-
近年来,我国秋冬季节频繁发生以PM2.5为主的细颗粒物污染. 根据《2020年中国环境状况公报》显示,在我国337个城市中,以PM2.5为首要污染物的超标天数占总超标天数的51%,PM2.5依然是我国最重要的大气污染物[1]. 我国的细颗粒物污染存在区域性污染的特点,常发生在工业化程度高的区域,如京津冀及周边地区、长三角和汾渭平原. 其次,在复杂的大气环境中,多种污染物之间的协同作用加强了大气氧化能力,使得颗粒物表面的非均相反应频繁发生,导致二次颗粒物的大量爆发,进一步加重了细颗粒污染的程度,形成了典型的复合污染特征[2-3]. 细颗粒物污染给人类健康和地球环境带来了诸多负面影响,如呼吸道疾病、心血管疾病、农业减产和影响地球循环等[4]. 因此,对细颗粒物进行成因分析对于控制和治理颗粒物污染至关重要.
细颗粒物的形成机制受其组分种类和混合态的影响,目前根据各类质谱和色谱技术检测出的细颗粒物组分主要包括以下9种:矿物颗粒、海盐、金属、飞灰、地壳元素、无机盐、氯化物、烟灰(soot)和有机物[5-7]. 由于来源的复杂性,单个颗粒物的组分常常以内部混合的形式存在[8],彼此之间发生化学反应,使得各组分的原始特性(尺寸、形状和理化性质)发生改变,从而导致颗粒物整体光学和吸湿性质的差异性[9-10]. 早期研究主要使用各类的全分析技术来分析颗粒物,如气相色谱仪、质谱仪和离子色谱仪等[11]. 全分析技术可以同时分析数百或数千个气溶胶颗粒,得到大气颗粒物的化学组成、浓度和体积等平均信息. 这些结果对于研究其来源成因及其对人体健康和气候变化的影响都十分重要,但无法在微观层面给出单个细颗粒的组成和混合状态信息.
单颗粒分析技术可弥补全分析技术的不足,提供颗粒物微观形貌及组成成分等信息. 现有的单颗粒技术主要分为电子显微镜/X射线光谱法、振动光谱法和质谱法(表1),已有研究者们对各类单颗粒分析技术进行了总结[10, 12-13]. 其中,常用的技术手段包括扫描电镜法(SEM)、透射电镜法(TEM)和拉曼(Raman)光谱法等. 前两种技术在颗粒物形貌的观测上得到了广泛的应用[14-15],但是SEM和TEM的真空操作过程会导致水或半挥发性组分的损失. 而拉曼光谱作为一种无损的灵敏指纹识别光谱技术,规避了以上缺点,逐渐发展成为一种高效可靠的细颗粒物检测手段. 本文介绍了传统拉曼技术的原理,归纳总结了拉曼技术在细颗粒物分析领域的研究进展,并介绍了相关的技术改进,最后对未来的发展方向提出展望,希望能为相关领域的研究提供参考.
拉曼光谱在细颗粒物分析领域的应用
Applications of Raman spectroscopy in the field of fine-particle analysis
-
摘要: 近年来,作为一项无损的指纹识别技术,拉曼光谱在细颗粒物分析领域表现出巨大的应用潜力. 本文对拉曼光谱在细颗粒物定性分析、定量分析、图像化表征、混合态分析、源解析、pH分析和非均相反应七个方面的研究进展进行了综述. 对于传统拉曼光谱存在信号强度不高的问题,通过表面增强拉曼散射(SERS)、尖端增强拉曼散射(TERS)和受激拉曼散射(SRS)技术得到了改进. 最后对今后拉曼光谱在细颗粒物分析领域可能的研究方向进行了展望.Abstract: In recent years, as a nondestructive fingerprint recognition technology, Raman spectroscopy has shown great application potential in the field of fine-particle analysis. This article reviewed research process in seven aspects: qualitative analysis, quantitative analysis, image characterization, mixing-state analysis, source apportionment, pH analysis, and heterogeneous reaction. The problem of low signal strength of traditional Raman has been improved through technical improvements, such as surface-enhanced Raman scattering (SERS), tip-enhanced Raman scattering (TERS) and stimulated Raman scattering (SRS). Finally, this article prospected the possible research directions of Raman spectroscopy in the field of fine-particle analysis in the future.
