小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用

温勇, 顾茜, 崔昕毅. 小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用[J]. 环境化学, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
引用本文: 温勇, 顾茜, 崔昕毅. 小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用[J]. 环境化学, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
WEN Yong, GU Qian, CUI Xinyi. Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs[J]. Environmental Chemistry, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
Citation: WEN Yong, GU Qian, CUI Xinyi. Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs[J]. Environmental Chemistry, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504

小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用

    通讯作者: E-mail: lizzycui@nju.edu.cn
  • 基金项目:
    国家重点研发计划(2018YFC1801004)和国家自然科学基金(41922058)资助

Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs

    Corresponding author: CUI Xinyi, lizzycui@nju.edu.cn
  • Fund Project: the National Key Research and Development Program of China (2018YFC1801004) and National Natural Science Foundation of China (41922058).
  • 摘要: 六氟环氧丙烷二聚体铵盐(HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(HFPO-TA)是目前最主要的全氟辛酸(PFOA)替代物。建立了以QuEChERs为核心的小鼠器官中HFPO-DA、HFPO-TA和PFOA的检测方法。小鼠器官样品经冻干粉碎后使用0.2%盐酸-乙腈溶液提取,混合N-丙基乙二胺、十八烷基键合硅胶和石墨化炭黑吸附剂做分散固相萃取净化,采用超高效液相色谱串联三重四极杆质谱检测。样品经C18色谱柱分离,1 mmol·L−1乙酸铵水-甲醇溶液做流动相。结果表明,HFPO-DA、HFPO-TA和PFOA在5—500 μg·L−1的浓度范围内线性关系良好,相关系数均大于0.99。在5、10、100 μg·kg−1 的3个添加水平下的平均回收率为64.8%—120%,相对标准偏差为0.6%—22.4%。不同小鼠器官中的最小检出量为0.016—0.077 μg·kg−1,最低定量限为5.35×10−4—2.55×10−3 ng。通过经口饲喂的方式将3种目标分析物暴露小鼠,应用已建立方法测定3种目标分析物在小鼠器官中的累积程度。检测发现,3种目标分析物总累积浓度次序为肝脏>肾脏>肺>心脏>大脑。各器官中HFPO-DA的累积浓度均显著(P<0.05)低于HFPO-TA和PFOA,说明相比较于HFPO-DA,PFOA和HFPO-TA有更强的生物富集潜力.
  • 化学镀铜工艺是指在无外加电流的条件下,利用合适的还原剂(常用次磷酸盐),使溶液中的铜离子在具有催化活性的基体表面还原沉积出金属铜,形成铜镀层的一种工艺[1-3]。近年来,化学镀铜工艺在表面处理行业中所占的地位在不断上升,在机械工业、航空航天、电子工业等各行各业都有着越来越广泛的应用[4]。在化学镀铜工艺中,会产生大量的化学镀铜废水,将这些废水进行处理和回收,对保护生态环境,变废为宝,提高经济效益,尤为重要[5]

    化学镀铜废水主要来源于清洗零部件时所产生的清洗废水,因此,也可以称为化学镀铜清洗废水,其中主要含有铜离子和次磷酸盐等污染物[6]。过量的铜会刺激人类的消化系统,引起腹痛、呕吐等,严重时可造成中毒。而含铜废水进入水体后,成为持久性污染物,危机植物生长,影响水产养殖。当进入土壤时,会在土壤和作物中富集,经过一系列的环境迁移转化最终进入食物链,对人类健康产生威胁[7]。与正磷酸盐比,次磷酸盐由于其溶解度大且难与沉淀剂反应形成沉淀,导致水体富营养化严重的同时亦造成磷资源的流失[8]。故次磷的去除通常需氧化成正磷,再加入沉淀剂将正磷彻底去除或回收[9]。因此,对化学镀铜清洗废水的处理并回收磷和铜成为当前研究热点之一。

    目前,含铜废水处理方法有很多,例如物化沉淀法、膜分离法、吸附法、混凝法和电解法等[10-11]。其中电解法可以使铜离子以金属铜的形式沉积在阴极上,实现了金属铜的回收[12]。除电解法外,其他方法只改变了铜离子存在形态,使铜离子发生迁移,但污染并没有彻底消除。而采用电解法时,当溶液为偏碱性条件下,铜离子很容易水解生成铜的氧化物,累积在阳极或生成沉淀物,使其难以在阴极进行电化学沉积回收[13]。因此,在电解法沉积铜离子实现阴极回收金属铜时,控制溶液的pH较为重要。

    光电催化法是一种将光化学和电化学法相结合的方法,通过对半导体光催化剂施加外加偏压作用实现光生电子和光生空穴的有效分离,有效促进自由基的生成,提升污染物的降解效果[14]。光电催化作为高级氧化技术研究热点之一,是一种不仅能产生强氧化性活性物种实现污染物氧化降解,同时也能利用光生电子的还原能力实现阴极还原回收重金属的有效方法[15]。具有运行成本较低、温度和压力适应范围广、可实现有机物矿化且无二次污染等优点,在环境保护水处理领域越来受到关注[16]。二氧化钛(TiO2)纳米管光电极具有高度有序、比表面积大、电池容量高及量子化学效应强等优点,被广泛应用于纳米微电子、光伏器件、水分解产氢、环境污染物降解等领域[17-19]。有研究[20]表明,利用TiO2纳米管电极作为光阳极可有效实现铜氰络合物的氧化破络合同时电还原回收金属铜。

    本研究采用电化学阳极氧化法制得的TiO2纳米管电极为光阳极和钛片(Ti)为阴极,在模拟太阳光(AM 1.5)照射进行光电催化处理次磷酸根离子(H2PO2)和重金属铜离子(Cu2+)同时回收金属铜(Cu)。对TiO2纳米管电极进行了表征分析;对比分析了光电催化(PEC)、电催化(EC)和光催化(PC)体系对次磷氧化和Cu回收效果;考察了电压、初始PH、电解质种类对PEC体系下次磷氧化和Cu回收效率的影响,并进一步探讨该体系的反应机理。本研究结果可为含次磷和重金属铜的工业废水资源化处理提供参考。

    电极材料钛片购自北京恒力钛工贸公司。实验用次磷酸钠(NaH2PO2·H2O)、亚磷酸钠(Na2HPO3·5H2O)、硫酸铵((NH4)2SO4)、氟化铵(NH4F)、丙三醇(C3H8O3)、硫酸铜(CuSO4)、硝酸(HNO3)、氢氟酸 (HF)、氢氧化钠(NaOH)、硫酸(H2SO4)、过硫酸钾(K2S2O8)、抗坏血酸(C6H8O6)、钼酸铵((NH4)6Mo7O24·4H2O)、酒石酸锑钾(KSbC4H4O7·1/2H2O)、硫酸钠(Na2SO4)、高氯酸钠(NaClO4)、氯化钠(NaCl)、叔丁醇(C4H10O)等均购自国药集团化学试剂公司,均为分析纯。

    光电催化氧化装置如图1所示,其中包括石英反应器(长5.0 cm,宽5.0 cm,高6.0 cm),150 W的氙灯(Zolix instruments Co,China),直流电源(DH1718E-4,北京大华仪器公司,中国),磁力搅拌器(MS-H380-Pro,北京大龙兴创实验仪器有限公司,中国)。在氙灯光源处安装了一个AM 1.5滤光片,使其照射到反应器内阳极的光为模拟的太阳光。阳极为TiO2纳米管电极,阴极为钛片(长5.0 cm,宽3.0 cm,厚0.2 mm)。

    图 1  光电催化氧化实验装置示意图
    Figure 1.  Schematic diagram of the photoelectrocatalytic oxidation system

