文Zeta电位分析仪(Zetasizer Nano ZS90型,英国马尔文仪器有限公司)测定;色度用分光光度铂钴比色法测定(UV-4802型,UNIC);UV254采用紫外分光光度计(UV-4802型,UNIC)在254 nm下的吸光度值;TOC采用日本岛津公司生产的TOC-VCPH分析仪直接分析总有机碳浓度;采集的图像借助图像分析测量软件(NIS-Elements D 3.2)测量气载絮体粒径、特征长度、接触角等参数,气载絮体平均粒径(d50)按等面积圆直径求得;根据气载絮体的投影面积A与其最大长度L的函数关系lnA=D2 lnL+lnα,在对数坐标上作图,所得直线的斜率即为气载絮体的二维分形维数;接触角描述多相体系中絮凝体和微气泡间结合特性,采集的图片根据杨氏方程手动测量,如图2所示。在实验过程中,400多个气载絮体被用于尺寸大小、二维分形维数和接触角等分析。
2. 结果与讨论
2.1 混凝剂投加量对气浮效果的影响
为了考察混凝剂投加量对DOF工艺中絮体Zeta电位及去除性能的影响,调节混凝剂投加量为0~470 mg·L−1,结果如图3所示。随着PAC投加量的增加,Zeta电位呈升高趋势,TOC、UV254和色度去除率在低PAC投加量下显著升高,在高PAC投加量下趋于稳定趋势。UV254反映的是能够吸收紫外光的有机物,如含有不饱和键和芳香结构的有机物,一般认为色度是由C=C、苯环物质及金属离子等引起的真实色度。在低PAC投加量下,处于亚稳定状态的絮体与微气泡碰撞、结合,但由于带负电的絮体与带负电的微气泡间存在静电排斥力,使得气浮效果并未达到最优。随着PAC投加量的增加,同一混合体系中混凝剂和臭氧之间的互促增效作用产生了具有强氧化性的羟基自由基[28],其可氧化降解大分子有机化合物,从而形成了更多的小分子有机化合物[29],通过微气泡的上升带动污染物的去除,从而实现TOC、UV254和色度的去除。当PAC投加量高于130 mg·L−1时,絮凝体以网扫卷捕的混凝机理脱稳,形成较大的絮体,需要大量微气泡的粘附,故存在微气泡的结合,致使其破灭,不利于气浮,从而导致TOC、UV254和色度的变化呈稳定趋势。这与腐殖酸在混凝过程中最佳混凝剂投加量[30]相一致,即在等电点附近,这表明混凝预处理对DOF工艺去除性能起着重要作用。
2.2 不同种类PAM投加量对气浮效果的影响
为了探究不同种类的PAM投加量对气浮效果的去除性能,对比了不同PAC投加量下对腐殖酸的去除效果及气载絮体的微观拍摄图(图4)。结果表明,PAC投加量小于50 mg·L−1未形成气载絮体,PAC投加量大于130 mg·L−1形成较大的气载絮体,不利于气浮工艺。因此,选择使絮体处于亚稳定状态的PAC投加量50 mg·L−1和最佳脱稳状态的PAC投加量130 mg·L−1,研究了不同种类的PAM投加量对DOF工艺中溶解性有机物去除性能的影响,结果如图5所示。对于2种不同类型的PAM来说,PAM的投加均有利于TOC的去除,在达到最佳投加量后,变化趋势并不明显。在相同的PAC投加量下,阳离子PAM在最佳剂量下的去除效果高于阴离子PAM最佳剂量下的去除效果。针对阳离子型PAM,在PAC投加量为50 mg·L−1、PAM投加量为2 mg·L−1时,腐殖酸去除效果最佳;而对于PAC剂量为130 mg·L−1、PAM投加量为1 mg·L−1时,腐殖酸去除效果总体达到最优。对于阴离子型PAM,不论哪种PAC投加量,PAM投加量均为1 mg·L−1时腐殖酸去除效果均达到最优。这与絮凝体、PAM和微气泡间静电引力有着密切的关系。阳离子PAM的投加,通过电荷中和作用,利于污染物的气浮分离。而阴离子PAM的投加,覆盖在微气泡表面形成的气泡群利于絮体的气浮分离[31],同时絮凝体、PAM和微气泡间强的静电斥力不利于微气泡和絮体间的结合,因此,低PAM投加量下微气泡群占主导优势,腐殖酸去除性能呈增加趋势,而高投加量下强负电荷间的静电排斥力也占重要作用,使腐殖酸去除效果变化不明显。
2.3 不同种类PAM剂量对气载絮体形态特征的影响
2.3.1 不同种类PAM剂量对气载絮体大小的影响
