-
岩溶水是岩溶系统的重要组成部分,其化学组分受地质、水文地质和人类活动等多种因素的控制,并在径流过程中发生复杂的水化学作用,最终表现出独特的水化学组分特征[1-2]。岩溶水化学系统的变量与控制因素错综复杂,因此如何利用水化学组分特征识别水化学信息、分析各类水文地球化学作用及研究水化学组分的时空变化规律并最终实现对水化学演化过程的重新构建就成为了一个难题[3-4]。国内外对岩溶区水化学的研究主要集中在水化学组分和演化等方面[5-7],主要通过定性分析结合定量模拟的方法来完成水化学分析,例如采用水化学类型分析、离子组合比分析和多元统计分析等方法定性分析水化学各组分的来源和控制因素,采用水文地球化学模拟方法定量模拟分析水化学演化[8-11]。
我国是岩溶地貌最为典型的地区之一,总分布面积可达344×104 km2[12],以滇、黔、桂为主体的西南岩溶区分布最为广泛,东北、内蒙、华北和华东地区也有分布,受气候、地层岩性和地质构造等因素的影响,我国南北方岩溶及岩溶水存在较大的差异。以北方岩溶区为例,大量学者研究表明北方岩溶水水化学特征主要受碳酸盐岩和石膏的风化溶解[13-18]、去白云化的控制[13-15,17-18],同时也受到诸如上覆孔隙水混入[18]、煤系地层伴生硫化物矿物氧化[15-16]、人类工程活动[17]等其他因素的影响,且随着径流途径延伸和深度增加呈现一定的规律变化。而对于南方岩溶区,岩溶水水化学特征则是主要受到碳酸盐岩和石膏的风化溶解[19-25]、阳离子交替吸附作用的控制[19,21],同时也受到诸如硅酸盐矿物溶解[21,25]、孔隙水[24]、采煤活动和农业活动[21-25]等其他因素的制约,大部分地区具有明显的空间分异性[20,22-25]。
本文以滇东高原牛栏江流域寻甸县岩溶区地下水为研究对象,利用水化学数据,探讨地下水化学特征、演化进程及成因。研究区属牛栏江-滇池补水工程补给区,本研究对区域的水化学特征、水质保护和滇池生态恢复具有重要意义。
滇东高原牛栏江流域岩溶区地下水化学特征及成因分析
Hydrochemical characteristics and genesis of groundwater in karst area of Niulanjiang River watershed of eastern Yunnan Plateau
-
摘要: 以滇东高原牛栏江流域岩溶区为例,利用水化学数据,探讨区内地下水化学特征及其成因。对研究区24组水样的水化学特征进行分析,结果表明,研究区水化学类型主要是以HCO3-Ca·Mg型和HCO3-Mg·Ca为主,
${\rm{HCO}}_3^{-} $ 和Ca2+是区内主要阴阳离子,反映了水化学特征主要受碳酸盐岩溶解影响。δD与δ18O的关系显示,研究区内地下水主要受大气降水补给。地下水化学演化过程受地层岩性影响显著,岩石风化使东、西两区的地下水水化学特征有较大差异。Mg2+、Ca2+、${\rm{HCO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 和Cl-主要受岩石风化、大气降雨等自然条件控制,受到人类活动影响较小,Na++K+则是主要受农业活动等人类活动的影响。本研究对牛栏江-滇池补水工程区的水化学特征、水质保护和滇池生态恢复具有重要意义。Abstract: Based on the data of hydrochemistry, this article mainly discussed the hydrochemical characteristics and genesis of groundwater in the karst area of Niulanjiang river watershed of eastern Yunnan Plateau. Hydrochemical characteristics of 24 samples were analyzed in the study area. The analysis shows that the hydrochemistry type in the study area belonged to HCO3-Ca·Mg type and HCO3-Mg·Ca type.${\rm{HCO}}_3^{-} $ and Ca2+ were the main anions and cations, reflecting that hydrochemical characteristics were mainly affected by the dissolution of carbonate rock. The relationship between δD and δ18O shows that atmospheric precipitation is the main recharge resources of groundwater in the study area. As a result of rock weathering, there are great differences in hydrochemical