    1) TiO2纳米管电极的制备。采用阳极氧化法制备电极,制备方法参考文献[20]。钛片预处理:将钛片分别在无水乙醇和丙酮中超声清洗,后用不同目数金相砂纸(200、400、600、1000 目)依次打磨,去离子水清洗,将清洗后的钛片置于HF/HNO3/H2O体积比为1∶4∶5 的混合溶液中浸泡1 min,使钛片化学抛光。电解质制备方法:配制100 g质量比为0.5% NH4F + 1% (NH4)2SO4+ 90% C3H8O3的混合水溶液,即为所需电解质电解质溶液。TiO2纳米管电极制备方法:阳极为预处理钛片,阴极为铂丝,两级间距为20 mm,垂直插入电解质中,电压为20 V,室温下阳极氧化10 h,将氧化后的电极放入马弗炉中450 ºC热处理2 h,升温程序为5 ºC·min−1

    2)降解实验。含次磷酸根离子和重金属铜离子的化学镀铜模拟废水制备方法如下:配制1.0 mmol·L−1的NaH2PO2溶液;将CuSO4溶于其中使Cu2+浓度为0.5 mmol·L−1,即为所需化学镀铜模拟废水。取上述溶液120 mL置于反应器中,开启直流电源在两极间施以一定的电压,同时开启氙灯,反应时间为180 min,取样时间为0、30、60、90、120、150、180 min。反应液以10 mmol·L−1的Na2SO4为电解质。光催化反应时只开启氙灯,两极之间不施加电压。电化学反应时只开启直流电源。

    3)表征及分析方法。电极表面形态通过场发射扫描电镜(SEM,SU-8010,日本日立公司)进行观察;晶体结构通过X射线衍射(XRD,XPert Pro MPD,荷兰帕纳科分析仪器有限公司)进行表征,所用的仪器是配有石墨晶体单色器的Rigaku D/max-B衍射仪,2θ扫描范围为10°~90°,扫描速率为0.5°·min−1,加速电压和工作电流分别为30 kV和30 mA;阴极回收Cu价态通过X射线光电子能谱仪(XPS,PHI Quantera SXM,日本ULVAC-PHI 公司)进行测定;电子自旋共振波谱仪(ESR,A300−10/12,德国布鲁克有限公司)用来检测自由基的生成。总磷的测定方法为采用国标过硫酸钾氧化-钼酸铵分光光度法;正磷的测定方法为采用国标钼酸铵分光光度法;次磷和亚磷采用离子色谱(IC,ICS-1500,美国戴安公司)测定,所用色谱柱为AS23分析柱和AG23保护住,淋洗液为4.5 mmol·L−1的Na2CO3和0.8 mmol·L−1的NaHCO3溶液,流速为1.0 mL·min−1;重金属Cu含量采用电感耦合等离子体发射光谱仪(ICP-OES,P700,美国安捷伦科技公司)来测定。

    图2(a)和图2(b)分别是Ti基底和TiO2纳米管电极的SEM正面图像。可见,Ti基底表面平整,经阳极氧化法制备的TiO2纳米管电极上,纳米管阵列高度有序、管径均匀、排列整齐的在Ti基底上呈现。图2(c)是TiO2纳米管电极的SEM截面图像,可以发现电极截面呈现明显的管状结构。由图2(d)可见,TiO2纳米管电极在2θ在25.3°和48°处出现明显的衍射峰。这表明TiO2呈现锐钛矿结构。

    图 2  Ti基底和TiO2纳米管电极的SEM图像和XRD谱图
    Figure 2.  SEM images and XRD patterns of Ti substrate and TiO2 nanotube arrays electrode

    图3(a)分别对比了光电催化(PEC)、电催化(EC)和光催化(PC)体系对次磷氧化和Cu回收效果的影响。结果表明:PEC体系效果最好,当电压为2.0 V,反应时间180 min,PEC、EC、PC 3个体系对次磷的氧化率分别为100%、11%和0,Cu的回收率分别是97%、7%和0。图3(b)反映了反应180 min时Cu在溶液、阳极、阴极的分布情况。结果证明,回收的Cu均沉积在阴极上。通过对不同体系进行比较,单独EC或者单独PC均不能实现高效率的次磷氧化和Cu回收;当电化学作用和光催化作用联合即PEC体系时,可以产生很好的协同作用。这是因为通过光激发TiO2半导体产生光生空穴与电子,外加偏压促进了空穴和电子的高效分离,大大提高了反应的氧化还原作用。

    图 3  TiO2纳米管光阳极在光电催化(PEC)、电催化(EC)和光催化(PC)下对次磷氧化与Cu回收效果对比
    Figure 3.  Hypophosphite oxidation and Cu2+ ions recovery via photoelectrocatalytic (PEC), electrocatalytic (EC), and photocatalytic (PC) processes using TiO2 nanotube arrays photoanode

    图4反映了TiO2纳米管电极作为光阳极在2.0 V下PEC体系次磷氧化过程中间产物的生成和P元素的平衡过程。可以看出,随着反应的进行,总磷的浓度基本保持不变,而亚磷酸盐的浓度随反应时间延长先升高后降低,正磷酸盐的浓度则一直呈现升高的趋势。由此可见,在次磷氧化过程中,次磷(P为+1价)先被氧化成为亚磷(P为+3价),进而最终被氧化成为正磷(P为+5价),且随着反应的进行,总磷浓度基本不变。

    图 4  在电压为2.0 V条件下PEC体系次磷氧化过程中间产物的生成和P元素平衡
    Figure 4.  Generated intermediates and P mass balance in the PEC process for hypophosphite oxidation at 2.0 V bias potential

    不同电压条件下TiO2纳米管电极作为光阳极的PEC体系对次磷氧化和Cu回收效率的影响如图5所示。随着电压的增大及反应时间的延长,次磷氧化和Cu回收的效率逐渐升高。当电压为2.0 V、反应时间为180 min时,1 mmol·L−1的次磷全部被氧化,其中,84%以正磷形式存在,剩下的16%以亚磷形式存在并且呈现继续下降趋势,同时0.5 mmol·L−1的Cu 全部以金属形式在阴极沉积回收。而当电压增加至2.5 V时,效果反而变差。其原因可能是,随着电压的增加,阳极析氧和阴极析氢等副反应越来越剧烈,从而抑制了污染物在电极表面的迁移,导致电极表面电流效率的降低以及能量的大量损耗[21]

    图 5  外加偏压对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 5.  Effect of applied voltages on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode

    反应溶液的初始pH为4.9,由于Cu2+存在,Cu(OH)2的溶度积为2.2×10−20,由此计算得出,在本研究中pH大于5.8后会产生Cu(OH)2沉淀。因此,本研究利用H2SO4的稀释溶液调节溶液的初始pH为4.0、3.0、2.0、1.0进行对比实验。如图6所示,当溶液初始pH为4.9,即不用H2SO4调节时,对次磷氧化和Cu回收效果最好;当溶液初始pH降低后,次磷氧化和Cu回收效果均受到明显的抑制,同时,次磷氧化过程中生成的亚磷以及正磷也受到了抑制。由图7可以看出,随着反应的进行,pH均会下降。这说明反应过程中有大量氢离子释放,推测是因为在次磷最终氧化成为正磷的过程中,均会有氢离子释放[8]。pH能影响水中溶解氧(DO)含量[22],随着pH降低,DO含量减少,从而影响了·OH的生成,且在酸性条件下,·OH更易反应生成活性较弱的·OOH[23],因此,会影响体系次磷氧化的效率。此外,在单独电沉积Cu2+时由于阴极析发生氢反应造成溶液偏碱性,Cu2+水解生成铜的氧化物在阳极沉积生成沉淀物[13],而次磷氧化的同时在溶液中释放氢离子可以降低溶液pH,克服了Cu2+难以在阴极进行电化学沉积回收金属Cu的问题,使Cu2+有效沉积在阴极回收为金属Cu。

    图 6  溶液初始pH对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 6.  Effect of initial pH on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 7  不同初始值时溶液pH的变化
    Figure 7.  Changes in the solution pH at different initial pH

