-
化石燃料燃烧、汽车尾气、燃煤电厂以及工业锅炉排放的NOx是大气的主要污染物之一,会造成酸雨、雾霾以及光化学烟雾等一系列环境问题,对生态环境和人类健康均造成了严重危害[1-2]。目前,NH3选择性催化还原NOx技术(NH3-SCR)被广泛研究,并在工业上应用于控制NO、NO2和N2O的排放,已经被证明是经济且高效的NOx脱除方法[3]。其中,最广泛使用的催化剂是V2O5-WO3/TiO2。然而,传统的V2O5-WO3/TiO2催化剂虽然具有较高的催化活性和耐硫性能,但存在反应温度高、操作温度窗口窄、V2O5对环境有害等缺点[4]。因此,有必要开发环保高效的低温脱硝催化剂。
多孔材料在材料学领域有着悠久的研究历史,是NH3-SCR催化剂优异的载体候选材料[5]。Song等[6]采用水热法制备了具有微孔结构的的TiO2,与传统TiO2相比,前者所具有的小孔结构使反应中间体NH3-NO3能够稳定存在,不易分解为N2O,从而使得以具有小孔结构的TiO2为载体所制备的催化剂具有更高的N2选择性和NOx转化率。Zha等[7]采用溶剂热法制备了介孔TiO2球,并通过浸渍法制备了MnOx-CeO2/m-TiO2催化剂,研究发现,由于载体的多孔结构使得活性组分可均匀吸附在其表面而不团聚,介孔TiO2的孔结构抑制了活性组分的迁移,从而使得SCR反应充分进行。
硅藻土由于价格低廉,且具有独特的介孔和微孔结构等诸多优良性能,被应用于许多重要领域,如作为有毒气体或有机染料的吸附材料等[8]。以硅藻土为原料,将其制备成具有一定形状与机械强度的多孔陶瓷,可以进一步扩大其应用领域。多孔材料的制备方法多种多样,如造孔剂法[9]、直接发泡发[10]、冷冻干燥法[11]、模板法[12]、泡沫凝胶铸造法[13]等,这些方法可直接用于或改性制备硅藻土基多孔陶瓷[8]。其中,造孔剂法制备多孔陶瓷,因为工艺简单,成本低廉而被广泛应用。目前,多孔陶瓷造孔剂大致可分为两类,有机造孔剂和无机造孔剂。有机造孔剂通常为天然有机物和高分子聚合物,而植物类的天然有机物因成本低廉且来源广泛备受青睐,无机造孔剂则可分为高温分解和氧化燃烧两种类型。本文分别选取价格低廉的淀粉、高温下分解的碳酸钙和氧化燃烧的石墨作为造孔剂进行研究,并以埃洛石黏土为添加剂增强样品的机械强度进行研究。
制备方法影响催化剂的催化活性[2],本课题组前期所开发的原位生长法无需煅烧,便可将活性组分原位沉积在载体表面,该方法与载体结构的协同效应能够促进SCR反应的进行[14]。本文采用造孔剂法制备了孔隙度较高且具有一定机械强度的硅藻土基多孔陶瓷,并以所制备的多孔陶瓷为载体,通过原位生长法将MnOx原位沉积在多孔陶瓷表面。采用XRD、SEM、XPS等方法对所制备样品进行表征,重点研究了造孔剂种类与含量对多孔陶瓷结构与性能的影响,以及对负载活性组分之后的催化剂催化活性的影响。拓宽了硅藻土基多孔陶瓷的研究领域,为多孔陶瓷类载体在SCR领域的研究提供了一定的思路。
造孔剂对低温锰基多孔陶瓷NH3-SCR催化剂性能的影响
Effect of pore-forming agent on properties of NH3-SCR catalyst for low temperature manganese-based porous ceramics
-
摘要: 本文采用造孔剂法制备了以埃洛石 (HAL) 为添加剂的硅藻土 (DE) 基多孔陶瓷,并以该多孔陶瓷为载体,通过原位生长法制备了锰基硅藻土多孔陶瓷催化剂。探究了造孔剂的种类和含量对多孔陶瓷结构与形貌以及对催化剂脱硝性能的影响。采用XRD、SEM、XPS等方法对多孔陶瓷以及催化剂的理化性质进行了表征,结果表明,造孔剂的种类与含量影响多孔陶瓷的结构与形貌,更粗糙的表面和更高的孔隙率为MnOx提供了更多的附着位点。此外,选取适当的造孔剂可以促进所制备样品表面原子价态分布,提升表面酸性位点含量,并增强其氧化还原能力,增强催化剂的脱硝性能。Abstract: Diatomite (DE) based porous ceramics with halloysite (HAL) as additive were prepared by pore-forming agent method, and the porous ceramic was used as the carrier to prepare manganese based diatomite porous ceramic catalyst by in-situ deposition method. The influence of the type and content of pore-forming agent on the structure and morphology of porous ceramics and on the deNOx performance of catalyst were investigated. The physical and chemical properties of porous ceramics and catalysts were characterized by XRD, SEM, XPS and other methods. The results show that the type and content of pore-forming agent affect the structure and morphology of porous ceramics, rougher surfaces and higher porosity provide more attachment sites for MnOx. In addition, the selection of appropriate pore-forming agent can promote the surface atomic valence distribution of the sample, improve the content of acid sites on the surface, and enhance the redox ability of the catalyst, improve the deNOx performance.