比较不同种类PAM剂量下气载絮体的粒径变化,结果如图6所示。对于不同种类的PAM,与PAC投加量为50 mg·L−1时形成气载絮体的尺度相比,PAC投加量为130 mg·L−1时形成的气载絮体粒径较大,这与混凝过程中絮体的脱稳状态相关。在PAC投加量为130 mg·L−1时,颗粒处于最佳的脱稳状态,颗粒间和微气泡的碰撞几率较大,利于气载絮体的形成,则粒径较大。此外,不论哪种PAC投加量,在最佳PAM投加量之前,随着PAM剂量的增加,气载絮体粒径呈先增大后稳定的趋势,这表明在絮体表面PAM适量的吸附利于气载絮体的长大。阳离子型PAM最佳剂量下对应形成的气载絮体粒径大于阴离子型PAM最佳剂量下的粒径。即:在PAC投加量50 mg·L−1时,d阳离子(0.51 mm)>d阴离子(0.46 mm),如图7所示;在PAC投加量为130 mg·L−1时,阴、阳离子型PAM最佳剂量下形成的气载絮体粒径差异较小,如图8所示。这与PAM在颗粒表面的吸附方式有关。PAM剂量对气载絮体粒径的影响可从絮体、PAM高分子和微气泡间的相互作用关系解释。在PAC投加量为50 mg·L−1时,带负电的絮体间存在较强的静电斥力。加入阳离子型PAM后,一方面,带负电的腐殖酸颗粒被电中和进一步脱稳,粒间距离缩短;另一方面,表面吸附的PAM可电中和带负电的微气泡,利于气浮分离。在PAC投加量为130 mg·L−1时,等电点絮体间的静电力可忽略不计,通过氢键作用吸附在颗粒表面的阳离子型PAM可进一步中和微气泡的电荷,以此增加了颗粒和微气泡的碰撞和结合效率。有研究[32]表明,絮体和微气泡结合形成气载絮体的Zeta电位越接近等电点,越有利于气浮分离。这也解释了达到最佳气浮效果时,PAC投加量50 mg·L−1所需的阳离子型PAM剂量高于PAC投加量为130 mg·L−1时的PAM剂量。当PAM浓度较高时,高分子PAM在颗粒表面的覆盖率接近100%,颗粒表面已无吸附空位,架桥作用无法实现,颗粒因位阻效应较大而分散,絮体粒径反而减小,但微气泡的吸附使得气载絮体的粒径并未减小(P>0.05)。同样,对于阴离子型 PAM来说,吸附PAM的微气泡群利于在颗粒表面黏附,利于气浮分离,但颗粒、PAM 和微气泡间存在强的静电斥力,不利于气浮分离,是否有利于气浮分离主要取决于PAM的剂量。
2.3.2 不同种类PAM剂量对气载絮体二维分形维数的影响
图9反映了二维分形维数随不同种类PAM投加量变化的关系。王晓昌等[33-34]认为絮凝体分形维数与密度呈正相关,即分形维数越大,絮凝体越密实。由此可以推断,在DOF工艺中,气载絮体的分形维数越小,越利于气浮分离。对于同一类型PAM,2种PAC投加量对应的分形维数的大小与气载絮体尺度的变化相一致。即:在PAC投加量为130 mg·L−1时,絮体完全脱稳,形成致密的絮体,分形维数较大;而对于PAC剂量为50 mg·L−1时,絮体处于亚稳定状态,形成疏松的絮体,相应的分形维数较小。对于不同类型PAM,最优剂量选取变化曲线与二维分形维数变化曲线趋势相同。但对于阳离子型PAM、PAC投加量为50 mg·L−1的分形维数,在最佳PAM剂量时,气载絮体的分形维数并不是最小的,而随着PAM投加量的增加呈增加趋势,这与在颗粒表面通过强的静电引力吸附了大量的PAM有关,使得分形维数较大。
上述实验结果仍归因于絮体、PAM高分子与气泡间的相互作用。PAM剂量为0 mg·L−1时,絮体的生长主要靠电中和机理,易形成较致密的絮体,分形维数较大。对于阳离子型PAM,随着PAM投加量的增加,通常由于高分子伸展的链状吸附及远距离胶体间的架桥作用形成疏松的絮体结构,但由于絮体和微气泡在强静电引力的作用力下彼此靠近、结合,形成致密的气载絮体,分形维数增大;对于阴离子型PAM,颗粒、PAM高分子与微气泡间强的静电斥力使的少量微气泡的黏附,因此,较阳离子型PAM形成的气载絮体分形维数较大。
2.3.3 不同种类PAM剂量对接触角的影响