    图8所示,溶液采用的电解质不同时对次磷氧化和Cu回收效果也有影响。当电解质为Na2SO4和NaClO4时,反应效率基本无明显差异,但当电解质为NaCl时,反应效率明显提高,1 mmol·L−1次磷全部被氧化为正磷。进一步详细探讨了NaCl电解质在反应中的作用。如图9所示,在不同浓度NaCl对次磷氧化和Cu回收效果影响实验中,NaCl浓度越高,效果越高。其原因为,在PEC体系中,反应中的氯离子可以通过一系列反应生成活性氯(式(1)~式(3))[24]。在阳极表面生成的活性氯以氯气(Cl2)、次氯酸(HClO)和次氯酸根(ClO)等形式在溶液中存在。图10是在不同NaCl浓度反应体系中,活性氯浓度的测定结果,NaCl浓度越高时,活性氯生成量越多。此外,有文献报道,在紫外光照射下,活性氯有利于进一步产生羟基自由基(·OH)和氯自由基(Cl·)(式(4))[25-26]。因此,当采用NaCl作为电解质时,氯离子的加入最终会促进以上自由基的产生,强化了反应效率。

    图 8  电解质种类对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 8.  Effect of electrolyte type on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 9  不同浓度NaCl对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响
    Figure 9.  Effect of different NaCl concentrations on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode
    图 10  不同浓度NaCl在反应过程中活性氯的产量
    Figure 10.  The amount of reactive chlorine produced in the PEC process with different concentrations of NaCl
    2ClCl2+2e (1)
    Cl2+H2OHClO+H++Cl (2)
    HClOH++ClO (3)
    HClO+hνOH+Cl (4)

    为了探究反应过程中PEC体系下存在的主要活性物种,通过加入不同浓度的·OH自由基淬灭剂叔丁醇(TBA)来探究·OH对次磷氧化的作用。如图11(a)所示,考察了TBA对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效率的影响。结果表明:TBA对PEC体系中次磷氧化有明显的抑制作用,当TBA浓度为10 mmol·L−1时,次磷的去除率降低到60%,而TBA的加入对Cu回收无明显影响。这一结果表明,·OH 自由基对次磷氧化起重要作用。ESR检测结果也进一步验证了这一结果。如图11(b)所示,使用DMPO为捕获剂,在反应过程中观测到了特征的 DMPO-·OH络合物的信号,并随反应时间的延长而显著增强。以上结果表明,·OH自由基是次磷氧化的主要活性物种。

    图 11  (a) 不同浓度TBA对TiO2纳米管电极作为光阳极下PEC对次磷氧化与Cu回收效果的影响以及反应过程中的DMPO−•OH的ESR图谱
    Figure 11.  Effect of different TBA concentrations on hypophosphite oxidation and Cu2+ ions recovery via PEC process using TiO2 nanotube arrays photoanode, and ESR signals of DMPO−•OH

    图12是反应过程中阴极钛片上Cu沉积物的XPS谱图。当反应时间分别为1、2、3 h时,Cu2p3/2的峰值在932.68 eV处出现,主要对应金属Cu的特征峰,且随反应的进行峰值强度有所增强,且并未检测到其他价态的Cu。由此证明在本研究中阴极钛片上回收的是金属Cu。

    图 12  不同反应时间阴极沉积物的XPS图谱
    Figure 12.  XPS spectra of deposits on cathode films at different reaction time

    1)通过PEC、EC、PC 3个体系对次磷氧化和Cu回收效率比较,发现单独EC或者PC均不能实现高效率的次磷氧化和Cu回收,当电化学和光催化联合(PEC体系)时,可以产生很好的协同效果。

    2)对于PEC体系中次磷氧化和Cu的回收效果,在电压为2.0 V、反应时间为180 min时1 mmol·L−1的次磷全部被氧化且84%以正磷形式存在,另外16%以亚磷形式存在并且呈现继续下降趋势,同时0.5 mmol·L−1的Cu 100%以金属形式在阴极沉积回收。当溶液初始pH为4.9时,采用NaCl作为电解质,可促进·OH的产生,1 mmol·L−1次磷全部被氧化为正磷,提高了反应效率。

    3)在单独电沉积Cu2+时,由于阴极发生析氢反应造成溶液偏碱性,Cu2+水解生成铜的氧化物在阳极沉积生成沉淀物,而次磷氧化的同时在溶液中释放氢离子可以降低溶液pH,克服了Cu2+难以在阴极进行电化学沉积回收金属Cu的问题,使Cu2+有效沉积在阴极回收为金属Cu。

    4) TBA对PEC体系中次磷的氧化有明显的抑制作用,且对Cu回收无明显影响,表明·OH为实现次磷氧化的主要活性物种。

    5)采用光电催化技术处理含次磷和重金属铜废水,废水中的Cu2+在阴极电沉积生成金属Cu回收,而废水中次磷氧化后形成正磷,然后加入钙盐或铁盐等与正磷反应生成沉淀将磷在废水中去除同时回收磷。

  • 图 1  目标分析物的化学结构

    Figure 1.  The chemical structure of target analytes

    图 2  乙酸铵缓冲盐浓度对目标分析物仪器响应的影响(a),流动相中不添加乙酸铵缓冲盐(b),和添加乙酸铵缓冲盐(c)对HFPO-TA峰形的影响

    Figure 2.  The effect of ammonium acetate concentrations on the response of target analytes (a);the effect of non-ammonium acetate (b), and ammonium acetate (c) on the peak shape of HFPO-TA

    图 3  分散固相萃取吸附剂对样品提取液净化效果前后对比

    Figure 3.  The performance of sorbents in d-SPE

    图 4  目标全氟化合物在小鼠器官中的累积浓度

    Figure 4.  The concentrations of target PFASs in mouse organs

    表 1  多重反应监测条件

    Table 1.  Multiple response monitoring conditions

    化合物Compound分子量Molecular weight母离子Parent ion(m/z)子离子Product ion(m/z)碰撞能量/eVCollision energy锥孔电压/VCon voltage
    PFOA414.07412.7369*,16913,26−11,−11
    HFPO-DA347285185.1,169*28,10−3,−5
    HFPO-TA496.07495185*,11915,76−29,−34
      注:*为定量离子(Quantification ion).
    化合物Compound分子量Molecular weight母离子Parent ion(m/z)子离子Product ion(m/z)碰撞能量/eVCollision energy锥孔电压/VCon voltage
    PFOA414.07412.7369*,16913,26−11,−11
    HFPO-DA347285185.1,169*28,10−3,−5
    HFPO-TA496.07495185*,11915,76−29,−34
      注:*为定量离子(Quantification ion).
    下载: 导出CSV

    表 2  目标分析物的线性关系、基质效应和灵敏度

    Table 2.  The linearity, matrix effect, LOD, and LOQ in different matrices of target analytes