-
Key words:
- Raman /
- fine-particle /
- technical improvement
-
图 3 (a-c)常见无机盐的拉曼光谱[23];(d)四类单颗粒结晶与I1046/I1053大于1时结晶的拉曼光谱[24];(e)单盐及复盐的拉曼光谱[26]
Figure 3. (a-c) Raman spectra of common inorganic salts [23]; (d) Raman spectra of four types of single-particle crystals and crystals with I1046/I1053 greater than 1, modified from ref[24]; (e) Raman spectra of single and double salts, modified from ref[26]
图 5 (a)气溶胶样品的光学图像、拉曼光学图像和根据特征峰位得到的ZnO的拉曼数据处理图像[52];(b)雾霾事件中硫酸盐、硝酸盐和soot含量占比的时间变化,修改自参考文献[53];(c)化学定量法得到的颗粒物组分贡献[54];(d)由Raman和SEM/EDX数据获得的各组分浓度分布图像[55]
Figure 5. (a) Optical image and Raman optical image of aerosol sample, and Raman data processing image of ZnO[52]; (b) temporal variations of the proportion of sulfate, nitrate and soot during a haze event, modified from ref [53]; (c) contribution of particle compositions obtained by using chemical quantitative method[54]; (d) concentration distribution image of each component obtained from Raman and SEM/EDX data[55]
图 6 (a)四个尺寸范围的颗粒物拉曼光学图像及尺寸分布[23];(b)颗粒物的2D拉曼面扫描图像和X射线图像[56];(c)气溶胶颗粒的超样品图、低分辨率图和高分辨率图[57];(d)单个气溶胶颗粒的3D成像[58]
Figure 6. (a) Raman optical images and size distributions of particles in four size ranges[23]; (b) 2D Raman mapping image and X-ray images of particles[56]; (c) over-sample images, low-resolution images, and high-resolution images of aerosol particles[57]; (d) 3D imaging of a single aerosol particle[58]
图 7 (a)太平洋上空多组分气溶胶颗粒物的拉曼光谱[59];(b)清洁天和污染天里细颗粒物混合状态的面扫描分析[53];(c)矿物粉尘与有机物的三种混合形式[61]
Figure 7. (a) Raman spectra of multi-component aerosol particles over the Pacific[59]; (b) mapping analysis of the mixing state of fine particles in clear and polluted days[53]; (c) three mixing forms of mineral dust and organics[61]
图 9 (a)酸-共轭碱法示意图[75];(b)基于pH指示剂比色法示意图[76];(c)聚合物降解过程的拉曼光谱及图像[77];(d)标准曲线法,修改自参考文献[78];(e)pH值纳米探针作用示意图[79]
Figure 9. (a) Schematic diagram of acid-conjugate base method[75]; (b) schematic diagram of colorimetric method based on pH indicator[76]; (c) Raman spectra and image of polymer degradation process[77]; (d) standard curve line method, modified from ref[78]; (e) schematic diagram of the action of the pH value nanoprobe[79]
图 10 (a)与NO2反应前后的CaCO3颗粒拉曼光谱[82];(b)三元非均相反应协同作用示意图[83];(c)CaCO3颗粒与SO2、NO2反应过程的拉曼光学图像及光谱变化,修改自参考文献[84];(d)CaCO3颗粒与O3、SO2、NO2反应过程的拉曼光学图像及光谱变化,修改自参考文献[85]
Figure 10. (a) Raman spectra of CaCO3 particles before and after the reaction with NO2[82]; (b) schematic diagram of ternary heterogeneous reaction[83]; (c) Raman optical images and spectral changes of CaCO3 particles during the reaction process with SO2 and NO2, modified from ref[84]; (d) Raman optical image and spectral changes CaCO3 particles during the reaction process of with O3, SO2, and NO2, modified from ref[85]
图 11 (a)O3浓度和RH对亚油酸颗粒被O3异质氧化的影响[88];(b)soot表面双分子异质动力学曲线[89];(c)乙酸与α-Al2O3、MgO和CaCO3颗粒的吸附等温线,修改自参考文献[90];(d)不同占比的草酸与硫酸铵颗粒混合物的吸湿性曲线[91]
Figure 11. (a) The influence of O3 concentration and RH on the heterogeneous oxidation of linoleic acid particles by O3[88]; (b) bimolecular heterogeneous kinetic curve on the surface of soot[89]; (c) adsorption isotherm of Acetic acid and α-Al2O3, MgO and CaCO3 particles, modified from ref[90]; (d) hygroscopicity curves of mixtures of oxalic acid and ammonium sulfate particles with different proportions[91]
方法
Method尺寸范围
Size range用途
Using优势与不足
Advantages and disadvantages电子显微镜/X射线光谱 SEM和场发射SEM 20 nm分辨率,但颗粒粒径最好大于80 nm 常与能量色散X射线光谱仪(EDX)结合,能够提供表面形貌、组成和
电导率等信息空间分辨率较低;无法提供颗粒物内部信息;真空操作造成水、硫酸铵和部分有机物损失 TEM和场发射TEM 0.1 nm分辨率,但颗粒粒径最好大于10 nm且
小于2 mm常与EDX联用;可以观察单个颗粒的混合状态和形貌 空间分辨率高;能够观察到粒子内部;高能电子束和真空操作造成硝酸盐的损失 扫描透射X射线显微镜-近边X射线吸收精
细结构光谱适合粒径大于200 nm
的颗粒对轻元素(C和N)和金属元素具有优异的测量能力,能够提供混合态信息 在环境压力a下工作;可以研究碳质气溶胶中特定的键类型;需要同步辐射;空间分辨率低 原子力显微镜 2 nm分辨率,颗粒物粒径
最好大于10 nm且小于