多相混合体系中微气泡和絮凝体间接触角随PAM剂量变化的关系如图10所示。图中反映的是颗粒表面的亲疏水性质。通常,接触角越大,表面的疏水性越强,气泡附着在表面的效果越好,则气浮效果越好[35]。对比去除性能曲线与接触角变化曲线可发现,接触角的变化趋势与去除效果呈正相关关系,即在PAC投加量不变时,随着PAM投加量的增加,存在最佳接触角。在低PAM投加量时,PAM的亲水基团以相互作用力吸附在絮体表面,疏水端远离水溶液,利用微气泡的上升力带动絮凝体远离水溶液,利于气载絮体的形成,从而利于污染物分离;随着PAM投加量增加,由于空间位阻的原因,根据热力学定律,絮体表面的PAM处于压缩状态,不利于微气泡和PAM的相互作用,则絮凝体和微气泡间的接触角降低。同样,固定PAC投加量时,阳离子PAM的接触角大于相同投加量阴离子PAM剂量下的接触角,这与颗粒、阳离子型PAM和微气泡间强静电吸附密切相关。
3. 结论
1)与PAC投加量50 mg·L−1相比,在PAC投加量为130 mg·L−1时,溶解性有机物的去除率较高,气载絮体的粒径、分形维数和接触角均较大。
2)PAM的投加提高了DOF工艺中的去除性能,且气载絮体尺寸、分形维数和接触角均较大。在PAC投加量为50 mg·L−1时,阴离子型PAM和阳离子型PAM最佳投加量分别为1 mg·L−1和2 mg·L−1;在PAC投加量130 mg·L−1时,阴离子型PAM和阳离子型PAM最佳投加量均为1 mg·L−1。
3)在最佳PAM投加量下,与阴离子PAM相比,阳离子型PAM形成气载絮体的大小和接触角较大,分形维数较小,且去除效果较好。
-
表 1 Ru/M(M=β/MCM-41/Y/ZSM-5)的XPS数据
Table 1. XPS data of Ru/M(M=β/MCM-41/Y/ZSM-5)
催化剂Catalyst Olat/Osur Ru(4+)/Ru(0) Ru/β 0.44 1.71 Ru/MCM-41 0.58 0.18 Ru/Y 0.42 2.46 Ru/ZSM-5 0.41 0.94 表 2 Ru/M(M=β/MCM-41/Y/ZSM-5)催化氧化性能数据和动力学参数
Table 2. Catalytic oxidation performance data and kinetic parameters of Ru/M(M=β/MCM-41/Y/ZSM-5)
催化剂Catalyst T50/℃ T90/℃ Ea/(kJ·mol−1) R2 TOF/(mmoltoluene·molRu−1·s−1) Ru/β 236 312 91.55 0.996 5.67 Ru/MCM-41 308 318 177.87 0.998 3.11 Ru/Y 227 290 82.61 0.991 5.71 Ru/ZSM-5 301 328 154.15 0.993 1.85 -
[1] 熊超, 李建军, 杨复沫, 等. 成都市冬季重污染过程中挥发性有机物污染特征及来源解析 [J]. 环境污染与防治, 2020, 42(5): 590-596,603. doi: 10.15985/j.cnki.1001-3865.2020.05.014 XIONG C, LI J J, YANG F M, et al. Pollution characteristics and source apportionment of VOCs during a heavy pollution process in winter in Chengdu [J]. Environmental Pollution & Control, 2020, 42(5): 590-596,603(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.05.014
[2] 王健. 负载型钌催化剂对VOCs的催化氧化研究[D]. 北京: 中国科学院过程工程研究所, 2016. WANG J. Study on supported ruthenium catalysts for the catalytic oxidation of VOCs[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2016(in Chinese).
