-
挥发性有机物(volatile organic compounds,简称VOCs)大都具有刺激性和毒性,对人体眼睛、呼吸道和皮肤都具有很大的危害;当VOCs浓度过高时,会导致人体大脑、神经中枢、肾脏、肝脏等产生不可逆损害. 同时,VOCs在光照条件下还能发生光化学反应形成二次污染物[1]. 目前,吸收法、吸附法、燃烧法、光催化法、等离子体等技术在VOCs末端处理中都有应用[2],其中催化燃烧法因处理温度低、产物无毒无害而受到青睐[3].
分子筛具有独特孔道结构、高比表面积、酸性可调、热稳定性良好等特点[4],因此被广泛用于VOCs的催化氧化技术. 段明华等[5]以苯为探针反应物,将氧化钴负载至不同种类分子筛(MCM-41、MCM-48、SBA-15)上,发现孔径较大并且氧化还原性能较好的SBA-15载体呈现出更好的催化活性. 袁金芳[6]以Zr-Ce-SBA-15为载体,水热负载活性组分Cu—Mn,以甲苯为探针反应物,发现复合介孔载体能够综合微孔、介孔分子筛各自的孔道特点,从而促进活性组分在载体内部的分散,提高催化剂活性. He等[7]在研究不同分子筛载体对甲苯催化氧化活性时发现,微孔分子筛表面的酸性位是影响分子筛类催化剂催化活性的主要因素之一.
贵金属因其对H—H、C—H、C—O及O—H化学键具有较高的活化效果,常用做负载型催化剂的活性组分. 贵金属Ru作为铂系金属中的贵金属元素,其电子排布为4d75s1,氧化态较多,存在+2、+3、+4、+6等不同价态,因此能够构成多种配合物,并在许多反应中显示出独特性质.金属态的Ru呈六角密积的晶体结构,极易被氧化成RuO2. 相较于其余电子轨道,dn轨道上的电子更容易被还原,其轨道上的氧化物化学性质相较于d0轨道上的氧化物更加活跃. Ru(4+)的电子排布为4d4,因此其氧化物RuO2具有很强的活性,能加速催化反应进程[8]. Dai等[9]研究发现,相较于其余贵金属Au、Pt、Pd而言,Ru的催化活性差异不大,但价格相对低廉. Mitsui等[10]分别在CeO2上负载Ru、Pt、Pd、Rh,并以乙酸乙酯为探针反应物,发现Ru/CeO2的催化活性明显优于其他催化剂体系.
不同结构的分子筛对催化反应性能的影响较大,其具体作用机理仍需进一步研究;同时贵金属Ru化学性质活跃且价格相对低廉. 因此本研究选取不同结构的分子筛(β、MCM-41、Y、ZSM-5)为载体,通过浸渍法负载贵金属Ru,制备Ru/β、Ru/MCM-41、Ru/ZSM-5、Ru/Y催化剂,探究4种催化剂对甲苯的催化性能差异. 利用现代表征技术,从微观上对催化剂进行分析,构建催化剂物化结构与VOCs催化性能之间的构效关系,为分子筛类催化剂在VOCs废气治理的应用提供实验和理论依据.
负载型分子筛催化剂对甲苯的催化性能
Catalytic performance of supported molecular sieve catalysts for toluene
-
摘要: 采用不同类型分子筛浸渍负载活性组分Ru制备Ru/M(M=β、MCM-41、Y、ZSM-5)催化剂,考察其对甲苯的催化性能,并通过XRD、BET、SEM、XPS、H2-TPR、NH3-TPD等表征,分析催化剂的孔道结构、酸性位等物化结构对催化活性的影响.结果发现以贵金属Ru为活性组分,Y为载体的催化剂催化性能最优,在300 ℃左右,甲苯基本完全降解,CO2选择性接近99%,几乎无副产物生成.由此说明,适宜的孔径尺寸、丰富的酸性位、较好的氧化还原性能和较大的比表面积能有效促进分子筛催化剂对甲苯的催化氧化.Abstract: Ru/M (M=β, MCM-41,Y, ZSM-5) catalysts were prepared by impregnating the active component Ru with different types of molecular sieves to investigate their catalytic performance for toluene. The effect of physical and chemical structures such as pore structure and acid site on catalytic activity was analyzed by XRD, BET, SEM, XPS, H2-TPR and NH3-TPD.The results showed that the catalyst with precious metal Ru as the active component and Y as the carrier exhibited the best catalytic performance. At about 300 ℃, toluene was almost completely degraded, and the selectivity of CO2 was close to 99% with almost no by-product. This indicates that appropriate pore size, abundant acid sites, good redox performance and large specific surface area can effectively promote the catalytic oxidation of toluene by molecular sieve catalysts.