characteristics between the east and west area. Mg2+, Ca2+,${\rm{HCO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ , and Cl- were mainly affected by natural conditions, such as rock weathering and atmospheric rainfall; the impact of human activity was little. Meanwhile, Na++K+ was mainly affected by human activities as agricultural activity. This study had a significant value for hydrochemical characteristics and water quality protection of Niulanjiang river-Dianchi lake water supplement project, and for ecological restoration of Dianchi lake.-
Key words:
- eastern Yunnan Plateau /
- karst water /
- hydrochemical characteristics /
- evolution process /
- genesis
-
表 1 区内含水层分布及特征
Table 1. Characteristics and distribution of aquifer in study area
含水层
Aquifer代号
Code主要岩性特征
Main lithologic characteristics水文地质特征
Hydrogeological characteristics富水性
Water
abundance纯质碳酸盐岩
含水层P1m、P1q 灰岩、白云岩等 区内大面积分布,层厚约237—645m,为区内主要的岩溶含水层,岩溶管道极其发育,入渗条件好 强 C3、C2、C1b、C1ds、∈1l 呈NE向条带状分布于研究区中部,岩溶发育,为区内岩溶水的主要排泄层位,地下水动态随季节变化较大 碳酸盐岩夹碎
屑岩含水层T1y、D3zg、S3g、∈2s 碳酸盐岩(灰岩、白云岩)夹碎屑岩(泥岩、页岩等) 呈NE向条带状分布于研究区中部,溶蚀较发育,介质以溶蚀裂隙为主,地下水动态随季节变化较大 中—强 碎屑岩含水层 T1f、D2h 砂岩、页岩、泥岩 呈条带状分布于研究区东侧,富水性、透水性都较弱,水位埋深约100m 中 P1l、C1dw 页岩、砂岩、煤线 呈条带状分布于研究区东侧,水量贫乏,透水性弱,常构成区域相对隔水层 弱 玄武岩含水层 P2β 玄武岩 大面积分布于研究区内,裂隙发育,地下水动态随季节变化大 中—强 表 2 水文地球化学组分统计表(mg·L−1)
Table 2. Statistical table of hydrogeochemical composition
分区
Region编号
No.pH Na++K+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^{-} $ 游离CO2
Free carbon
dioxide侵蚀性CO2
Corrosive carbon
dioxideTH TDS 取样地层
Sampling
stratum东区 SY01 7.79 14.44 50.60 33.00 2.83 8.61 342.20 2.07 2.13 262.20 280.60 D3zg SY02 7.27 6.09 51.57 34.18 4.16 12.30 321.90 15.51 1.06 269.50 269.30 C1ds SY03 7.36 4.86 53.35 27.75 5.01 16.40 285.10 8.27 2.13 247.40 249.90 C1ds SY04 7.78 5.38 50.03 71.70 4.26 32.30 478.00 5.17 0.00 420.00 402.70 S3g SY05 7.39 0.19 64.77 60.60 4.68 26.00 460.70 23.78 4.26 411.10 386.60 D3zg SY06 7.50 17.92 21.86 34.82 11.59 5.96 278.60 14.99 0.00 197.90 221.40 D3zg SY07 7.63 140.74 18.54 10.07 2.65 18.60 452.30 2.59 0.00 87.70 416.80 C1ds SY08 7.64 4.66 69.95 5.89 1.62 6.02 244.50 6.20 0.00 198.90 210.40 C1ds SY09 7.54 9.00 80.88 47.88 1.99 22.10 478.90 10.86 0.00 399.00 