[3] 张金瑶, 王祖武, 余琬冰, 等. 负载型钌催化剂的制备对甲苯催化燃烧的影响 [J]. 环境科学与技术, 2020, 43(2): 65-68. doi: 10.19672/j.cnki.1003-6504.2020.02.010 ZHANG J Y, WANG Z W, YU W B, et al. Effect of preparation of supported ruthenium catalysts on toluene catalytic combustion [J]. Environmental Science & Technology, 2020, 43(2): 65-68(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.02.010
[4] OEMAR U, ANG M L, HEE W F, et al. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition [J]. Applied Catalysis B:Environmental, 2014, 148/149: 231-242. doi: 10.1016/j.apcatb.2013.10.001 [5] 段明华, 牟真, 李进军, 等. Co3O4/介孔分子筛催化剂对苯催化完全氧化的研究 [J]. 环境工程学报, 2008, 2(8): 1087-1091. DUAN M H, MU Z, LI J J, et al. Complete catalytic oxidation of benzene on Co3O4 catalysts supported on mesoporous molecular sieves [J]. Chinese Journal of Environmental Engineering, 2008, 2(8): 1087-1091(in Chinese).
[6] 袁金芳. 短孔道有序介孔材料的可控合成及吸附、催化性能研究[D]. 南京: 南京理工大学, 2011. YUAN J F. Study on the controllable synthesis and adsorption, catalytic properties of well-ordered mesoporous materials with short channels[D]. Nanjing: Nanjing University of Science and Technology, 2011(in Chinese).
[7] HE C, LI J J, CHENG J, et al. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate [J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930-6936. [8] 潘金鼎. 钌基纳米材料结构设计、制备及催化应用[D]. 北京: 中国科学院过程工程研究所, 2017. PAN J D. Structural design, preparation and catalytic application of ruthenium-based nanomaterials[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017(in Chinese).
[9] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026 [10] MITSUI T, MATSUI T, KIKUCHI R, et al. Low-temperature complete oxidation of ethyl acetate over CeO2-supported precious metal catalysts [J]. Topics in Catalysis, 2009, 52(5): 464-469. doi: 10.1007/s11244-009-9186-4 [11] 赵瑰施, 张玲, 万玉秋, 等. 咪唑类离子液体在β沸石上的吸附 [J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402 ZHAO G S, ZHANG L, WAN Y Q, et al. Adsorption of imidazolium ionic liquid onto β zeolites [J]. Environmental Chemistry, 2016, 35(8): 1649-1656(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
[12] 袁恩辉. ZSM-5沸石分子筛的制备及应用研究[D]. 兰州: 西北师范大学, 2015. YUAN E H. Synthesis of ZSM-5 zeolite and their application[D]. Lanzhou: Northwest Normal University, 2015(in Chinese).
[13] 吴迪, 刘洁, 印红玲, 等. 氮改性ZSM-5分子筛的苯吸附性能 [J]. 环境化学, 2021, 40(9): 2934-2942. doi: 10.7524/j.issn.0254-6108.2020051502 WU D, LIU J, YIN H L, et al. Study on benzene adsorption properties on nitrogen modified ZSM-5 zeolites [J]. Environmental Chemistry, 2021, 40(9): 2934-2942(in Chinese). doi: 10.7524/j.issn.0254-6108.2020051502
[14] 李红伟, 李泽宇, 贠宏飞, 等. 高分散Ru-PEGx/NaY催化对硝基甲苯加氢制对甲基环己胺 [J]. 精细化工, 2018, 35(10): 1673-1677,1712. LI H W, LI Z Y, YUN H F, et al. Hydrogenation of p-nitrotoluene to p-methyl-cyclohexylamine over high dispersion Ru-PEGx/NaY catalyst [J]. Fine Chemicals, 2018, 35(10): 1673-1677,1712(in Chinese).