    化合物Compound基质Matrix线性范围/(μg·L−1)Linear range线性回归方程Linear regression equation相关系数R2基质效应Matrix effect检出限/(μg·kg−1)LOD定量限/ngLOQ
    HFPO-TA溶剂5—500y = 1127167.9x−9339.70.9985
    y = 1513689.3x+64976.90.999434.30.0331.11×10−3
    肝脏y = 1948167.8x + 4061.10.993972.80.0321.06 ×10−3
    大脑y = 1141739.2x - 1827.90.99831.290.0591.95 × 10−3
    肾脏y = 936791.55x - 12930.80.9924−16.90.0672.23 × 10−3
    心脏y = 1176418.9x + 11229.80.99814.400.0772.55 × 10−3
    HFPO-DA溶剂5—500y = 73531199.76x−412121.80.9997
    y = 14208329.7x+203490.40.9959−80.70.0702.33 × 10−3
    肝脏y = 14903379.9x+103425.30.9987−79.70.0722.41 × 10−3
    大脑y = 26824971.1x - 267020.20.9904−63.50.0321.05 × 10−3
    肾脏y = 18930496.41x + 86476.40.9996−74.30.0351.18 × 10−3
    心脏y = 31251384.1x - 62905.30.9997−57.50.0371.25 × 10−3
    PFOA溶剂5—500y = 38001300.6x - 1277.50.9998
    y = 15354735.3x+131561.60.9987−59.60.0268.79 × 10−4
    肝脏y = 15871133.5x + 148426.00.9989−58.20.0165.35 × 10−4
    大脑y = 20042969.4x + 186424.70.9946−47.30.0237.51 × 10−4
    肾脏y = 21453758.7x + 198,880.20.9993−43.50.0165.49 × 10−4
    心脏y = 27017643.3x - 8176.80.9980−28.90.0206.81 × 10−4
    化合物Compound基质Matrix线性范围/(μg·L−1)Linear range线性回归方程Linear regression equation相关系数R2基质效应Matrix effect检出限/(μg·kg−1)LOD定量限/ngLOQ
    HFPO-TA溶剂5—500y = 1127167.9x−9339.70.9985
    y = 1513689.3x+64976.90.999434.30.0331.11×10−3
    肝脏y = 1948167.8x + 4061.10.993972.80.0321.06 ×10−3
    大脑y = 1141739.2x - 1827.90.99831.290.0591.95 × 10−3
    肾脏y = 936791.55x - 12930.80.9924−16.90.0672.23 × 10−3
    心脏y = 1176418.9x + 11229.80.99814.400.0772.55 × 10−3
    HFPO-DA溶剂5—500y = 73531199.76x−412121.80.9997
    y = 14208329.7x+203490.40.9959−80.70.0702.33 × 10−3
    肝脏y = 14903379.9x+103425.30.9987−79.70.0722.41 × 10−3
    大脑y = 26824971.1x - 267020.20.9904−63.50.0321.05 × 10−3
    肾脏y = 18930496.41x + 86476.40.9996−74.30.0351.18 × 10−3
    心脏y = 31251384.1x - 62905.30.9997−57.50.0371.25 × 10−3
    PFOA溶剂5—500y = 38001300.6x - 1277.50.9998
    y = 15354735.3x+131561.60.9987−59.60.0268.79 × 10−4
    肝脏y = 15871133.5x + 148426.00.9989−58.20.0165.35 × 10−4
    大脑y = 20042969.4x + 186424.70.9946−47.30.0237.51 × 10−4
    肾脏y = 21453758.7x + 198,880.20.9993−43.50.0165.49 × 10−4
    心脏y = 27017643.3x - 8176.80.9980−28.90.0206.81 × 10−4
    下载: 导出CSV

    表 3  3种目标分析物在小鼠器官中的回收率和相对标准偏差

    Table 3.  The mean recovery and RSD of 3 target analytes in different matrices

    基质Matrix添加浓度/(μg·kg−1) Add ConcentrationHFPO-TAHFPO-DAPFOA
    R1R2R3均值%RSD/%R1R2R3均值/%RSD/%R1R2R3均值/%RSD/%
    肝脏572.373.466.870.85108.895.889.5981098.4125.685.110320
    1084.170.380.478.39.18382.183.382.80.7564.763.166.564.82.6
    10087.485.484.285.71.996.172.380.582.914.686.27878.680.95.6
    5112.787.9101.3100.612.3101.684.977.888.113.973.573.783.476.97.3
    10105108.9100.8104.93.8686109.17790.718.384.482.480.982.62.1
    100108.794.691.898.49.29585.283.587.97.198.39280.990.49.7
    588.980.47982.86.579.176.671.375.75.399848890.38.6
    10104.275.795.991.915.986.293.486.988.84.587.183.884.2852.1
    100120.0120.0119.4120.00.793.284.785.787.95.3100.480.6100.893.912.3
    594.3111.482.896.214.9105.47578.586.319.3103.295.49898.94.1
    1083.284.1120.996.122.4116.280.281.692.72291.381.585.986.25.7
    10097.2104.592.297.96.3102.281.888.890.911.392.979.984.885.97.6
    心脏5107.591.487.795.51175.78094.583.411.889.488.5105.394.410
    10121.689.685.299.820112.6106103.2107.34.589.380.880.583.55.9
    100103.679.99793.51390.695.890.892.43.281.582.481.581.80.6
    基质Matrix添加浓度/(μg·kg−1) Add ConcentrationHFPO-TAHFPO-DAPFOA
    R1R2R3均值%RSD/%R1R2R3均值/%RSD/%R1R2R3均值/%RSD/%
    肝脏572.373.466.870.85108.895.889.5981098.4125.685.110320
    1084.170.380.478.39.18382.183.382.80.7564.763.166.564.82.6
    10087.485.484.285.71.996.172.380.582.914.686.27878.680.95.6
    5112.787.9101.3100.612.3101.684.977.888.113.973.573.783.476.97.3
    10105108.9100.8104.93.8686109.17790.718.384.482.480.982.62.1
    100108.794.691.898.49.29585.283.587.97.198.39280.990.49.7
    588.980.47982.86.579.176.671.375.75.399848890.38.6
    10104.275.795.991.915.986.293.486.988.84.587.183.884.2852.1
    100120.0120.0119.4120.00.793.284.785.787.95.3100.480.6100.893.912.3
    594.3111.482.896.214.9105.47578.586.319.3103.295.49898.94.1
    1083.284.1120.996.122.4116.280.281.692.72291.381.585.986.25.7
    10097.2104.592.297.96.3102.281.888.890.911.392.979.984.885.97.6
    心脏5107.591.487.795.51175.78094.583.411.889.488.5105.394.410
    10121.689.685.299.820112.6106103.2107.34.589.380.880.583.55.9
    100103.679.99793.51390.695.890.892.43.281.582.481.581.80.6
    下载: 导出CSV
  • [1] 李侃. 典型全氟化合物在食物中的生物有效性及对小鼠的肝毒性、致毒机制研究[D]. 南京: 南京大学, 2015.

    LI K. Typical perfluoroalkyl substances bioavailability in foods, and their exposure caused mice liver toxicity, and mode of action[D]. Nanjing: Nanjing University, 2015(in Chinese).

    [2] 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估 [J]. 环境化学, 2021, 40(4): 1193-1205. doi: 10.7524/j.issn.0254-6108.2020072404

    ZENG S Y, YANG H B, PENG J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province [J]. Environmental Chemistry, 2021, 40(4): 1193-1205(in Chinese). doi: 10.7524/j.issn.0254-6108.2020072404

    [3] WANG Z Y, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
    [4] IM J, WALSHE-LANGFORD G E, MOON J W, et al. Environmental fate of the next generation refrigerant 2, 3, 3, 3-tetrafluoropropene (HFO-1234yf) [J]. Environmental Science & Technology, 2014, 48(22): 13181-13187.
    [5] FURUYA T, KAMLET A S, RITTER T. Catalysis for fluorination and trifluoromethylation [J]. Nature, 2011, 473(7348): 470-477. doi: 10.1038/nature10108
    [6] BARZEN-HANSON K A, ROBERTS S C, CHOYKE S, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater [J]. Environmental Science & Technology, 2017, 51(4): 2047-2057.
    [7] KIM K Y, NDABAMBI M, CHOI S, et al. Legacy and novel perfluoroalkyl and polyfluoroalkyl substances in industrial wastewater and the receiving river water: Temporal changes in relative abundances of regulated compounds and alternatives [J]. Water Research, 2021, 191: 116830. doi: 10.1016/j.watres.2021.116830
    [8] DREYER A, THUENS S, KIRCHGEORG T, et al. Ombrotrophic peat bogs are not suited as natural archives to investigate the historical atmospheric deposition of perfluoroalkyl substances [J]. Environmental Science & Technology, 2012, 46(14): 7512-7519.
    [9] HEYDEBRECK F, TANG J H, XIE Z Y, et al. Alternative and legacy perfluoroalkyl substances: differences between European and Chinese river/estuary systems [J]. Environmental Science & Technology, 2015, 49(14): 8386-8395.
    [10] SHI Y L, VESTERGREN R, XU L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) [J]. Environmental Science & Technology, 2016, 50(5): 2396-2404.
    [11] GURUGE K S, YEUNG L W Y, YAMANAKA N, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA) [J]. Toxicological Sciences, 2006, 89(1): 93-107. doi: 10.1093/toxsci/kfj011
    [12] 刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征 [J]. 环境化学, 2020, 39(12): 3450-3461.

