-
对流层臭氧(ozone,O3)是重要的大气光化学氧化剂和典型的光化学污染产物[1]。臭氧对人体健康、植物生长以及粮食产量等均存在负面影响[2-4];同时,臭氧还是主要的温室气体,具有强烈的红外吸收功能,会促进全球气候变暖[5-6]。挥发性有机物(volatile organic compounds,VOCs)和氮氧化物(nitrogen oxides,NOx)的光化学反应是对流层臭氧的主要来源[7],在光照条件下,VOCs与·OH自由基反应构成ROx(ROx=RO2+HO2+OH)循环,ROx循环能够为NOx(NOx=NO+NO2)循环不断提供HO2和RO2自由基,促进NO氧化为NO2,NO2进一步光解生成臭氧[8]。臭氧的生成量与其前体物浓度之间存在明显的非线性关系[9],因此,掌握臭氧与其前体物之间的敏感性关系,是制定臭氧污染控制对策的一个重要前提。
近年来,我国城市近地面大气臭氧污染形势严峻,尤其是在夏季,臭氧污染问题尤为凸显。在我国,对珠三角、长三角、京津冀等地挥发性有机物、臭氧生成敏感性分析等方面的研究较多[10-13],而西部地区的相关研究相对较少。宁夏回族自治区因其丰富的煤炭资源等成为西部大开发中的重要发展对象。随着宁夏的工业化进程不断加快,能源、新型煤化工以及新材料等产业发展迅速,与此同时,光化学污染问题却日益突出。2015—2019年《宁夏生态环境公报》显示[14],2019年全区五地市PM10、PM2.5年均浓度较2015年分别下降了24.53%、31.91%,而2019年O3年均浓度较2015年上升了5.19%,O3污染日益严重。然而,目前宁夏缺乏有关挥发性有机物的污染特征、臭氧对其前体物敏感性的研究[15]。
为了解宁夏的臭氧污染现状、认识挥发性有机物污染过程及可能来源,本研究在银川都市圈内两个典型站点开展了大气挥发性有机物的日变化观测实验,并对其生成臭氧的潜力进行了评估,同时,利用基于观测的光化学模型,分时段分析了银川都市圈典型臭氧生成过程对臭氧前体物的敏感性。
银川都市圈典型站点大气臭氧及前体物的污染特征分析
Analysis of pollution characteristics of atmospheric ozone and precursors at typical sites in Yinchuan Metropolitan Area
-
摘要: 本文分析了银川都市圈的商业/交通/居民混合区和工业区两类典型站点的大气挥发性有机物(VOCs)的日变化特征,并通过臭氧生成潜势(OFP)对其生成臭氧潜力进行了评估,此外,基于观测的光化学模型(OBM模型)分析了银川都市圈臭氧生成对前体物的敏感性。观测结果表明,观测期间银川都市圈臭氧呈单峰型日变化,其中商业/交通/居民混合区采样点峰值出现在16:00—18:00,臭氧日最高小时浓度范围为131—200 μg·m−3;工业区采样点峰值出现在14:00—17:00,臭氧日最高小时浓度范围为155—186 μg·m−3。商业/交通/居民混合区采样点和工业区采样点总挥发性有机物(TVOCs)日变化浓度均呈现出早晚高、日间低的趋势,最大浓度分别为28.70
$ \times $ 10−9、165.84$ \times $ 10−9。烯烃对两个采样点臭氧生成潜势均有较大贡献,商业/交通/居民混合区和工业区采样点的贡献率分别为21.58%—67.59%和57.42%—89.73%。银川都市圈大气臭氧生成速率对VOCs中的烯烃和芳香烃的增量变化最为敏感,对CO以及烷烃的敏感性较弱,对于NO的增量通常为负响应。此外,文章还讨论了不同气团来向的臭氧生成对前体物的敏感的差异性。Abstract: Diurnal variation of ambient volatile organic compounds (VOCs) were analyzed at two typical sites in the commercial/traffic/residential mixed area and industrial area of Yinchuan Metropolitan Area in the present work. The contributions of VOCs categories to ozone (O3) production were assessed by ozone formation potential (OFP) calculations. In addition, an observation-based model (OBM) was used to identify the sensitivity of ozone generation to precursors in the Yinchuan metropolitan area. Observations showed that ozone in Yinchuan depicted a single-peak diurnal pattern during the observed period. In the commercial/traffic/residential mixed area, the O3 daily peak occurred between 16:00 and 18:00, with daily maximum hourly concentrations of ozone ranged from 131 μg·m−3 to 200 μg·m−3. The O3 daily peak in the industrial area occurred between 14:00 and 17:00, and the daily maximum hourly O3 ranged from 155 μg·m−3 to 186 μg·m−3. The total volatile organic compounds (TVOCs) were higher at morning and night than midday. At the commercial/traffic/residential mixed sampling site, the observed maximum TVOCs concentration was 28.70$ \times $ 10−9 and at the industrial sampling site was 165.84$ \times $ 10−9. Alkenes made the largest contribution to ozone formation potentials (OFP), which respectively accounted for 67.59% and 89.73% of the OFP in the commercial/traffic/residential mixed sampling site and industrial sampling site. Relative incremental reactivity (RIR) analysis suggests that the ozone formation rate in the Yinchuan Metropolitan Area was most sensitive to the changes of alkenes and aromatics, while less sensitive to CO and alkanes. The present work also illustrates the variations of ozone formation sensitivity to precursors between air masses originating from different directions. -
-
[1] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change [J]. Environment Science & Policy for Sustainable Development, 1998, 40(7): 26-26. [2] BRAUER M, FREEDMAN G, FROSTAD J, et al. Ambient air pollution exposure estimation for the global burden of disease 2013 [J]. Environmental Science & Technology, 2016, 50(1): 79-88. [3] ASHMORE M R. Assessing the future global impacts of ozone on vegetation [J]. Plant Cell & Environment, 2010, 28(8): 949-964. [4] BHATIA A, TOMER R, KUMAR V, et al. Impact of tropospheric ozone on crop growth and productivity - a review [J]. Journal of Scientific & Industrial Research, 2012, 71(2): 97-112. [5] FELZER B, REILLY J, MELILLO J, et al. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model [J]. Climatic Change, 2005, 73(3): 345-373. doi: 10.1007/s10584-005-6776-4 [6] SITCH S, COX P M, COLLINS W J, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink [J]. Nature, 2007, 448(7155): 791-794. doi: 10.1038/nature06059 [7] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420 [8] ATKINSON R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000, 34(12/14): 2063-2101. [9] SILLMAN S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments [J]. Atmospheric Environment, 1999, 33(12): 1821-1845. doi: 10.1016/S1352-2310(98)00345-8 [10] HE Z, WANG X, LING Z, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications [J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8801-8816. doi: 10.5194/acp-19-8801-2019 [11] WANG M, CHEN W, ZHANG L, et al. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China [J]. Journal of Environmental Sciences, 2020, 93(2020): 13-22. [12] ZHANG K, LI L, HUANG L, et al. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai [J]. Atmospheric Environment, 2020, 232: 1175-1186. [13] ZHANG L, LI H, WU Z, et al. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment [J]. Journal of Environmental Sciences, 2020, 95(2020): 190-200. [14] Department of Ecological Environment of Ningxia Hui Autonomous Region. Bulletin of Ningxia Ecological Environment[R]. 2015—2019(in Chinese). [15] FU Z Q, DAI C H, WANG Z W, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha [J]. Environmental Chemistry, 2019, 38(3): 531-538(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042503 [16] USEPA. Compendium method TO-14A: Determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography[S]. 1999. [17] USEPA. Compendium method TO-15: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS)[S]. 1999. [18] HUANG H M, GUO J, WANG Z W, et al. Preliminary analysis of ambient volatile organic compounds in Guiyang, China [J]. Environmental Chemistry, 2018, 37(11): 2387-2396(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012301 [19] MA W, WANG Z W, GUO J, et al. Sensitivity of ambit atmospheric ozone to precoursor species and locate fort sociation [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3593-3599(in Chinese). [20] ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in Spring of Beijing urban area [J]. Research of Environmental Sciences, 2020, 33(3): 526-535(in Chinese). [21] CARTER W P L. Development of the SAPRC-07 chemical mechanism [J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [22] HAN L, CHEN J H, JIANG T, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in Chengdu with an observation based model [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4092-4104(in Chinese). [23] LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J]. Scientia Sinica Chimica, 2010, 40(4): 407-420(in Chinese). doi: 10.1360/zb2010-40-4-407 [24] STOCKWELL W R, KIRCHNER F, KUHN M, et al. A new mechanism for regional atmospheric chemistry modeling [J]. Journal of Geophysical Research-Atmospheres, 1997, 102(D22): 25847-25879. doi: 10.1029/97JD00849 [25] CHENG H, GUO H, WANG X, et al. On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM) [J]. Environmental Science and Pollution Research, 2010, 17(8): 1491-1492. doi: 10.1007/s11356-010-0347-6 [26] CUI Y R, SUO N, WANG L, et al. Study of ozone generation and photochemical regimes in the urban atmosphere of Qinhuangdao [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4105-4112(in Chinese). [27] KANAYA Y, POCHANART P, LIU Y, et al. Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors [J]. Atmospheric Chemistry and Physics, 2009, 9(20): 7711-7723. doi: 10.5194/acp-9-7711-2009 [28] XUE L K, WANG T, GUO H, et al. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory [J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8551-8567. doi: 10.5194/acp-13-8551-2013 [29] DRAXLER R, ROLPH G. Air resources laboratory-HYSPLIT-hybrid single particle lagrangian integrated trajectory model[EB/OL]. [2020-10-16]. http://www.arl.noaa.gov/ready/hysplit4.html, 2003. [30] ZHANG J, WANG T, CHAMEIDES W L, et al. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China [J]. Atmospheric Chemistry and Physics, 2007, 7(73): 557-573. [31] LU J, WANG H L, CHEN C H, et al. The composition and chemical reactivity of volatile organic compounds(VOCs) from vehicle exhaust in Shanghai, China [J]. Environmental Pollution & Control, 2010, 32(6): 32-39(in Chinese). doi: 10.3969/j.issn.1001-3865.2010.06.008 [32] ZHANG Y H, SU H, ZHONG L J, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign [J]. Atmospheric Environment, 2008, 42(25): 6203-6218. doi: 10.1016/j.atmosenv.2008.05.002 [33] XUE L, WANG T, LOUIE P K K, et al. Increasing External Effects Negate Local Efforts to Control Ozone Air Pollution: A case study of Hong Kong and implications for other Chinese cities [J]. Environmental Science & Technology, 2014, 48(18): 10769-10775. [34] QIAO Y Z, WANG H L, HUANG C, et al. Source profile and chemical reactivity of volatile organic compounds from vehicle exhaust [J]. Environmental Science, 2012, 33(4): 1071-1079(in Chinese).