401.30 C1b SY10 7.34 18.49 100.55 35.20 4.16 27.10 490.30 18.10 0.00 396.00 430.60 C1ds SY11 7.34 1.95 77.32 34.08 2.75 76.70 309.40 13.44 0.00 333.30 347.50 ∈2s SY12 7.70 70.84 7.04 39.78 1.79 40.60 354.40 7.24 0.00 181.30 337.20 S3g SY13 7.89 1.51 101.28 45.49 3.45 107.80 397.80 6.51 0.00 440.10 458.40 S3g SY14 7.58 4.41 70.84 46.16 1.96 31.40 415.80 9.82 112.87 366.90 362.60 S3g SY15 7.16 7.83 96.43 20.87 6.39 48.00 347.20 26.37 10.65 326.70 353.10 P1m SY16 7.20 1.00 92.46 19.45 5.46 35.60 327.20 21.20 10.65 310.90 317.50 P1m 西区 SY17 7.21 2.93 4.78 2.50 1.37 2.35 29.50 3.62 10.65 22.20 28.70 P2β SY18 6.90 5.76 10.44 2.06 1.68 1.08 53.20 9.82 17.04 9.10 47.60 P2β SY19 6.88 4.52 6.56 1.33 1.25 0.82 35.40 7.76 15.97 21.90 32.20 P2β SY20 7.33 3.28 5.18 1.96 1.37 1.91 29.50 2.07 7.45 21.00 28.50 P2β SY21 8.85 12.44 4.70 0.93 1.43 1.79 47.30 0.00 2.13 15.60 68.20 P2β 西区 SY22 7.65 31.92 95.53 16.52 1.42 2.26 453.20 3.10 5.32 306.60 374.20 P2β SY23 7.32 2.63 10.93 4.03 1.35 1.61 56.10 7.76 14.91 43.90 48.60 P2β SY24 9.18 4.71 2.43 1.42 1.51 1.05 23.10 0.00 12.78 11.90 22.70 P2β 最大值 9.18 140.74 101.28 71.70 11.59 107.80 490.30 26.37 112.87 440.10 458.40 最小值 6.88 0.19 2.43 0.93 1.25 0.82 23.10 0.00 0.00 9.10 22.70 平均值 7.56 15.73 47.83 24.90 3.17 22.02 279.65 9.43 9.58 220.88 254.03 标准偏差 0.52 30.44 36.62 20.75 2.36 26.34 171.28 7.37 22.77 155.06 153.82 变异系数 0.07 1.94 0.77 0.83 0.74 1.20 0.61 0.78 2.38 0.70 0.61 表 3 水化学离子Pearson相关系数
Table 3. Pearson correlation coefficient of physiochemical parameters
Na++K+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^{-} $ TH TDS pH Na++K+ 1 Ca2+ −0.208 1 Mg2+ −0.076 0.509* 1 Cl− −0.061 0.267 0.396 1 ${\rm{SO}}_4^{2-} $ −0.029 0.583** 0.531** 0.184 1 ${\rm{HCO}}_3^{-} $ 0.298 0.739** 0.792** 0.341 0.486* 1 TH −0.162 0.877** 0.859** 0.380 0.642** 0.882** 1 TDS 0.297 0.775** 0.770** 0.327 0.646** 0.978** 0.891** 1 pH 0.084 −0.190 −0.051 −0.180 −0.040 −0.103 −0.131 −0.086 1 注:*P<0.05;**P<0.01. -
[1] 滕彦国, 左锐, 王金生, 等. 区域地下水演化的地球化学研究进展 [J]. 水科学进展, 2010, 21(1): 127-136. TENG Y G, ZUO R, WANG J S, et al. Progress in geochemistry of regional groundwater evolution [J]. Advances in Water Science, 2010, 21(1): 127-136(in Chinese).