[15] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005. ZHAO Z G. Application principle of adsorption action[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
[16] 张佳琦. Beta分子筛的合成及吸附性能研究[D]. 桂林: 广西师范大学, 2019. ZHANG J Q. Synthesis and adsorption properties of beta molecular sieves[D]. Guilin: Guangxi Normal University, 2019(in Chinese).
[17] 邹思贝. Pt/泡沫沸石催化剂及其孔道调变对甲苯催化氧化性能影响研究[D]. 广州: 华南理工大学, 2020. ZOU S B. Pore-modified effect over toluene catalytic combustion performance of zeolite foam supported Pt catalysts[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
[18] 张强. 单晶纳米/多级孔ZSM-5和Beta分子筛合成及催化性能研究[D]. 长春: 吉林大学, 2019. ZHANG Q. Syntheses of single-crystalline nanosized/hierarchical ZSM-5 and Beta zeolites with excellent catalytic performance[D]. Changchun: Jilin University, 2019(in Chinese).
[19] 张婷婷, 卜龙利, 宁轲, 等. 催化剂载体的优化及微波催化燃烧甲苯特性 [J]. 环境工程学报, 2020, 14(12): 3468-3479. doi: 10.12030/j.cjee.202003046 ZAHNG T T, BU L L, NING K, et al. Catalyst carriers optimization and characteristics of microwave catalytic combustion of toluene [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3468-3479(in Chinese). doi: 10.12030/j.cjee.202003046
[20] 林立. Cu/Mn/La/MCM-41催化剂的合成及降解染料废水的研究[D]. 南昌: 南昌大学, 2019. LIN L. Synthesis of Cu/Mn/La/MCM-41 catalyst and degradation of dye wastewater[D]. Nanchang: Nanchang University, 2019(in Chinese).
[21] ZHANG J Y, RAO C, PENG H G, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite [J]. Chemical Engineering Journal, 2018, 334: 10-18. doi: 10.1016/j.cej.2017.10.017 [22] 秦媛. 锰基催化剂催化氧化甲苯性能及其氧物种循环过程的研究[D]. 大连: 大连理工大学, 2020. QIN Y. Study of the performance of toluene catalytic oxidation and the cycle of oxygen species over Mn-based catalysts[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
[23] REN Z, WU Z L, SONG W Q, et al. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability [J]. Applied Catalysis B:Environmental, 2016, 180: 150-160. doi: 10.1016/j.apcatb.2015.04.021 [24] 陈立. Ru基催化剂对氯代挥发性有机物(CVOCs)的催化氧化研究[D]. 贵阳: 贵州大学, 2018. CHEN L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018(in Chinese).
[25] 黄婷. 新型ZSM-5负载Ru双功能催化剂的费—托反应性能研究[D]. 西安: 陕西师范大学, 2017. HUANG T. Study on Fischer-Tropsch reaction performance of the new ZSM-5 load Ru dual-function catalyst[D]. Xi'an: Shaanxi Normal University, 2017(in Chinese).
[26] PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene [J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056 [27] 郭瑶. SnO2催化材料用于甲苯深度氧化 : 指认其表面活性中心和影响活性的关键因素[D]. 南昌: 南昌大学, 2020. GUO Y. SnO2-based catalytic materials for toluene deep oxidation: identifying the surface active sites and the critical factors influencing the reaction performance[D]. Nanchang: Nanchang University, 2020(in Chinese).
[28] 李文秀, 许天行, 范俊刚, 等. 噻吩类硫化物在Ag(I)X分子筛上的选择性吸附 [J]. 石油学报(石油加工), 2013, 29(5): 870-875. LI W X, XU T X, FAN J G, et al. Selective adsorption of thiophenic sulfur compounds on Ag(I)X adsorbent [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(5): 870-875(in Chinese).