    LIU J L, SHI Y G, TANG N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City [J]. Environmental Chemistry, 2020, 39(12): 3450-3461(in Chinese).

    [13] 盛南, 潘奕陶, 戴家银. 新型全氟及多氟烷基化合物生态毒理研究进展 [J]. 安徽大学学报(自然科学版), 2018, 42(6): 3-13.

    SHENG N, PAN Y T, DAI J Y. Current research status of several emerging per-and polyfluoroalkyl substances(PFASs) [J]. Journal of Anhui University (Natural Science Edition), 2018, 42(6): 3-13(in Chinese).

    [14] PINAS V, van DIJK C, WEBER R. Inventory and action plan for PFOS and related substances in Suriname as basis for Stockholm Convention implementation [J]. Emerging Contaminants, 2020, 6: 421-431. doi: 10.1016/j.emcon.2020.10.002
    [15] SUN M, AREVALO E, STRYNAR M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the cape fear river watershed of north Carolina [J]. Environmental Science & Technology Letters, 2016, 3(12): 415-419.
    [16] WANG Q, RUAN Y F, JIN L J, et al. Target, nontarget, and suspect screening and temporal trends of per- and polyfluoroalkyl substances in marine mammals from the South China sea [J]. Environmental Science & Technology, 2021, 55(2): 1045-1056.
    [17] JACOB P, BARZEN-HANSON K A, HELBLING D E. Target and nontarget analysis of per- and polyfluoralkyl substances in wastewater from electronics fabrication facilities [J]. Environmental Science & Technology, 2021, 55(4): 2346-2356.
    [18] KIM L, LEE D, CHO H K, et al. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals [J]. Trends in Environmental Analytical Chemistry, 2019, 22: e00063. doi: 10.1016/j.teac.2019.e00063
    [19] ANASTASSIADES M, LEHOTAY S J, ŠTAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of Aoac International, 2003, 86(2): 412-431. doi: 10.1093/jaoac/86.2.412
    [20] BESER M I, PARDO O, BELTRÁN J, et al. Determination of 21 perfluoroalkyl substances and organophosphorus compounds in breast milk by liquid chromatography coupled to orbitrap high-resolution mass spectrometry [J]. Analytica Chimica Acta, 2019, 1049: 123-132. doi: 10.1016/j.aca.2018.10.033
    [21] SANTANA-MAYOR Á, SOCAS-RODRÍGUEZ B, HERRERA-HERRERA A V, et al. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis [J]. TrAC Trends in Analytical Chemistry, 2019, 116: 214-235. doi: 10.1016/j.trac.2019.04.018
    [22] 李磊, 周贻兵, 刘利亚, 等. QuEChERs净化-超高效液相色谱-串联质谱法快速测定母乳中9种全氟化合物 [J]. 现代预防医学, 2018, 45(11): 2028-2033, 2038.

    LI L, ZHOU Y B, LIU L Y, et al. Determination of 9 perfluorinated compounds in breast milk by QuEChERs purification and ultrahigh performance liquid chromatography-tandem mass spectrometry [J]. Modern Preventive Medicine, 2018, 45(11): 2028-2033, 2038(in Chinese).

    [23] 白文荟, 刘金钏, 颜朦朦, 等. 猪肉、猪肝中17种全氟烷基化合物的HPLC-MS/MS测定 [J]. 食品安全质量检测学报, 2015, 6(1): 189-196.

    BAI W H, LIU J C, YAN M M, et al. Determination of 17 perflurorinated alkylated substances in pork and pork liver by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2015, 6(1): 189-196(in Chinese).

    [24] 何建丽, 彭涛, 谢洁, 等. 高效液相色谱-串联质谱法测定动物肝脏中20种全氟烷基类化合物 [J]. 分析化学, 2015, 43(1): 40-48. doi: 10.1016/S1872-2040(15)60799-X

    HE J L, PENG T, XIE J, et al. Development of a QuEChERs method for determination of 20 Perfluorinated compounds in animal liver by HPLC-MS / MS [J]. Chinese Journal of Analytical Chemistry, 2015, 43(1): 40-48(in Chinese). doi: 10.1016/S1872-2040(15)60799-X

    [25] 朱萍萍, 岳振峰, 郑宗坤, 等. 分散固相萃取结合高效液相色谱-串联质谱法测定羊肝中19种全氟烷基酸 [J]. 色谱, 2015, 33(5): 494-500. doi: 10.3724/SP.J.1123.2014.12034

    ZHU P P, YUE Z F, ZHENG Z K, et al. Determination of perfluoroalkyl acids in lamb liver by high performance liquid chromatography tandem mass spectrometry combined with dispersive solid phase extraction [J]. Chinese Journal of Chromatography, 2015, 33(5): 494-500(in Chinese). doi: 10.3724/SP.J.1123.2014.12034

    [26] 王莹, 杜思宇, 张红, 等. 改进的QuEChERS-UPLC-MS/MS法测定动物源性食品中13种全氟化合物 [J]. 食品工业科技, 2021, 42(1): 239-249.

    WANG Y, DU S Y, ZHANG H, et al. Determination of thirteen PFCs in animal-derived food by improved QuEChERS extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry [J]. Science and Technology of Food Industry, 2021, 42(1): 239-249(in Chinese).

    [27] SUN M N, YU L, TONG Z, et al. Determination of phenamacril residues in flour and rice based on Z-Sep+ using ultra-high-performance liquid chromatography-tandem mass spectrometry [J]. Biomedical Chromatography, 2019, 33(12): e4688.
    [28] WEN Y, WANG Z, GAO Y Y, et al. Novel liquid chromatography-tandem mass spectrometry method for enantioseparation of tefluthrin via a box-behnken design and its stereoselective degradation in soil [J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11591-11597. doi: 10.1021/acs.jafc.9b04888
    [29] 陈诗艳, 仇雁翎, 朱志良, 等. 土壤中全氟和多氟烷基化合物的污染现状及环境行为 [J]. 环境科学研究, 2021, 34(2): 468-478.

    CHEN S Y, QIU Y L, ZHU Z L, et al. Current pollution status and environmental behaviors of PFASs in soil [J]. Research of Environmental Sciences, 2021, 34(2): 468-478(in Chinese).

    [30] 中华人民共和国国家卫生和计划生育委员会. 中华人民共和国国家标准: 食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 GB 5009.253—2016[S]. 北京: 中国标准出版社, 2017.

    National Standard (Mandatory) of the People's Republic of China. GB 5009.253—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).

    [31] 中华人民共和国国家卫生和计划生育委员会. 中华人民共和国国家标准: 食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 GB 31604.35—2016[S]. 北京: 中国标准出版社, 2017.

    National Standard (Mandatory) of the People's Republic of China. GB 31604.5—2016[S]. Beijing: Standards Press of China, 2017(in Chinese).

    [32] LIU M L, DONG F F, YI S J, et al. Probing mechanisms for the tissue-specific distribution and biotransformation of perfluoroalkyl phosphinic acids in common carp (Cyprinus carpio) [J]. Environmental Science & Technology, 2020, 54(8): 4932-4941.
    [33] YU Y C, ZHANG K Y, LI Z, et al. Microbial cleavage of C-F bonds in two C6 per- and polyfluorinated compounds via reductive defluorination [J]. Environmental Science & Technology, 2020, 54(22): 14393-14402.
    [34] 侯沙沙, 王晓晨, 谢琳娜, 等. 氟工厂附近青少年体内全氟化合物(PFASs)暴露特征分析及其与性征发育水平关联性初探 [J]. 环境化学, 2020, 39(4): 931-940. doi: 10.7524/j.issn.0254-6108.2019110102

    HOU S S, WANG X C, XIE L N, et al. Exposure to perfluoroalkyl and polyfluoroalkyl substances and association with the level of pubertal development of adolescents near a flurochemical plant [J]. Environmental Chemistry, 2020, 39(4): 931-940(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110102

    [35] 蓝芳, 冯沙, 沈金灿, 等. 高效液相色谱-串联质谱法测定葡萄酒中14种全氟化合物 [J]. 分析化学, 2013, 41(12): 1893-1898.