[2] KEBEDE S, TRAVI Y, ALEMAYEHU T, et al. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia [J]. Applied Geochemistry, 2005, 20(9): 1658-1676. doi: 10.1016/j.apgeochem.2005.04.016 [3] SETIAWAN T, SYAH ALAM B Y C S S, HARYONO E, et al. Hydrochemical and environmental isotopes analysis for characterizing a complex Karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia [J]. Hydrogeology Journal, 2020, 28(5): 1635-1659. doi: 10.1007/s10040-020-02128-8 [4] 管清花, 李福林, 王爱芹, 等. 济南市岩溶泉域地下水化学特征与水环境演化 [J]. 中国岩溶, 2019, 38(5): 653-662. GUAN Q H, LI F L, WANG A Q, et al. Hydrochemistry characteristics and evolution of Karst spring groundwater system in Jinan [J]. Carsologica Sinica, 2019, 38(5): 653-662(in Chinese).
[5] 于奭, 孙平安, 杜文越, 等. 人类活动影响下水化学特征的影响: 以西江中上游流域为例 [J]. 环境科学, 2015, 36(1): 72-79. YU S, SUN P A, DU W Y, et al. Effect of hydrochemistry characteristics under impact of human activity: A case study in the upper reaches of the xijiang river basin [J]. Environmental Science, 2015, 36(1): 72-79(in Chinese).
[6] LIU J, WANG H, JIN D W, et al. Hydrochemical characteristics and evolution processes of Karst groundwater in Carboniferous Taiyuan formation in the Pingdingshan coalfield [J]. Environmental Earth Sciences, 2020, 79(6): 1-14. [7] HUANG H, CHEN Z H, WANG T, et al. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in Karst aquifers, southwestern China [J]. Environmental Science and Pollution Research, 2019, 26(29): 30055-30068. doi: 10.1007/s11356-019-05984-4 [8] 蒲俊兵, 袁道先, 蒋勇军, 等. 重庆岩溶地下河水文地球化学特征及环境意义 [J]. 水科学进展, 2010, 21(5): 628-636. PU J B, YUAN D X, JIANG Y J, et al. Hydrogeochemistry and environmental meaning of Chongqing subterranean Karst streams in China [J]. Advances in Water Science, 2010, 21(5): 628-636(in Chinese).
[9] SINGH A K, RAJ B, TIWARI A K, et al. Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India [J]. Environmental Earth Sciences, 2013, 70(3): 1225-1247. doi: 10.1007/s12665-012-2209-7 [10] 陈盟, 吴勇, 姚金钱. 地下水主要离子水文地球化学过程与矿井突水水源识别 [J]. 南水北调与水利科技, 2016, 14(3): 123-131. CHEN M, WU Y, YAO J Q. Major ion hydrogeochemical processes and identification of mine's water-bursting source [J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(3): 123-131(in Chinese).
[11] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析 [J]. 地质科技情报, 2018, 37(6): 245-251. LIU W J, YUAN X M, ZHANG Y, et al. Hydrochemical characteristics and evolution of Karst groundwater in Guiyang city [J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese).
[12] 蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究 [J]. 地球学报, 2012, 33(2): 129-134. JIANG Z C, YUAN D X, CAO J H, et al. A study of carbon sink capacity of Karst processes in China [J]. Acta Geoscientica Sinica, 2012, 33(2): 129-134(in Chinese).
[13] QIAN J Z, PENG Y X, ZHAO W D, et al. Hydrochemical processes and evolution of Karst groundwater in the northeastern Huaibei Plain, China [J]. Hydrogeology Journal, 2018, 26(5): 1721-1729. doi: 10.1007/s10040-018-1805-3 [14] 黄奇波, 覃小群, 刘朋雨, 等. 柳林泉域岩溶地下水区域演化规律及控制因素 [J]. 环境科学, 2019, 40(5): 2132-2142. HUANG Q B, QIN X Q, LIU P Y, et al. Regional evolution and control factors of Karst groundwater in Liulin spring catchment [J]. Environmental Science, 2019, 40(5): 2132-2142(in Chinese).
[15] 唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因 [J]. 环境科学, 2020, 41(5): 2087-2095. TANG C L, ZHENG X Q, LIANG Y P. Hydrochemical characteristics and formation causes of ground Karst water systems in the longzici spring catchment [J]. Environmental Science, 2020, 41(5): 2087-2095(in Chinese).