[29] GUO Y, ZENG L L, XU X L, et al. Regulating SnO2 surface by metal oxides possessing redox or acidic properties: The importance of active O2−/O22− and acid sites for toluene deep oxidation [J]. Applied Catalysis A:General, 2020, 605: 117755. doi: 10.1016/j.apcata.2020.117755 [30] 肖丽. 分子筛负载钙钛矿型催化剂催化燃烧VOCs的研究[D]. 东营: 中国石油大学(华东), 2014. XIAO L. Study on catalytic combustion of VOCs by perovskite supported on zeolites[D]. Dongying: China University of Petroleum (East China), 2014(in Chinese).
[31] ANTUNES A P, RIBEIRO M F, SILVA J M, et al. Catalytic oxidation of toluene over CuNaHY zeolites: Coke formation and removal [J]. Applied Catalysis B:Environmental, 2001, 33(2): 149-164. doi: 10.1016/S0926-3373(01)00174-6 [32] 杨晓龙, 夏春谷, 唐立平, 等. 氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 无机化学学报, 2011, 27(8): 1541-1549. YANG X L, XIA C G, TANG L P, et al. Effect of MgO support and BaO promoter on structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1541-1549(in Chinese).
[33] 杨晓龙, 夏春谷, 唐立平, 等. 氧化铝载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 物理化学学报, 2010, 26(12): 3263-3272. doi: 10.3866/PKU.WHXB20101223 YANG X L, XIA C G, TANG L P, et al. Effect of alumina support and Barium oxide on the structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3263-3272(in Chinese). doi: 10.3866/PKU.WHXB20101223
[34] 彭若斯. 二氧化铈负载铂催化剂催化氧化甲苯的性能与反应机理研究[D]. 广州: 华南理工大学, 2017. PENG R S. Catalytic oxidation of toluene over platinum supported on ceria catalysts: Performance and reaction mechanism[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
[35] 刘立忠. 高活性锰基双金属氧化物的制备及其低温催化氧化芳香类VOCs性能研究[D]. 上海: 上海交通大学, 2019. LIU L Z. Preparation of highly active manganese-based bimetallic oxides for low-temperature catalytic oxidation of aromatic VOCs[D]. Shanghai: Shanghai Jiaotong University, 2019(in Chinese).
[36] 罗萌萌. 铜掺杂不同结构锰氧化物催化剂的制备及其甲苯催化燃烧性能研究[D]. 成都: 西南交通大学, 2019. LUO M M. Preparation of copper modified manganese oxide catalysts with different structure and their performance for catalytic combustion of toluene[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
[37] 高君安, 李想, 史东军, 等. ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究 [J]. 现代化工, 2020, 40(6): 123-127. GAO J A, LI X, SHI D J, et al. Honeycomb molding process of ZSM-5 molecular sieves and adsorption to toluene [J]. Modern Chemical Industry, 2020, 40(6): 123-127(in Chinese).
[38] 方向晨, 杜艳泽, 张通. 沸石分子筛催化剂的“限域”效应 [J]. 中国科学:化学, 2021, 51(2): 87-96. doi: 10.1360/SSC-2020-0186 FANG X C, DU Y Z, ZHANG T. Confinement effect in zeolite catalysts [J]. Scientia Sinica (Chimica), 2021, 51(2): 87-96(in Chinese). doi: 10.1360/SSC-2020-0186
[39] 禇月英. 沸石分子筛孔道中催化反应机理的理论计算研究[D]. 武汉: 中国科学院武汉物理与数学研究所, 2013. ZHE Y Y. Theoretical calculation studies of catalytic reactions in zeolite channels[D]. Wuhan: Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences University of Chinese Academy of Science, 2013(in Chinese).
[40] 蔡晓兰. 固体酸催化剂在烷基化反应中的应用[D]. 广州: 广东工业大学, 2016. CAI X L. The application of solid acid catalyst in alkylation reaction[D]. Guangzhou: Guangdong University of Technology, 2016(in Chinese).
-