    LAN F, FENG S, SHEN J C, et al. Determination of 14 perfluorinated compounds in wine by high performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1893-1898(in Chinese).

    [36] 达晶, 王钢力, 曹进, 等. QuEChERS-液相色谱-串联质谱法测定植物性食品中30种氨基甲酸酯类农药残留 [J]. 色谱, 2015, 33(8): 830-837. doi: 10.3724/SP.J.1123.2015.04013

    DA J, WANG G L, CAO J, et al. Determination of 30 carbamate pesticide residues in vegetative foods by QuEChERS-liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(8): 830-837(in Chinese). doi: 10.3724/SP.J.1123.2015.04013

    [37] 李璐, 李丹凤. QuEChERS-超高效液相色谱-串联质谱法测定蜂蜜中41种糖皮质激素 [J]. 食品安全质量检测学报, 2019, 10(2): 500-509. doi: 10.3969/j.issn.2095-0381.2019.02.036

    LI L, LI D F. Determination of 41 kinds of glucocorticoids in honey by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(2): 500-509(in Chinese). doi: 10.3969/j.issn.2095-0381.2019.02.036

    [38] HLOUSKOVA V, HRADKOVA P, POUSTKA J, et al. Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries [J]. Food Additives & Contaminants:Part A, 2013, 30(11): 1918-1932.
    [39] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 合格评定 化学分析方法确认和验证指南 GB/T 27417-2017[S]. 北京: 中国标准出版社, 2017.

    National Standard (Mandatory) of the People's Republic of China. GB/T 27417-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).

    [40] BANGMA J, SZILAGYI J, BLAKE B E, et al. An assessment of serum-dependent impacts on intracellular accumulation and genomic response of per- and polyfluoroalkyl substances in a placental trophoblast model [J]. Environmental Toxicology, 2020, 35(12): 1395-1405. doi: 10.1002/tox.23004
    [41] SHENG N, CUI R N, WANG J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein [J]. Archives of Toxicology, 2018, 92(1): 359-369. doi: 10.1007/s00204-017-2055-1
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 11.7 %DOWNLOAD: 11.7 %HTML全文: 79.1 %HTML全文: 79.1 %摘要: 9.2 %摘要: 9.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.6 %其他: 95.6 %XX: 2.3 %XX: 2.3 %上海: 0.2 %上海: 0.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %北京: 0.7 %北京: 0.7 %汉中: 0.1 %汉中: 0.1 %深圳: 0.1 %深圳: 0.1 %衢州: 0.2 %衢州: 0.2 %西安: 0.1 %西安: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.2 %郑州: 0.2 %阜新: 0.1 %阜新: 0.1 %青岛: 0.1 %青岛: 0.1 %其他XX上海东莞中山北京汉中深圳衢州西安赣州运城郑州阜新青岛Highcharts.com
图( 4) 表( 3)
计量
  • 文章访问数:  4487
  • HTML全文浏览数:  4487
  • PDF下载数:  175
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-15
  • 录用日期:  2021-09-01
  • 刊出日期:  2022-10-27
温勇, 顾茜, 崔昕毅. 小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用[J]. 环境化学, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
引用本文: 温勇, 顾茜, 崔昕毅. 小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用[J]. 环境化学, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
WEN Yong, GU Qian, CUI Xinyi. Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs[J]. Environmental Chemistry, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504
Citation: WEN Yong, GU Qian, CUI Xinyi. Analysis of emerging per- and polyfluoroalkyl substances in mouse organs by QuEChERs[J]. Environmental Chemistry, 2022, 41(10): 3125-3134. doi: 10.7524/j.issn.0254-6108.2021061504

小鼠器官中新型全氟化合物QuEChERs分析方法的建立与应用

    通讯作者: E-mail: lizzycui@nju.edu.cn
  • 南京大学环境学院,污染控制与资源化研究国家重点实验室,南京,210046
基金项目:
国家重点研发计划(2018YFC1801004)和国家自然科学基金(41922058)资助

摘要: 六氟环氧丙烷二聚体铵盐(HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(HFPO-TA)是目前最主要的全氟辛酸(PFOA)替代物。建立了以QuEChERs为核心的小鼠器官中HFPO-DA、HFPO-TA和PFOA的检测方法。小鼠器官样品经冻干粉碎后使用0.2%盐酸-乙腈溶液提取,混合N-丙基乙二胺、十八烷基键合硅胶和石墨化炭黑吸附剂做分散固相萃取净化,采用超高效液相色谱串联三重四极杆质谱检测。样品经C18色谱柱分离,1 mmol·L−1乙酸铵水-甲醇溶液做流动相。结果表明,HFPO-DA、HFPO-TA和PFOA在5—500 μg·L−1的浓度范围内线性关系良好,相关系数均大于0.99。在5、10、100 μg·kg−1 的3个添加水平下的平均回收率为64.8%—120%,相对标准偏差为0.6%—22.4%。不同小鼠器官中的最小检出量为0.016—0.077 μg·kg−1,最低定量限为5.35×10−4—2.55×10−3 ng。通过经口饲喂的方式将3种目标分析物暴露小鼠,应用已建立方法测定3种目标分析物在小鼠器官中的累积程度。检测发现,3种目标分析物总累积浓度次序为肝脏>肾脏>肺>心脏>大脑。各器官中HFPO-DA的累积浓度均显著(P<0.05)低于HFPO-TA和PFOA,说明相比较于HFPO-DA,PFOA和HFPO-TA有更强的生物富集潜力.

English Abstract

  • 全氟及多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs),简称全氟化合物,即指化合物分子中与碳原子相连的多个或者全部氢原子被氟原子取代的有机化合物[1]。碳-氟(C—F)键键能较高,导致全氟化合物具有疏油、疏水、耐酸碱、热稳定性和弱分子间相互作用等特性[2]。据不完全统计,过去的几十年中超过4700种全氟化合物被广泛应用于消防、表面活性剂、制冷和催化剂[3-6]等行业,并因为其具有较强的生物富集潜力、生态毒性和长距离迁移能力等,已成为全球性污染物[7-10]。例如目前使用最广的全氟化合物之一的全氟辛酸(perfluorooctanic acid,PFOA),在极地野生动物的血液和器官组织中均有检出[11];毒理学研究表明全氟辛酸具有肝毒性、免疫毒性和神经毒性等[12]

    2014年,PFOA被国际癌症研究所划分为“人类可疑致癌物”[13],2019年正式将PFOA及其衍生品列入《斯德哥尔摩公约》,限制其生产和使用[14]。新型全氟化合物-六氟环氧丙烷二聚体铵盐(ammonium hexafluoropropylene oxide dimer acid,HFPO-DA,商品名Gen X)和六氟环氧丙烷三聚体羧酸(hexafluoropropylene oxide trimer acid,HFPO-TA)(化学结构如图1所示)是目前最主要的PFOA替代物。近年来的环境监测显示,在氟化学工厂附近生活的19—40岁中青年血液中HFPO-TA的检出率为99.2%,其浓度远高于其他新型全氟化合物[15]。在中国南海江豚和海豚的肝脏样品中HFPO-DA的检出率为92%,对样品中总全氟化合物的贡献率为1%。在连续6年的生物监测中,HFPO-DA在海洋哺乳动物体内的浓度呈现出明显的上升趋势[16]。因此新型全氟化合物的生物富集和环境风险值得进一步的关注和研究。