[16] 唐春雷, 赵春红, 申豪勇, 等. 娘子关泉群水化学特征及成因 [J]. 环境科学, 2021, 42(3): 1416-1423. TANG C L, ZHAO C H, SHEN H Y, et al. Chemical characteristics and causes of groups water in niangziguan spring [J]. Environmental Science, 2021, 42(3): 1416-1423(in Chinese).
[17] WU X C, LI C S, SUN B, et al. Groundwater hydrogeochemical formation and evolution in a Karst aquifer system affected by anthropogenic impacts [J]. Environmental Geochemistry and Health, 2020, 42(9): 2609-2626. doi: 10.1007/s10653-019-00450-z [18] GAO Z J, LIU J T, XU X Y, et al. Temporal variations of spring water in Karst areas: A case study of Jinan spring area, Northern China [J]. Water, 2020, 12(4): 1009. doi: 10.3390/w12041009 [19] CHEN M, WU Y, GAO D D, et al. Identification of coal mine water-bursting source using multivariate statistical analysis and tracing test [J]. Arabian Journal of Geosciences, 2017, 10(2): 1-14. [20] 汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析 [J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105 WANG Y L, ZHOU Z F, TIAN Z H, et al. Analysis of the spatial variation and sources of SO42- in Karst water of Chiwu Revier [J]. Environmental Chemistry, 2017, 36(12): 2690-2700(in Chinese). doi: 10.7524/j.issn.0254-6108.2017030105
[21] 李笑, 于奭, 李亮, 等. 石期河流域地下水化学特征及物质来源分析 [J]. 环境科学, 2020, 41(9): 4021-4029. LI X, YU S, LI L, et al. Chemical characteristics of groundwater and material sources analysis in Shiqi river basin [J]. Environmental Science, 2020, 41(9): 4021-4029(in Chinese).
[22] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析 [J]. 环境化学, 2016, 35(11): 2394-2401. doi: 10.7524/j.issn.0254-6108.2016.11.2016032801 LIN Y S, PEI J G, DU Y C, et al. Hydrochemical characteristics of Karst groundwater and their influencing factors based on multiple statistical analysis [J]. Environmental Chemistry, 2016, 35(11): 2394-2401(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016032801
[23] 王剑, 罗朝晖, 陈植华, 等. 滇东北毛坪铅锌矿区水化学特征及成因 [J]. 环境化学, 2018, 37(6): 1421-1431. doi: 10.7524/j.issn.0254-6108.2017083102 WANG J, LUO Z H, CHEN Z H, et al. Characteristics and controlling factors of water chemistry in maoping lead-zinc mine area, Northeastern Yunnan, China [J]. Environmental Chemistry, 2018, 37(6): 1421-1431(in Chinese). doi: 10.7524/j.issn.0254-6108.2017083102
[24] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析 [J]. 中国地质, 2016, 43(4): 1446-1456. YUAN J F, DENG G S, XU F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of Karst groundwater in the northern part of Bijie City, Guizhou Province [J]. Geology in China, 2016, 43(4): 1446-1456(in Chinese).
[25] 叶慧君, 张瑞雪, 吴攀, 等. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子 [J]. 地球科学, 2019, 44(9): 2887-2898. YE H J, ZHANG R X, WU P, et al. Characteristics and driving factor of hydrochemical evolution in Karst water in the critical zone of Liupanshui mining area [J]. Earth Science, 2019, 44(9): 2887-2898(in Chinese).
[26] 王世杰, 张信宝, 白晓永. 中国南方喀斯特地貌分区纲要 [J]. 山地学报, 2015, 33(6): 641-648. WANG S J, ZHANG X B, BAI X Y. An outline of Karst geomorphology zoning in the Karst areas of Southern China [J]. Mountain Research, 2015, 33(6): 641-648(in Chinese).