2 mm能够检测颗粒表面形貌、相态和吸湿性,进而了解颗粒体积和面积 在环境压力下工作;提供颗粒物表面信息;结果解释不明确;无化学组成信息 振动光谱 拉曼光谱 颗粒粒径大于800 nm 提供颗粒物组成和分布信息 在环境压力下工作;无损的指纹识别;丰富的光谱数据;存在荧光信号干扰和检测深度限制 表面增强拉曼散射和尖端增强拉曼散射 颗粒粒径大于10 nm 提供颗粒物组成和分布信息 在环境压力下工作;样品无损识别;与拉曼相比实现了信号数量级的增强 荧光 0.5—50 μm 主要用于检测生物气溶胶 在环境压力下工作;检测的气溶胶种类单一 单颗粒soot光度计 70—500 nm soot的质量分布 检测的种类单一 质谱 气溶胶飞行时间质谱仪 100 nm分辨率,颗粒粒径
最好大于100 nm提供化学成分、非均相反应、二次粒子的形成以及气溶胶来源等信息 提供实时数据;多成分同时检测;无法提供形态信息;真空操作造成样品损失;复杂的数据处理和操作周期 纳米级二次离子质谱仪 分辨率小于50 nm,颗粒粒径最好大于50 nm 能够检测有机物和硫酸盐/硝酸盐;提供混合态信息 可以研究C、N和O元素在气溶胶中的分布;操作费时;真空操作造成样品损失 飞行时间二次离子质谱仪 50 nm分辨率,颗粒粒径最好大于100 nm 提供表面元素和分子类型信息,可视化单个物质的分布;主要用于检测有机物 可以研究碳质气溶胶中特定的键类型;空间分辨率低;真空操作造成样品损失 -
[1] 中华人民共和国生态环境部. 2020中国生态环境状况公报[R]. 2021. [2] 贺克斌, 杨复沫, 段凤魁. 大气颗粒物与区域复合污染[M]. 北京: 科学出版社, 2011. HE K B, YANG F M, DUAN F K. Atmospheric particles and regional compound pollution[M]. Beijing: Science Press, 2011(in Chinese).
[3] 楚碧武, 马庆鑫, 段凤魁, 等. 大气“霾化学”: 概念提出和研究展望 [J]. 化学进展, 2020, 32(1): 1-4. CHU B W, MA Q X, DUAN F K, et al. Atmospheric “haze chemistry”: Concept and research prospects [J]. Progress in Chemistry, 2020, 32(1): 1-4(in Chinese).
[4] GAO J H, WOODWARD A, VARDOULAKIS S, et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response [J]. Science of the Total Environment, 2017, 578: 148-157. doi: 10.1016/j.scitotenv.2016.10.231 [5] WANG Y C, WANG Q Y, YE J H, et al. A review of aerosol chemical composition and sources in representative regions of China during wintertime [J]. Atmosphere, 2019, 10(5): 277. doi: 10.3390/atmos10050277 [6] GU J X, BAI Z P, LI W F, et al. Chemical composition of PM2.5 during winter in Tianjin, China [J]. Particuology, 2011, 9(3): 215-221. doi: 10.1016/j.partic.2011.03.001 [7] LIANG C S, DUAN F K, HE K B, et al. Review on recent progress in observations, source identifications and countermeasures of PM2.5 [J]. Environment International, 2016, 86: 150-170. doi: 10.1016/j.envint.2015.10.016 [8] LI W J, SUN J X, XU L, et al. A conceptual framework for mixing structures in individual aerosol particles [J]. Journal of Geophysical Research:Atmospheres, 2016, 121(22): 13784-13798. doi: 10.1002/2016JD025252 [9] CHINA S, SCARNATO B, OWEN R C, et al. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties [J]. Geophysical Research Letters, 2015, 42(4): 1243-1250. doi: 10.1002/2014GL062404 [10] AULT A P, AXSON J L. Atmospheric aerosol chemistry: Spectroscopic and microscopic advances [J]. Analytical Chemistry, 2017, 89(1): 430-452. doi: 10.1021/acs.analchem.6b04670 [11] WANG F, YU H F, WANG Z Y, et al. Review of online source apportionment research based on observation for ambient particulate matter [J]. Science of the Total Environment, 2021, 762: 144095. doi: 10.1016/j.scitotenv.2020.144095 [12] LI W J, SHAO L Y, ZHANG D Z, et al. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions [J]. Journal of Cleaner Production, 2016, 112: 1330-1349. doi: 10.1016/j.jclepro.2015.04.050 [13] RIEMER N, AULT A P, WEST M, et al. Aerosol mixing state: Measurements, modeling, and impacts [J]. Reviews of Geophysics, 2019, 57(2): 187-249. doi: 10.1029/2018RG000615 [14] NIU H Y, SHAO L Y, ZHANG D Z. Soot particles at an elevated site in Eastern China during the passage of a strong cyclone [J]. Science of the Total Environment, 2012, 430: 217-222. doi: 10.1016/j.scitotenv.2012.04.050 [15] FU H, ZHANG M, LI W, et al. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 693-707. doi: 10.5194/acp-12-693-2012 [16] RAMAN C V, KRISHNAN K S. A new type of secondary radiation [J]. Nature, 1928, 121(3048): 501-502. [17] 李英红, 谭吉华, 饶志国, 等. 兰州市大气细颗粒物中水溶性离子的污染特征 [J]. 环境化学, 2016, 35(9): 1799-1807. doi: 10.7524/j.issn.0254-6108.2016.09.2015101102 LI Y H, TAN J H, RAO Z G, et al. Pollution characteristics of water soluble ions in atmospheric fine particles in Lanzhou [J]. Environmental Chemistry, 2016, 35(9): 1799-1807(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2015101102