    建立一种操作简单且准确度、精密度和灵敏度高的方法,将为后续研究新型全氟化合物的环境行为和生物监测奠定基础。已有的关于传统全氟化合物分析方法多采用阴离子交换液液萃取和WAX固相萃取小柱净化等手段[16-17]。该方法存在操作复杂、耗时长、有机溶剂用量大、经济成本高等不足。对于需要开展大批量样品检测的生物监测类研究,开发一种简便、快捷的方法以提高分析效率尤为重要。基于绿色化学理念的QuEChERs(quick, easy, cheap, effective, rugged, and safe)方法是传统多残留分析方法的简化版[18],于2003年首次被报道应用于食品基质中农药多残留的提取分析[19]。经过研究人员的不断拓展创新,QuEChERs方法已经逐渐被应用于测定环境、食品和生物样品中的多氯联苯、多环芳烃、有机磷阻燃剂和传统全氟化合物[18, 20-21]。已有文献报道将其应用于动物源性食品中传统直链全氟化合物的提取[22-26],对于将QuEChERs方法应用于小鼠器官中新型全氟化合物的提取分析还鲜有报道。

    本研究借助QuEChERs和分散固相萃取(dispersive solid-phase extraction,d-SPE)净化方法结合超高效液相色谱串联三重四极杆质谱(UPLC-MS/MS)建立新型全氟化合物(HFPO-TA和HFPO-DA)和与之替代的传统全氟化合物(PFOA)在小鼠器官中的提取净化分析方法。

    • 标准样品(HFPO-TA、HFPO-DA和PFOA)均购自梯希爱(上海)化成工业发展有限公司。所用试剂包括:甲醇(色谱纯,默克),乙酸铵(MS级,南试),Milli-Q水(18.25 MΩ·cm,实验室自制),乙腈(分析纯,西陇科学),氯化钠(分析纯,阿拉丁),盐酸(分析纯,南试),甲酸(MS级,阿拉丁)。石墨化炭黑(GCB,120—400目)、十八烷基键合硅胶(C18,40—63 μm)和N-丙基乙二胺(PSA,40—63 μm)购于上海安谱实验科技股份有限公司。

      建立方法所需小鼠器官取自未经全氟化合物暴露的Balb/c雌鼠。大脑、心脏、肺、肾脏和肝脏样品收集自江苏生命科技园某医药公司动物房内饲养的小鼠。实验通过实验动物福利与伦理审查。

      仪器:QSight® Altus LC-30超高效液相色谱仪(美国Perkin Elmer公司),QSight® 210 三重四极杆质谱仪(美国Perkin Elmer公司),HD-2500多管涡旋混合仪(杭州佑宁仪器有限公司),KH-7000SP超声波清洗器(昆山禾创超声仪器有限公司),Milli-Q超纯水仪( Millipore 公司),SCIENTZ-10ND低温冷冻干燥机(宁波新芝生物科技股份有限公司),Lindberg blue M马弗炉(Thermo Scientific公司),ME204分析天平(Mettler Toledo公司)。

    • 标准储备液的配制:十万分之一天平分别称取0.0101 g的HFPO-TA、HFPO-DA和PFOA的标准品于10 mL容量瓶中,用色谱甲醇溶解并定容可得质量浓度为1000 mg·L−1的标准储备液,保存于4 ℃冰箱中。

      混合标准储备液以及标准工作溶液的配制:分别准确转移1 mL标准储备液混合于10 mL容量瓶中,用色谱甲醇稀释并定容;再次吸取混合标准溶液1 mL于10 mL容量瓶中,可分别得质量浓度为100 mg·L−1和10 mg·L−1的混合标准储备液。使用混合溶液(甲醇∶水=1∶1,V/V)做逐级梯度稀释,配制质量浓度为0.005、0.01、0.05、0.1、0.5、1 mg·L−1的标准工作溶液。工作溶液保存在4℃冰箱内。

    • 液相色谱条件:Perkin Elmer C18色谱柱(2.7 μm,150 mm × 2.1 mm);柱温:40 ℃;流速:0.3 mL·min−1;进样量:10 μL;流动相:A,1 mmol·L−1乙酸铵水溶液;B,甲醇;梯度洗脱顺序:0—2.5 min,40%—10% A;2.5—4.0 min,10% A;4.0—4.1 min,10%—40% A;4.1—6.0 min,40% A。

      质谱条件:电喷雾离子源在负离子条件下搭配多重反应监测模式(MRM);毛细管电压:0.41 kV;离子源温度:200 ℃;去溶剂气流:氮气,1000 L·h−1;去溶剂温度:500 ℃。

    • QuEChERs方法以乙腈做提取溶剂,通过氯化钠等无机盐的盐析作用实现相分离。但是全氟化合物在酸性条件下呈分子态,易于使其进入有机溶剂。已有研究考察了不同浓度(0.05%、0.1%、0.2%和0.3%)盐酸-乙腈溶液对动物源性(猪、牛和羊的肾脏、肝脏和肌肉)食品中13种传统PFASs的提取回收率[26],0.1%、0.2%和0.3%盐酸-乙腈溶液均能满足食品残留分析要求,且0.2%盐酸-乙腈溶液做提取溶剂时基线平稳,在目标峰出峰位置无杂质共流出,因此本研究采用0.2%盐酸的乙腈为提取溶剂。

      小鼠器官于-80 ℃冰箱冷冻,放置冷冻干燥机内真空干燥48 h,使用研钵将其粉碎后,盛于聚丙烯(polypropylene,PP)离心管,在-20 ℃冰箱保存备用。准确称取0.10 g 各小鼠器官样品粉末于15 mL PP离 心管,加入2 mL Milli-Q水,在手中剧烈振荡使其浸湿样品。加入2 mL 0.2%盐酸乙腈,涡旋10 min,超声5 min。每只离心管中加入1 g NaCl,再次涡旋10 min,在4000 r·min−1的条件下离心10 min。1.5 mL上清液转移至装有100 mg PSA、80 mg C18和30 mg GCB的15 mL PP离心管中,在手中急速剧烈上下振摇两次后,涡旋30 s。在4000 r·min−1条件下离心10 min,准确吸取1 mL上清液于4 mL离心管中,控制氮气浓缩仪的水温低于40 ℃,气流使液面产生涟漪条件下浓缩至干。准确加入0.1 mL混合溶液(甲醇:水=1:1, V/V)复溶样品,过0.22 μm PP针式滤器,UPLC-MS/MS分析.

    • 取小鼠器官样品,按照1.2.3节前处理方法提取净化后,准确量取0.1 mL标准混合工作溶液复溶样品,分别可得质量浓度为0.005、0.01、0.05、0.1、0.5、1 mg L−1的基质匹配标准溶液。分别取混合标准工作溶液和基质匹配标准溶液,按照1.2.2节的仪器条件上机测定。通过Simplicity 3Q软件获取相应数据,提取定量离子对,以定量离子峰面积为纵坐标,质量浓度为横坐标,分别绘制溶剂标准曲线和基质匹配标准曲线。

      同时以基质匹配标准曲线最低浓度的信噪比3倍和10倍计算该方法的检出限(Limit of detection, LOD)、定量限(Limit of quantification, LOQ)。具体公式如下:

      式中,C为基质标样浓度(μg·L−1);V为进样体积(μL)。

    • 本研究依据拟合的溶剂和基质匹配标准曲线线性方程的斜率评估所建立前处理方法的基质效应,计算公式如下:

      若|ME| < 20%,无基质干扰效应;若20% ≤ |ME| ≤ 50%,中等基质干扰效应;|ME| > 50%,较强的基质干扰效应[27-28]

    • 向小鼠器官样品中添加HFPO-TA、HFPO-DA和PFOA的混合标准液,由于缺乏相应最高残留限量值的支持,参考土壤等环境基质中检出浓度[29],分别取10 μL的50、100、1000 μg·L−1的混合标准溶液注入空白基质中,使目标分析物在基质中的浓度依次为5、10、100 μg·kg−1。根据1.2.3节前处理方法提取净化后测定,分别计算回收率和相对标准偏差(relative standard deviation, RSD)。