-
Key words:
- catalytic oxidation /
- toluene /
- molecular sieve /
- ruthenium /
- pore structure
-
表 1 Ru/M(M=β/MCM-41/Y/ZSM-5)的XPS数据
Table 1. XPS data of Ru/M(M=β/MCM-41/Y/ZSM-5)
催化剂Catalyst Olat/Osur Ru(4+)/Ru(0) Ru/β 0.44 1.71 Ru/MCM-41 0.58 0.18 Ru/Y 0.42 2.46 Ru/ZSM-5 0.41 0.94 表 2 Ru/M(M=β/MCM-41/Y/ZSM-5)催化氧化性能数据和动力学参数
Table 2. Catalytic oxidation performance data and kinetic parameters of Ru/M(M=β/MCM-41/Y/ZSM-5)
催化剂
CatalystT50/℃ T90/℃ Ea/
(kJ·mol−1)R2 TOF/
(mmoltoluene·molRu−1·s−1)Ru/β 236 312 91.55 0.996 5.67 Ru/MCM-41 308 318 177.87 0.998 3.11 Ru/Y 227 290 82.61 0.991 5.71 Ru/ZSM-5 301 328 154.15 0.993 1.85 -
[1] 熊超, 李建军, 杨复沫, 等. 成都市冬季重污染过程中挥发性有机物污染特征及来源解析 [J]. 环境污染与防治, 2020, 42(5): 590-596,603. doi: 10.15985/j.cnki.1001-3865.2020.05.014 XIONG C, LI J J, YANG F M, et al. Pollution characteristics and source apportionment of VOCs during a heavy pollution process in winter in Chengdu [J]. Environmental Pollution & Control, 2020, 42(5): 590-596,603(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.05.014
[2] 王健. 负载型钌催化剂对VOCs的催化氧化研究[D]. 北京: 中国科学院过程工程研究所, 2016. WANG J. Study on supported ruthenium catalysts for the catalytic oxidation of VOCs[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2016(in Chinese).
[3] 张金瑶, 王祖武, 余琬冰, 等. 负载型钌催化剂的制备对甲苯催化燃烧的影响 [J]. 环境科学与技术, 2020, 43(2): 65-68. doi: 10.19672/j.cnki.1003-6504.2020.02.010 ZHANG J Y, WANG Z W, YU W B, et al. Effect of preparation of supported ruthenium catalysts on toluene catalytic combustion [J]. Environmental Science & Technology, 2020, 43(2): 65-68(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.02.010
[4] OEMAR U, ANG M L, HEE W F, et al. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition [J]. Applied Catalysis B:Environmental, 2014, 148/149: 231-242. doi: 10.1016/j.apcatb.2013.10.001 [5] 段明华, 牟真, 李进军, 等. Co3O4/介孔分子筛催化剂对苯催化完全氧化的研究 [J]. 环境工程学报, 2008, 2(8): 1087-1091. DUAN M H, MU Z, LI J J, et al. Complete catalytic oxidation of benzene on Co3O4 catalysts supported on mesoporous molecular sieves [J]. Chinese Journal of Environmental Engineering, 2008, 2(8): 1087-1091(in Chinese).
[6] 袁金芳. 短孔道有序介孔材料的可控合成及吸附、催化性能研究[D]. 南京: 南京理工大学, 2011. YUAN J F. Study on the controllable synthesis and adsorption, catalytic properties of well-ordered mesoporous materials with short channels[D]. Nanjing: Nanjing University of Science and Technology, 2011(in Chinese).
[7] HE C, LI J J, CHENG J, et al. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate [J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930-6936. [8] 潘金鼎. 钌基纳米材料结构设计、制备及催化应用[D]. 北京: 中国科学院过程工程研究所, 2017. PAN J D. Structural design, preparation and catalytic application of ruthenium-based nanomaterials[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017(in Chinese).
[9] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026 [10] MITSUI T, MATSUI T, KIKUCHI R, et al. Low-temperature complete oxidation of ethyl acetate over CeO2-supported precious metal catalysts [J]. Topics in Catalysis, 2009, 52(5): 464-469. doi: 10.1007/s11244-009-9186-4 [11] 赵瑰施, 张玲, 万玉秋, 等. 咪唑类离子液体在β沸石上的吸附 [J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402 ZHAO G S, ZHANG L, WAN Y Q, et al. Adsorption of imidazolium ionic liquid onto β zeolites [J]. Environmental Chemistry, 2016, 35(8): 1649-1656(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
[12] 袁恩辉. ZSM-5沸石分子筛的制备及应用研究[D]. 兰州: 西北师范大学, 2015. YUAN E H. Synthesis of ZSM-5 zeolite and their application[D]. Lanzhou: Northwest Normal University, 2015(in Chinese).