[18] LI W J, ZHOU S Z, WANG X F, et al. Integrated evaluation of aerosols from regional brown hazes over Northern China in winter: Concentrations, sources, transformation, and mixing states [J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D9): D09301. [19] CHENG Y F, ZHENG G J, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. Science Advances, 2016, 2(12): e1601530. doi: 10.1126/sciadv.1601530 [20] 唐孝炎, 张远航, 邵敏. 大气环境化学-第2版[M]. 北京: 高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric environmental Chemistry-2nd Edition[M]. Beijing: Higher Education Press, 2006 (in Chinese).
[21] VARGAS JENTZSCH P, KAMPE B, CIOBOTĂ V, et al. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 115: 697-708. doi: 10.1016/j.saa.2013.06.085 [22] ZAPATA F, GARCÍA-RUIZ C. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 189: 535-542. doi: 10.1016/j.saa.2017.08.058 [23] SUN Z L, DUAN F K, HE K B, et al. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy [J]. Journal of Environmental Sciences, 2019, 75: 388-395. doi: 10.1016/j.jes.2018.06.006 [24] LING T Y, CHAN C K. Formation and transformation of metastable double salts from the crystallization of mixed ammonium nitrate and ammonium sulfate particles [J]. Environmental Science & Technology, 2007, 41(23): 8077-8083. [25] WANG F, ZHENG Y X, ZHANG Y H. Temporally and spatially resolved investigation on the efflorescence process of a mixed droplet of ammonium sulfate and ammonium nitrate [J]. Chinese Science Bulletin, 2011, 56(24): 2600-2603. doi: 10.1007/s11434-011-4617-6 [26] SUN Z L, DUAN F K, HE K B, et al. Sulfate-nitrate-ammonium as double salts in PM2.5: Direct observations and implications for haze events [J]. Science of the Total Environment, 2019, 647: 204-209. doi: 10.1016/j.scitotenv.2018.07.107 [27] JENTZSCH P V, BOLANZ R M, CIOBOTĂ V, et al. Raman spectroscopic study of calcium mixed salts of atmospheric importance [J]. Vibrational Spectroscopy, 2012, 61: 206-213. doi: 10.1016/j.vibspec.2012.03.007 [28] SHARMA N, CHINA S, BHANDARI J, et al. Physical properties of aerosol internally mixed with soot particles in a biogenically dominated environment in California [J]. Geophysical Research Letters, 2018, 45(20): 11473-11482. doi: 10.1029/2018gl079404 [29] HE G Z, MA J Z, HE H. Role of carbonaceous aerosols in catalyzing sulfate formation [J]. ACS Catalysis, 2018, 8(5): 3825-3832. doi: 10.1021/acscatal.7b04195 [30] ROSEN H, NOVAKOV T. Raman scattering and the characterisation of atmospheric aerosol particles [J]. Nature, 1977, 266(5604): 708-710. doi: 10.1038/266708a0 [31] TRIVANOVIC U, SIPKENS T A, KAZEMIMANESH M, et al. Morphology and size of soot from gas flares as a function of fuel and water addition [J]. Fuel, 2020, 279: 118478. doi: 10.1016/j.fuel.2020.118478 [32] BLADT H, IVLEVA N P, NIESSNER R. Internally mixed multicomponent soot: Impact of different salts on soot structure and thermo-chemical properties [J]. Journal of Aerosol Science, 2014, 70: 26-35. doi: 10.1016/j.jaerosci.2013.11.007 [33] CASTOLDI L, MATARRESE R, BRAMBILLA L, et al. Effect of potassium on a model soot combustion: Raman and HRTEM evidences [J]. Aerosol Science and Technology, 2016, 50(4): 405-415. doi: 10.1080/02786826.2016.1158398 [34] ESS M N, FERRY D, KIREEVA E D, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating [J]. Carbon, 2016, 105: 572-585. doi: 10.1016/j.carbon.2016.04.056 [35] SETO T, INOUE A, HIGASHI H, et al. Phase transition and restructuring of carbon nanoparticles induced by aerosol laser irradiation [J]. Carbon, 2014, 70: 224-232. doi: 10.1016/j.carbon.2013.12.111 [36] ESANGBEDO C, BOEHMAN A L, PEREZ J M. Characteristics of diesel engine soot that lead to excessive oil thickening [J]. Tribology International, 2012, 47: 194-203. doi: 10.1016/j.triboint.2011.11.003 [37] NORDMANN S, BIRMILI W, WEINHOLD K, et al. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(21): 12075-12085. doi: 10.1002/2013JD020021 [38] GE H W, YE Z P, HE R. Raman spectroscopy of diesel and gasoline engine-out soot using different laser power [J]. Journal of Environmental Sciences, 2019, 79: 74-80. doi: 10.1016/j.jes.2018.11.001 [39] HAN C, LIU Y C, MA J Z, et al. Effect of soot microstructure on its ozonization reactivity [J]. The Journal of Chemical Physics, 2012, 137(8): 084507. doi: 10.1063/1.4747190 [40] XU L, LIU L, ZHANG J, et al. Morphology, composition, and mixing state of individual aerosol particles in northeast China during wintertime [J]. Atmosphere, 2017, 8(12): 47. doi: 10.3390/atmos8030047 [41] DU J J, XU J W, SUN Z L, et al. Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons [J]. Analytica Chimica Acta, 2016, 915: 81-89. doi: 10.1016/j.aca.2016.02.009 [42] AN P, YUAN C Q, LIU X H, et al. Vibrational spectroscopic identification of isoprene, pinenes and their mixture [J]. Chinese Chemical Letters, 2016, 27(4): 527-534. doi: 10.1016/j.cclet.2016.01.036 [43] EBBEN C J, STRICK B F, UPSHUR M A, et al. Towards the identification of molecular constituents associated with the surfaces of isoprene-derived secondary organic aerosol (SOA) particles [J]. Atmospheric Chemistry and Physics, 2014, 14(5): 2303-2314. doi: 10.5194/acp-14-2303-2014 [44] CHEN P F, BI X H, ZHANG J Q, et al. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China [J]. Particuology, 2015, 20: 104-109. doi: 10.1016/j.partic.2014.04.020 [45] AVZIANOVA E, BROOKS S D. Analysis of nickel (II) in particulate matter by Raman microspectroscopy [J]. Journal of Aerosol Science, 2014, 67: 207-214. doi: 10.1016/j.jaerosci.2013.10.003 [46] MORILLAS H, MARCAIDA I, MAGUREGUI M, et al. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination [J]. Journal of Cleaner Production, 2019, 226: 369-378. doi: 10.1016/j.jclepro.2019.04.063 [47] GOIENAGA N, SARMIENTO A, OLIVARES M, et al. Emerging application of a structural and chemical analyzer for the complete characterization of metal-rich particulate matter [J]. Analytical Chemistry, 2013, 85(15): 7173-7181. doi: 10.1021/ac400878y [48] IVLEVA N P, MCKEON U, NIESSNER R, et al. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: Soot, humic-like substances, and inorganic compounds [J]. Aerosol Science and Technology, 2007, 41(7): 655-671. doi: 10.1080/02786820701376391 [49] HARPALE V M, GOSAVI R S, Raman spectroscopic investigation of multicomponent aerosols from the environment of sugar factory [C]. 3rd Biannual International Conference on Advanced Atmospheric Aerosol, 2010. [50] SINANIS S, ALEKSANDROVA M, SCHABER K. Characterization of multicomponent aerosols by Raman spectroscopy [J]. Aerosol Science and Technology, 2011, 45(6): 751-757. doi: 10.1080/02786826.2011.559494 [51] JENTZSCH P V, CIOBOTĂ V, KAMPE B, et al. Origin of salt mixtures and mixed salts in atmospheric particulate matter [J]. Journal of Raman Spectroscopy, 2012, 43(4): 514-519. doi: 10.1002/jrs.3064 [52] STEER B, GORBUNOV B, PRICE M C, et al. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment [J]. Measurement Science and Technology, 2016, 27(4): 045801. doi: 10.1088/0957-0233/27/4/045801 [53] CHEN H, DUAN F K, DU J J, et al. Surface-enhanced Raman scattering for mixing state characterization of individual fine particles during a haze episode in Beijing, China [J]. Journal of Environmental Sciences, 2021, 104: 216-224. doi: 10.1016/j.jes.2020.12.008 [54] SIEPKA D, UZU G, STEFANIAK E A, et al. Combining Raman microspectrometry and chemometrics for determining quantitative molecular composition and