    • 将HFPO-TA、HFPO-DA和PFOA通过喂食的方式暴露于小鼠,得到富集了目标分析物的小鼠器官样品,进一步验证所建立分析方法的准确性。过程如下:商品化鼠粮冷冻干燥粉碎后,称取50 g,将一定浓度的HFPO-TA、HFPO-DA和PFOA的混合标准工作溶液添加到2 g石英砂中,待溶剂完全挥发后与鼠粮混合,搅拌均匀,加入适量Milli-Q水揉成面团状,人工重新造粒,冷冻干燥后每粒鼠粮的干重为4 g,其中每种目标分析物的浓度为1 mg kg−1

      实验小鼠自由采食饮水驯养一周,饥饿处理12 h后,随机转移至PP塑料笼中。暴露组设置4个重复,每天每只小鼠给予1粒鼠粮,自由饮水;空白组给与商品化鼠粮和自由饮水,连续饲养3 d后收集剩余鼠粮,再次饥饿处理12 h后断颈法处死小鼠,收集目标器官(大脑、肺、心脏、肾脏、肝脏)。

    • 本研究中相关数据均采用Simplicity 3Q色谱工作站采集,OriginPro 2021 (Learning Edition)进行数据处理分析。

    • 国标[30-31]和一些研究[15-17, 32-34]中以较低硅羟基活性填料的C18做固定相,乙腈-乙酸铵水溶液或者甲醇-乙酸铵水溶液做流动相梯度洗脱可实现全氟化合物的基线分离。本研究探讨了甲醇-乙酸铵水溶液系统中缓冲盐乙酸铵的浓度(0、1、2、5、10 mmol·L−1)对目标化合物的仪器响应值和峰形的影响(图2)。

      对比仪器响应值发现(图2 a),对于HFPO-DA和PFOA而言,两者的峰面积随流动相中缓冲盐浓度的增加而逐渐下降,在从0 mmol·L−1到1 mmol·L−1增加过程中,峰面积下降明显,即乙酸铵对目标化合物的响应具有抑制效应[35];对于HFPO-TA,峰面积随流动相中缓冲盐浓度的增加呈现出先上升后下降的变化趋势,且在1 mmol·L−1时达到最大响应。以甲醇-水系统做流动相时,HFPO-TA色谱峰分叉(图2 b),添加乙酸铵缓冲盐后,峰形得到明显改善(图2 c)。综合考虑峰面积和色谱峰形的基础上,本研究选择甲醇-乙酸铵(1 mmol·L−1)水溶液作为流动相。

    • 因目标分析物为羧酸及其衍生盐,电喷雾离子源正源模式(electrospray ionization source,ESI)难以将其质子化,因此本研究以ESI模式扫描定性和定量离子对。借助针泵以30 μL·min−1的流速泵入1000 μg·L−1的标准工作溶液进行m/z 200—1000 ESI一级质谱扫描,结果发现PFOA和HFPO-TA电离后失去羧基上的氢原子,主要以[M-H]分子离子的相对丰度较高,HFPO-DA生成[M-44-H]分子离子,推断原因为发生中性丢失CO2[22, 26]。确定分子离子后,进行二级质谱扫描,选取相对丰度较强的碎片离子作为定量离子,次强的作为定性离子。最后,以MRM模式采集数据,进一步优化锥孔电压、碰撞能量等参数,具体参数见表1

    • 固相萃取(solid-phase extraction,SPE)技术在食品、环境和生物样品分析中得到广泛应用,选择合适的固定相与流动相可以去除提取液中的绝大数干扰物质并洗脱回收目标分析物,获得较好的回收率并且尽最大可能保护分析仪器,但是SPE法存在操作复杂、耗时长、有机溶剂用量大和成本高等问题。因此d-SPE是一种潜在的替代方法。通过在提取上清液中添加一定质量的吸附材料,能够极大的改善SPE法的缺陷。目前常用的吸附材料有PSA、C18、GCB、碳十八键合锆胶等。PSA可以吸附提取液中碳水化合物、有机酸和少量色素等极性杂质,是一种弱阴离子交换剂[36],C18可降低提取液中脂肪等非极性物质的含量[37],GCB对提取液中色素和甾醇类物质具有较好的去除效果[21]。在已有的文献报道中分别选用PSA、C18和GCB 3种吸附剂单一或不同配比开展动物源性食品中传统直链全氟化合物的净化[20, 22-26, 38]

      基于动物基质提取液外观色泽和潜在杂质,本研究选择100 mg PSA+80 mg C18+30 mg GCB组成的混合物作为吸附剂,结果显示净化效果较好,如图3所示上清液呈无色透明态,氮气浓缩至干后无油脂等析出,且目标分析物的回收率满足试验要求。因此,本研究选用该组合作为吸附剂用于样品的净化。

    • 该方法的线性相关性、LODs、LOQs和基质效应结果如表2所示。3种目标分析物在5—500 μg·L−1的线性范围内,质量浓度与对应定量离子峰面积呈现出较好的线性关系,相关性系数均大于0.99。PFOA和HFPO-DA在所选取的5种器官中|ME|为28.9%—80.7%,表现为强基质效应。HFPO-TA在不同器官中基质效应具有较大差异,大脑、肾脏和心脏样品的|ME| < 20%,基质效应可忽略不计;在肺和肝脏样品中表现出中等至较强的基质效应。因此在后续试验中可采用基质匹配标准溶液外标法或者同位素标记内标法定量,进而排除基质效应。3种目标分析物在不同基质中的LODs为0.016—0.077 μg·kg−1与之对应的LOQs为5.35×10−4—2.55×10−3 ng。

    • 通过加标回收率试验验证该方法的准确度和精密度。3种目标分析物在5、10、100 μg·kg−1的3个添加水平下的平均回收率为64.8%—120%,与之对应的RSD分别为:4.1%—20%、0.75%—22.4%、0.6%—14.6%(表3)。该方法的回收率、精密度和灵敏度均能满足GB/T 27417—2017[39]中化学分析方法的要求。

    • 经口暴露全氟化合物的小鼠器官样品冷冻干燥粉碎后,经所建立方法检测,各器官中目标全氟化合物浓度结果如图4所示。 3种目标物在不同器官中富集趋势有较大差异,在5种器官中总累积浓度依次为:肝脏((3970.6 ± 645.3) μg·kg−1)>肾脏((2619.2 ± 787.5) μg·kg−1)>肺((2027.1 ± 138.2 )μg·kg−1)>心脏((1070.1 ± 55.6 )μg·kg−1)>大脑((383.7 ± 30.1) μg·kg−1)。3种目标物的生物富集趋势也有明显差异,在各个器官中HFPO-DA的累积浓度显著(P<0.05)低于PFOA和HFPO-TA。例如肝脏中HFPO-TA和PFOA的累积浓度分别为(1726.7 ± 205.7 )μg·kg−1和(1676.1 ± 338.2) μg·kg−1,而HFPO-DA的浓度为 (566.9 ± 101.4) μg·kg−1。据报道在10 μg·mL−1的暴露条件下,人胚胎滋养层细胞模型中,PFOA的细胞内积累浓度是HFPO-DA的5.8倍[40]。此外在小鼠肝脏中HFPO-TA的累积浓度也略高于PFOA,为其浓度的1.1倍。有研究表明,HFPO-TA与人肝脏脂肪酸结合蛋白的结合潜力大于PFOA和HFPO-DA[41]。因此在肝脏中HFPO-TA相比较于PFOA和HFPO-DA具有较强的生物富集潜力。

    • 本研究通过优化样品前处理方法和仪器分析条件,建立了QuEChERs-UPLC-MS/MS同时测定小鼠器官中新型全氟化合物的方法。该方法操作简单,环境友好,经济适用性高,线性相关性大于0.99,在不同小鼠器官基质中检出限为0.016—0.077 μg·kg−1和定量限为5.35×10−4—2.55×10−3 ng。将建立方法应用于污染暴露的小鼠样品,3种目标分析物在5种器官中具有检出,HFPO-TA在肝脏中的累积浓度与PFOA接近,是HFPO-DA累积浓度的3.4倍。本研究为监测生物体内新型全氟化合物建立了有效的检测方法,有助于新型全氟化合物环境归趋和生物有效性研究。

    参考文献 (41)

返回顶部

目录

/

返回文章
返回