-
Key words:
- porous ceramics /
- pore-forming agent /
- MnOx /
- NH3-SCR.
-
表 1 样品机械强度数据
Table 1. Sample mechanical strength data
样品
Samples强度/MPa
Mechanical strengthDE-HAL 5.11 4 %wt. G-DE-HAL 4.95 4% wt. S-DE-HAL 5.02 4 %wt. Ca-DE-HAL 6.15 表 2 多孔陶瓷的比表面积、孔道结构及密度
Table 2. Specific surface area, pore structure and density of porous ceramics
样品
Samples比表面积/(m2·g−1)
Specific surface area孔容/(mL·g−1)
Pore volume孔径/nm
Pore diameter孔隙率/%
Porosity密度/(g·cm−3)
Density0 %wt. G-DE-HAL 2.13 0.011 178.98 28.12 1.81 2 % wt.G-DE-HAL 2.45 0.011 158.66 32.73 1.53 4 %wt. G-DE-HAL 3.94 0.017 180.21 34.03 1.52 6% wt. G-DE-HAL 4.04 0.019 177.39 35.57 1.46 8 %wt. G-DE-HAL 4.17 0.020 179.47 36.32 1.43 4% wt. S-DE-HAL 2.38 0.013 184.12 33.62 1.63 4% wt.Ca-DE-HAL 2.55 0.015 164.76 32.56 1.51 表 3 催化剂的比表面积及孔道结构
Table 3. Specific surface area and pore structure of catalysts
样品 比表面积/(m2·g−1)
Specific surface area孔容/(mL·g−1)
Pore volume孔径/nm
Pore diameter0 %wt. G-Mn/DE-HAL 23.21 0.031 48.29 2% wt. G-Mn/DE-HAL 24.90 0.052 56.33 4 %wt. G-Mn/DE-HAL 27.31 0.054 48.75 6 %wt. G-Mn/DE-HAL 31.92 0.055 49.56 8% wt. G-Mn/DE-HAL 32.26 0.057 48.75 4 %wt. S-Mn/DE-HAL 19.23 0.025 38.45 4% wt. Ca-Mn/DE-HAL 29.72 0.034 38.42 表 4 造孔剂种类不同的催化剂表面原子比值
Table 4. Surface atomic ratios of catalysts with different pore-forming agents
样品
Samples表面原子比值/% Surface atom ratio Mn4+/Mn3+ Oα/Oβ 4%wt.Ca-Mn/DE-HAL 67.66 315.01 4%wt.G-Mn/DE-HAL 91.51 473.51 4% wt.S-Mn/DE-HAL 71.34 218.13 表 5 造孔剂种类不同的催化剂NH3-TPD积分
Table 5. NH3-TPD integration of catalysts with different pore-forming agents
样品
Samples4% wt. S-Mn/DE-HAL 4% wt. G-Mn/DE-HAL 4 %wt. Ca-Mn/DE-HAL 4% wt. G- DE-HAL NH3-TPD /(eV·s−1) 1.54×10−7 2.12×10−7 1.45×10−7 1.46×10−7 -
[1] SHEN Q, ZHANG L Y, SUN N N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation [J]. Chemical Engineering Journal, 2017, 322: 46-55. doi: 10.1016/j.cej.2017.02.148 [2] ZHANG X L, WU Q, DIAO Q C, et al. Performance study for NH3-SCR at low temperature based on different methods of Mnx/SEP catalyst [J]. Chemical Engineering Journal, 2019, 370: 364-371. doi: 10.1016/j.cej.2019.03.065 [3] GONÇALVES A A S, CIESIELCZYK F, SAMOJEDEN B, et al. Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3 [J]. Journal of Hazardous Materials, 2021, 401: 123413. doi: 10.1016/j.jhazmat.2020.123413 [4] SHI X K, GUO J X, SHEN T, et al. Enhancement of Ce doped La-Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance [J]. Chemical Engineering Journal, 2021, 421: 129995. doi: 10.1016/j.cej.2021.129995 [5] LI M H, GUO Y Y, YANG J P. Spatially nanoconfined architectures: A promising design for selective catalytic reduction of NO X [J]. ChemCatChem, 2020, 12(22): 5599-5610. doi: 10.1002/cctc.202001024 [6] SONG I, LEE H, JEON S W, et al. Controlling catalytic selectivity mediated by stabilization of reactive intermediates in small-pore environments: A study of Mn/TiO2 in the NH3-SCR reaction [J]. ACS Catalysis, 2020, 10(20): 12017-12030. doi: 10.1021/acscatal.0c03154 [7] ZHA K W, CAI S X, HU H, et al. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction [J]. The Journal of Physical Chemistry C, 2017, 121(45): 25243-25254. doi: 10.1021/acs.jpcc.7b08600 [8] HAN L, LI F L, ZHANG H J, et al. Low-temperature preparation of porous diatomite ceramics via direct-gelcasting using melamine and boric acid as cross-linker and sintering agent [J]. Ceramics International, 2019, 45(18): 24469-24473. doi: 10.1016/j.ceramint.2019.08.172 [9] YAN W, LIN X L, CHEN J F, et al. Effect of TiO2 addition on microstructure and strength of porous spinel (MgAl2O4) ceramics prepared from magnesite and Al(OH)3 [J]. Journal of Alloys and Compounds, 2015, 618: 287-291. doi: 10.1016/j.jallcom.2014.08.169 [10] GREGOROVÁ E, PABST W, UHLÍŘOVÁ T, et al. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour [J]. Journal of the European Ceramic Society, 2016, 36(1): 109-120. doi: 10.1016/j.jeurceramsoc.2015.09.028 [11] WU Z, SUN L C, PAN J J, et al. Highly porous Y2 SiO5 ceramic with extremely low thermal conductivity prepared by foam-gelcasting-freeze drying method [J]. Journal of the American Ceramic Society, 2018, 101(3): 1042-1047. doi: 10.1111/jace.15330 [12] SERGEEVA A, FEOKTISTOVA N, PROKOPOVIC V, et al. Design of porous alginate hydrogels by sacrificial CaCO3Templates: Pore formation mechanism [J]. Advanced Materials Interfaces, 2015, 2(18): 1500386. doi: 10.1002/admi.201500386 [13] HAN L, DENG X G, LI F L, et al. Preparation of high strength porous mullite ceramics via combined foam-gelcasting and microwave heating [J]. Ceramics International, 2018, 44(12): 14728-14733. doi: 10.1016/j.ceramint.2018.05.101 [14] ZHANG X L, WANG P M, WU X, et al. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3 [J]. Catalysis Communications, 2016, 83: 18-21. doi: 10.1016/j.catcom.2016.05.003 [15] 董学成. 硅藻土基孔梯度多孔陶瓷的制备与性能研究[D]. 武汉: 武汉理工大学, 2017. DONG X C. Preparation and properties of porous gradient ceramics from diatomite[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
[16] LI C X, CHENG J, YE Q, et al. Poisoning effects of alkali and alkaline earth metal doping on selective catalytic reduction of NO with NH3 over the Nb-Ce/Zr-PILC catalysts [J]. Catalysts, 2021, 11(3): 329. doi: 10.3390/catal11030329 [17] FAN Z Y, SHI J W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance [J]. Chemical Engineering Journal, 2018, 348: 820-830. doi: 10.1016/j.cej.2018.05.038 [18] FRANCE L J, YANG Q, LI W, et al. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx [J]. Applied Catalysis B:Environmental, 2017, 206: 203-215. doi: 10.1016/j.apcatb.2017.01.019 [19] SHI Y R, YI H H, GAO F Y, et al. Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships [J]. Journal of Hazardous Materials, 2021, 413: 125361. doi: 10.1016/j.jhazmat.2021.125361 [20] GAO L, LI C T, LI S H, et al. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal [J]. Chemical Engineering Journal, 2019, 371: 781-795. doi: 10.1016/j.cej.2019.04.104 [21] FAN J, NING P, WANG Y C, et al. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction [J]. Chemical Engineering Journal, 2019, 369: 908-919. doi: 10.1016/j.cej.2019.03.049 [22] ZHANG G D, HAN W L, ZHAO H J, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction [J]. Applied Catalysis B:Environmental, 2018, 226: 117-126. doi: 10.1016/j.apcatb.2017.12.030 [23] HUANG X S, DONG F, ZHANG G D, et al. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3 [J]. Chemical Engineering Journal, 2021, 419: 129572. doi: 10.1016/j.cej.2021.129572 [24] DAMMA D, PAPPAS D K, BONINGARI T, et al. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx [J]. Applied Catalysis B:Environmental, 2021, 287: 119939. doi: 10.1016/j.apcatb.2021.119939 [25] CHEN L, YAO X J, CAO J, et al. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR [J]. Applied Surface Science, 2019, 476: 283-292. doi: 10.1016/j.apsusc.2019.01.095 [26] XU J Q, TANG T, ZHANG Q, et al. Remarkable low temperature catalytic activity for SCR of NO with propylene under oxygen-rich conditions over Mn0.2La0.07Ce0.05Ox/ZSM-5 catalyst [J]. Vacuum, 2021, 188: 110174. doi: 10.1016/j.vacuum.2021.110174 [27] ZHU N, SHAN W P, SHAN Y L, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2020, 388: 124250. doi: 10.1016/j.cej.2020.124250