mixing state of atmospheric aerosol particles [J]. Microchemical Journal, 2018, 137: 119-130. doi: 10.1016/j.microc.2017.10.005 [55] OFNER J, KAMILLI K A, EITENBERGER E, et al. Chemometric analysis of multisensor hyperspectral images of precipitated atmospheric particulate matter [J]. Analytical Chemistry, 2015, 87(18): 9413-9420. doi: 10.1021/acs.analchem.5b02272 [56] BATONNEAU Y, SOBANSKA S, LAUREYNS J, et al. Confocal microprobe Raman imaging of urban tropospheric aerosol particles [J]. Environmental Science & Technology, 2006, 40(4): 1300-1306. [57] OFFROY M, MOREAU M, SOBANSKA S, et al. Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization [J]. Scientific Reports, 2015, 5: 12303. doi: 10.1038/srep12303 [58] AO J P, FENG Y Q, WU S M, et al. Rapid, 3D chemical profiling of individual atmospheric aerosols with stimulated Raman scattering microscopy [J]. Small Methods, 2020, 4(2): 1900600. doi: 10.1002/smtd.201900600 [59] DENG C H, BROOKS S D, VIDAURRE G, et al. Using Raman microspectroscopy to determine chemical composition and mixing state of airborne marine aerosols over the Pacific Ocean [J]. Aerosol Science and Technology, 2014, 48(2): 193-206. doi: 10.1080/02786826.2013.867297 [60] DEBOUDT K, FLAMENT P, CHOËL M, et al. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D24. [61] LASKINA O, YOUNG M A, KLEIBER P D, et al. Infrared extinction spectroscopy and micro-Raman spectroscopy of select components of mineral dust mixed with organic compounds [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(12): 6593-6606. doi: 10.1002/jgrd.50494 [62] LIU Y, ZHENG M, YU M Y, et al. High-time-resolution source apportionment of PM2.5 in Beijing with multiple models [J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6595-6609. doi: 10.5194/acp-19-6595-2019 [63] ZHU Y H, HUANG L, LI J Y, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017 [J]. Environment International, 2018, 115: 343-357. doi: 10.1016/j.envint.2018.03.037 [64] FERRUGIARI A, TOMMASINI M, ZERBI G. Raman spectroscopy of carbonaceous particles of environmental interest [J]. Journal of Raman Spectroscopy, 2015, 46(12): 1215-1224. doi: 10.1002/jrs.4753 [65] CATELANI T, PRATESI G, ZOPPI M. Raman characterization of ambient airborne soot and associated mineral phases [J]. Aerosol Science and Technology, 2014, 48(1): 13-21. doi: 10.1080/02786826.2013.847270 [66] FENG Y Q, LIU L, YANG Y, et al. The application of Raman spectroscopy combined with multivariable analysis on source apportionment of atmospheric black carbon aerosols [J]. Science of the Total Environment, 2019, 685: 189-196. doi: 10.1016/j.scitotenv.2019.05.367 [67] POPOVICHEVA O, KIREEVA E, PERSIANTSEVA N, et al. Microscopic characterization of individual particles from multicomponent ship exhaust [J]. Journal of Environmental Monitoring, 2012, 14(12): 3101-3110. doi: 10.1039/c2em30338h [68] WAGNER J, WANG Z M, GHOSAL S, et al. Source identification on high PM2.5 days using SEM/EDS, XRF, Raman, and windblown dust modeling [J]. Aerosol and Air Quality Research, 2019, 19(11): 2518-2530. doi: 10.4209/aaqr.2019.05.0276 [69] LIU M X, SONG Y, ZHOU T, et al. Fine particle pH during severe haze episodes in Northern China [J]. Geophysical Research Letters, 2017, 44(10): 5213-5221. doi: 10.1002/2017GL073210 [70] WEBER R J, GUO H Y, RUSSELL A G, et al. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years [J]. Nature Geoscience, 2016, 9(4): 282-285. doi: 10.1038/ngeo2665 [71] LIN Y H, ZHANG Z F, DOCHERTY K S, et al. Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds [J]. Environmental Science & Technology, 2012, 46(1): 250-258. [72] LOSEY D J, PARKER R G, FREEDMAN M A. pH dependence of liquid-liquid phase separation in organic aerosol [J]. The Journal of Physical Chemistry Letters, 2016, 7(19): 3861-3865. doi: 10.1021/acs.jpclett.6b01621 [73] FANG T, GUO H Y, ZENG L H, et al. Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity [J]. Environmental Science & Technology, 2017, 51(5): 2611-2620. [74] RINDELAUB J D, CRAIG R L, NANDY L, et al. Direct measurement of pH in individual particles via Raman microspectroscopy and variation in acidity with relative humidity [J]. The Journal of Physical Chemistry A, 2016, 120(6): 911-917. doi: 10.1021/acs.jpca.5b12699 [75] CRAIG R L, NANDY L, AXSON J L, et al. Spectroscopic determination of aerosol pH from acid-base equilibria in inorganic, organic, and mixed systems [J]. The Journal of Physical Chemistry A, 2017, 121(30): 5690-5699. doi: 10.1021/acs.jpca.7b05261 [76] CRAIG R L, PETERSON P K, NANDY L, et al. Direct determination of aerosol pH: Size-resolved measurements of submicrometer and supermicrometer aqueous particles [J]. Analytical Chemistry, 2018, 90(19): 11232-11239. doi: 10.1021/acs.analchem.8b00586 [77] LEI Z Y, BLIESNER S E, MATTSON C N, et al. Aerosol acidity sensing via polymer degradation [J]. Analytical Chemistry, 2020, 92(9): 6502-6511. doi: 10.1021/acs.analchem.9b05766 [78] CHANG P P, CHEN Z, ZHANG Y H, et al. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy [J]. Chemosphere, 2020, 241: 124960. doi: 10.1016/j.chemosphere.2019.124960 [79] WEI H R, VEJERANO E P, LENG W N, et al. Aerosol microdroplets exhibit a stable pH gradient [J]. PNAS, 2018, 115(28): 7272-7277. doi: 10.1073/pnas.1720488115 [80] BOYER H C, GORKOWSKI K, SULLIVAN R C. In situ pH measurements of individual levitated microdroplets using aerosol optical tweezers [J]. Analytical Chemistry, 2020, 92(1): 1089-1096. doi: 10.1021/acs.analchem.9b04152 [81] 马金珠, 刘永春, 马庆鑫, 等. 大气非均相反应及其环境效应 [J]. 环境化学, 2011, 30(1): 97-119. doi: 10.1002/etc.379 MA J Z, LIU Y C, MA Q X, et al. Atmospheric heterogeneous reactions and their environmental effects [J]. Environmental Chemistry, 2011, 30(1): 97-119(in Chinese). doi: 10.1002/etc.379
[82] ZHAO D F, ZHU T, CHEN Q, et al. Raman micro-spectrometry as a technique for investigating heterogeneous reactions on individual atmospheric particles [J]. Science China Chemistry, 2011, 54(1): 154-160. doi: 10.1007/s11426-010-4182-x [83] ZHU T, SHANG J, ZHAO D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze [J]. Science China Chemistry, 2011, 54(1): 145-153. doi: 10.1007/s11426-010-4181-y [84] ZHAO D F, SONG X J, ZHU T, et al. Multiphase oxidation of SO2 by NO2 on CaCO3 particles [J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2481-2493. doi: 10.5194/acp-18-2481-2018 [85] YU T, ZHAO D F, SONG X J, et al. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles [J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6679-6689. doi: 10.5194/acp-18-6679-2018 [86] LEE A K Y, CHAN C K. Single particle Raman spectroscopy for investigating atmospheric heterogeneous reactions of organic aerosols [J]. Atmospheric Environment, 2007, 41(22): 4611-4621. doi: 10.1016/j.atmosenv.2007.03.040 [87] LIU Y C, LIU C, MA J Z, et al. Structural and hygroscopic changes of soot during heterogeneous reaction with O3 [J]. Physical Chemistry Chemical Physics, 2010, 12(36): 10896-10903. doi: 10.1039/c0cp00402b [88] CHU Y X, CHENG T F, GEN M S, et al. Effect of ozone concentration and relative humidity on the heterogeneous oxidation of linoleic acid particles by ozone: An insight into the interchangeability of ozone concentration and time [J]. ACS Earth and Space Chemistry, 2019, 3(5): 779-788. doi: 10.1021/acsearthspacechem.9b00002 [89] RAY D, BHATTACHARYA T S, CHATTERJEE A, et al. Hygroscopic coating of sulfuric acid shields oxidant attack on the atmospheric pollutant benzo(a)Pyrene bound to model soot particles [J]. Scientific Reports, 2018, 8: 129. doi: 10.1038/s41598-017-18292-z [90] MA Q X, LIU Y C, LIU C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8403. doi: 10.1039/c2cp40510e [91] WANG X W, JING B, TAN F, et al. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12797-12812. doi: 10.5194/acp-17-12797-2017 [92] 常翩翩, 张韫宏. 气溶胶单颗粒的拉曼测量方法 [J]. 光散射学报, 2020, 32(4): 295-300. doi: 10.13883/j.issn1004-5929.202004001 CHANG P P, ZHANG Y H. Raman spectroscopy measurement for aerosol single particle [J]. The Journal of Light Scattering, 2020, 32(4): 295-300(in Chinese). doi: 10.13883/j.issn1004-5929.202004001
[93] 马庆鑫, 马金珠, 楚碧武, 等. 矿质和黑碳颗粒物表面大气非均相反应研究进展 [J]. 科学通报, 2015, 60(2): 122-136. doi: 10.1360/N972014-01190 MA Q X, MA J Z, CHU B W, et al. Current progress towards the heterogeneous reactions on mineral dust and soot [J]. Chinese Science Bulletin, 2015, 60(2): 122-136(in Chinese). doi: 10.1360/N972014-01190
[94] MA Q X, HE H. Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures [J]. Atmospheric Environment, 2012, 50: 97-102. doi: 10.1016/j.atmosenv.2011.12.057 [95] MA Q X, HE H, LIU Y C, et al. Heterogeneous and multiphase formation pathways of gypsum in the atmosphere [J]. Physical Chemistry Chemical Physics, 2013, 15(44): 19196-19204. doi: 10.1039/c3cp53424c [96] WU F M, WANG X W, JING B, et al. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles [J]. Atmospheric Environment, 2018, 178: 286-292. doi: 10.1016/j.atmosenv.2018.02.012 [97] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166. doi: 10.1016/0009-2614(74)85388-1 [98] AYORA M J, BALLESTEROS L, PÉREZ R, et al. Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry [J]. Analytica Chimica Acta, 1997, 355(1): 15-21. doi: 10.1016/S0003-2670(97)81607-8 [99] CRAIG R L, BONDY A L, AULT A P. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level [J]. Analytical Chemistry, 2015, 87(15): 7510-7514. doi: 10.1021/acs.analchem.5b01507 [100] FU Y, KUPPE C, VALEV V K, et al. Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol [J]. Environmental Science & Technology, 2017, 51(11): 6260-6267. [101] DONG X, OHNOUTEK L, YANG Y, et al. Cu/Ag Sphere Segment Void Array as Efficient Surface Enhanced Raman Spectroscopy Substrate for Detecting Individual Atmospheric Aerosol [J]. Analytical Chemistry, 2019, 91(21): 13647-13657. doi: 10.1021/acs.analchem.9b02840 [102] GEN M S, CHAN C K. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles [J]. Atmospheric Chemistry and Physics, 2017, 17(22): 14025-14037. doi: 10.5194/acp-17-14025-2017 [103] GEN M S, KUNIHISA R, MATSUKI A, et al. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings of atmospheric aerosol particles [J]. Aerosol Science and Technology, 2019, 53(7): 760-770. doi: 10.1080/02786826.2019.1597964 [104] PHAN-QUANG G C, LEE H K, TENG H W, et al. Plasmonic hotspots in air: An omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species [J]. Angwandte Chemie (International Ed. in English), 2018, 57(20): 5792-5796. doi: 10.1002/anie.201802214 [105] PHAN-QUANG G C, YANG N C, LEE H K, et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring [J]. ACS Nano, 2019, 13(10): 12090-12099. doi: 10.1021/acsnano.9b06486 [106] JONES R R, HOOPER D C, ZHANG L W, et al. Raman techniques: Fundamentals and frontiers [J]. Nanoscale Research Letters, 2019, 14(1): 231. doi: 10.1186/s11671-019-3039-2 [107] LIU R, LIU J F, ZHOU X X, et al. Applications of Raman-based techniques to on-site and in-vivo analysis [J]. Trends in Analytical Chemistry, 2011, 30 (9):1462-1476 . DOI: 10.1016/j.trac.2011.06.011 [108] OFNER J, DECKERT-GAUDIG T, KAMILLI K A, et al. Tip-enhanced Raman spectroscopy of atmospherically relevant aerosol nanoparticles [J]. Analytical Chemistry, 2016, 88(19): 9766-9772. doi: 10.1021/acs.analchem.6b02760