[13] 吴迪, 刘洁, 印红玲, 等. 氮改性ZSM-5分子筛的苯吸附性能 [J]. 环境化学, 2021, 40(9): 2934-2942. doi: 10.7524/j.issn.0254-6108.2020051502 WU D, LIU J, YIN H L, et al. Study on benzene adsorption properties on nitrogen modified ZSM-5 zeolites [J]. Environmental Chemistry, 2021, 40(9): 2934-2942(in Chinese). doi: 10.7524/j.issn.0254-6108.2020051502
[14] 李红伟, 李泽宇, 贠宏飞, 等. 高分散Ru-PEGx/NaY催化对硝基甲苯加氢制对甲基环己胺 [J]. 精细化工, 2018, 35(10): 1673-1677,1712. LI H W, LI Z Y, YUN H F, et al. Hydrogenation of p-nitrotoluene to p-methyl-cyclohexylamine over high dispersion Ru-PEGx/NaY catalyst [J]. Fine Chemicals, 2018, 35(10): 1673-1677,1712(in Chinese).
[15] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005. ZHAO Z G. Application principle of adsorption action[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
[16] 张佳琦. Beta分子筛的合成及吸附性能研究[D]. 桂林: 广西师范大学, 2019. ZHANG J Q. Synthesis and adsorption properties of beta molecular sieves[D]. Guilin: Guangxi Normal University, 2019(in Chinese).
[17] 邹思贝. Pt/泡沫沸石催化剂及其孔道调变对甲苯催化氧化性能影响研究[D]. 广州: 华南理工大学, 2020. ZOU S B. Pore-modified effect over toluene catalytic combustion performance of zeolite foam supported Pt catalysts[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
[18] 张强. 单晶纳米/多级孔ZSM-5和Beta分子筛合成及催化性能研究[D]. 长春: 吉林大学, 2019. ZHANG Q. Syntheses of single-crystalline nanosized/hierarchical ZSM-5 and Beta zeolites with excellent catalytic performance[D]. Changchun: Jilin University, 2019(in Chinese).
[19] 张婷婷, 卜龙利, 宁轲, 等. 催化剂载体的优化及微波催化燃烧甲苯特性 [J]. 环境工程学报, 2020, 14(12): 3468-3479. doi: 10.12030/j.cjee.202003046 ZAHNG T T, BU L L, NING K, et al. Catalyst carriers optimization and characteristics of microwave catalytic combustion of toluene [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3468-3479(in Chinese). doi: 10.12030/j.cjee.202003046
[20] 林立. Cu/Mn/La/MCM-41催化剂的合成及降解染料废水的研究[D]. 南昌: 南昌大学, 2019. LIN L. Synthesis of Cu/Mn/La/MCM-41 catalyst and degradation of dye wastewater[D]. Nanchang: Nanchang University, 2019(in Chinese).
[21] ZHANG J Y, RAO C, PENG H G, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite [J]. Chemical Engineering Journal, 2018, 334: 10-18. doi: 10.1016/j.cej.2017.10.017 [22] 秦媛. 锰基催化剂催化氧化甲苯性能及其氧物种循环过程的研究[D]. 大连: 大连理工大学, 2020. QIN Y. Study of the performance of toluene catalytic oxidation and the cycle of oxygen species over Mn-based catalysts[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
[23] REN Z, WU Z L, SONG W Q, et al. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability [J]. Applied Catalysis B:Environmental, 2016, 180: 150-160. doi: 10.1016/j.apcatb.2015.04.021 [24] 陈立. Ru基催化剂对氯代挥发性有机物(CVOCs)的催化氧化研究[D]. 贵阳: 贵州大学, 2018. CHEN L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018(in Chinese).
[25] 黄婷. 新型ZSM-5负载Ru双功能催化剂的费—托反应性能研究[D]. 西安: 陕西师范大学, 2017. HUANG T. Study on Fischer-Tropsch reaction performance of the new ZSM-5 load Ru dual-function catalyst[D]. Xi'an: Shaanxi Normal University, 2017(in Chinese).