[27] 王嘉学, 王教元, 肖梦景, 等. 滇东高原地理环境分异与城镇上山空间资源研究 [J]. 云南师范大学学报(哲学社会科学版), 2014, 46(4): 48-53. WANG J X, WANG J Y, XIAO M J, et al. Geographic environment of the east plateau of Yunnan Province and spatial resources for constructing “Hill Towns” [J]. Journal of Yunnan Normal University (Humanities and Social Sciences), 2014, 46(4): 48-53(in Chinese).
[28] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses [J]. Transactions, American Geophysical Union, 1944, 25(6): 914. doi: 10.1029/TR025i006p00914 [29] 王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991: 49. WANG H C. Hydrogeological conspectus on isotopes [M]. Beijing: Geological Publishing House, 1991: 49(in Chinese).
[30] 董小芳, 邓黄月, 郑祥民, 等. 长江流域降水中氢氧同位素特征及水汽来源 [J]. 环境科学与技术, 2017, 40(4): 78-84. DONG X F, DENG H Y, ZHENG X M, et al. Analysis of stable isotope characteristics and water vapor origins in atmospheric precipitation in the Yangtze River basin [J]. Environmental Science & Technology, 2017, 40(4): 78-84(in Chinese).
[31] 张明亮. 滇东黔西地下水氢氧同位素特征 [J]. 四川地质学报, 2019, 39(3): 508-511. doi: 10.3969/j.issn.1006-0995.2019.03.032 ZHANG M L. The δ18O and δD values of groundwater in east Yunnan and west Guizhou [J]. Acta Geologica Sichuan, 2019, 39(3): 508-511(in Chinese). doi: 10.3969/j.issn.1006-0995.2019.03.032
[32] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [33] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009 [34] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30. [35] 苗迎, 孔祥胜, 宋朝静. 南宁市区地下水水化学特征及形成机制 [J]. 中国岩溶, 2015, 34(3): 228-233. doi: 10.11932/karst20150304 MIAO Y, KONG X S, SONG Z J. Hydrochemical characteristics and formation mechanism of groundwater in Nanning City [J]. Carsologica Sinica, 2015, 34(3): 228-233(in Chinese). doi: 10.11932/karst20150304
[36] JIANG Y J, CAO M, YUAN D X, et al. Hydrogeological characterization and environmental effects of the deteriorating urban Karst groundwater in a Karst trough valley: Nanshan, SW China [J]. Hydrogeology Journal, 2018, 26(5): 1487-1497. doi: 10.1007/s10040-018-1729-y [37] BARZEGAR R, MOGHADDAM A A, TZIRITIS E, et al. Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran [J]. Environmental Earth Sciences, 2017, 76(7): 1-16. [38] ACERO P, AUQUÉ L F, GALVE J P, et al. Evaluation of geochemical and hydrogeological processes by geochemical modeling in an area affected by evaporite karstification [J]. Journal of Hydrology, 2015, 529: 1874-1889. doi: 10.1016/j.jhydrol.2015.07.028 [39] 刘朋雨, 胡宝清, 覃小群, 等. 南盘江流域不同类型水水文地球化学特征 [J]. 广西师范学院学报(自然科学版), 2013, 30(1): 63-69. LIU P Y, HU B Q, QIN X Q, et al. Hydrological and geochemical characteristics of different types of water in nanpanjiang basin [J]. Journal of Guangxi Teachers Education University (Natural Science Edition), 2013, 30(1): 63-69(in Chinese).
[40] 李水新, 闫志为, 劳文科, 等. 巧家县荞麦地河流域与金沙江右岸岩溶水水化学特征 [J]. 水利科技与经济, 2014, 20(2): 5-9. doi: 10.3969/j.issn.1006-7175.2014.02.002 LI S X, YAN Z W, LAO W K, et al. Hydrochemical characteristics of karst water in Qiaomaidi river basin and right bank of Jinsha river in Qiaojia county [J]. Water Conservancy Science and Technology and Economy, 2014, 20(2): 5-9(in Chinese). doi: 10.3969/j.issn.1006-7175.2014.02.002