[26] PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene [J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056 [27] 郭瑶. SnO2催化材料用于甲苯深度氧化 : 指认其表面活性中心和影响活性的关键因素[D]. 南昌: 南昌大学, 2020. GUO Y. SnO2-based catalytic materials for toluene deep oxidation: identifying the surface active sites and the critical factors influencing the reaction performance[D]. Nanchang: Nanchang University, 2020(in Chinese).
[28] 李文秀, 许天行, 范俊刚, 等. 噻吩类硫化物在Ag(I)X分子筛上的选择性吸附 [J]. 石油学报(石油加工), 2013, 29(5): 870-875. LI W X, XU T X, FAN J G, et al. Selective adsorption of thiophenic sulfur compounds on Ag(I)X adsorbent [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(5): 870-875(in Chinese).
[29] GUO Y, ZENG L L, XU X L, et al. Regulating SnO2 surface by metal oxides possessing redox or acidic properties: The importance of active O2−/O22− and acid sites for toluene deep oxidation [J]. Applied Catalysis A:General, 2020, 605: 117755. doi: 10.1016/j.apcata.2020.117755 [30] 肖丽. 分子筛负载钙钛矿型催化剂催化燃烧VOCs的研究[D]. 东营: 中国石油大学(华东), 2014. XIAO L. Study on catalytic combustion of VOCs by perovskite supported on zeolites[D]. Dongying: China University of Petroleum (East China), 2014(in Chinese).
[31] ANTUNES A P, RIBEIRO M F, SILVA J M, et al. Catalytic oxidation of toluene over CuNaHY zeolites: Coke formation and removal [J]. Applied Catalysis B:Environmental, 2001, 33(2): 149-164. doi: 10.1016/S0926-3373(01)00174-6 [32] 杨晓龙, 夏春谷, 唐立平, 等. 氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 无机化学学报, 2011, 27(8): 1541-1549. YANG X L, XIA C G, TANG L P, et al. Effect of MgO support and BaO promoter on structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1541-1549(in Chinese).
[33] 杨晓龙, 夏春谷, 唐立平, 等. 氧化铝载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 物理化学学报, 2010, 26(12): 3263-3272. doi: 10.3866/PKU.WHXB20101223 YANG X L, XIA C G, TANG L P, et al. Effect of alumina support and Barium oxide on the structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3263-3272(in Chinese). doi: 10.3866/PKU.WHXB20101223
[34] 彭若斯. 二氧化铈负载铂催化剂催化氧化甲苯的性能与反应机理研究[D]. 广州: 华南理工大学, 2017. PENG R S. Catalytic oxidation of toluene over platinum supported on ceria catalysts: Performance and reaction mechanism[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
[35] 刘立忠. 高活性锰基双金属氧化物的制备及其低温催化氧化芳香类VOCs性能研究[D]. 上海: 上海交通大学, 2019. LIU L Z. Preparation of highly active manganese-based bimetallic oxides for low-temperature catalytic oxidation of aromatic VOCs[D]. Shanghai: Shanghai Jiaotong University, 2019(in Chinese).
[36] 罗萌萌. 铜掺杂不同结构锰氧化物催化剂的制备及其甲苯催化燃烧性能研究[D]. 成都: 西南交通大学, 2019. LUO M M. Preparation of copper modified manganese oxide catalysts with different structure and their performance for catalytic combustion of toluene[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
[37] 高君安, 李想, 史东军, 等. ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究 [J]. 现代化工, 2020, 40(6): 123-127. GAO J A, LI X, SHI D J, et al. Honeycomb molding process of ZSM-5 molecular sieves and adsorption to toluene [J]. Modern Chemical Industry, 2020, 40(6): 123-127(in Chinese).
[38] 方向晨, 杜艳泽, 张通. 沸石分子筛催化剂的“限域”效应 [J]. 中国科学:化学, 2021, 51(2): 87-96. doi: 10.1360/SSC-2020-0186 FANG X C, DU Y Z, ZHANG T. Confinement effect in zeolite catalysts [J]. Scientia Sinica (Chimica), 2021, 51(2): 87-96(in Chinese). doi: 10.1360/SSC-2020-0186
[39] 禇月英. 沸石分子筛孔道中催化反应机理的理论计算研究[D]. 武汉: 中国科学院武汉物理与数学研究所, 2013. ZHE Y Y. Theoretical calculation studies of catalytic reactions in zeolite channels[D]. Wuhan: Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences University of Chinese Academy of Science, 2013(in Chinese).
[40] 蔡晓兰. 固体酸催化剂在烷基化反应中的应用[D]. 广州: 广东工业大学, 2016. CAI X L. The application of solid acid catalyst in alkylation reaction[D]. Guangzhou: Guangdong University of Technology, 2016(in Chinese).