-
有机磷酸酯(organophosphorus esters, OPEs)是一类重要的有机磷阻燃剂(organophosphate flame retardants, OPFRs),主要以磷作为支架,用链烃、芳香烃或卤代烃取代磷酸上的氢原子组成。按性质的差异,OPEs可划分为卤代和非卤代有机磷阻燃剂[1],前者主要是氯代有机磷酸酯(Chlorinated organophosphates, Cl-OPEs),主要包括磷酸三(2-氯乙基)酯(TCEP),磷酸三(2-氯丙基)酯(TCPP)和磷酸三(1,3-二氯-2-丙基)酯(TDCPP)等。20世纪80年代之后,随着溴代阻燃剂在世界范围内的禁用,OPFRs因具有良好的阻燃效果及其低烟、低毒、低卤等特点,得到了广泛应用[2],2015年全球OPFRs消耗量达到68万t[3]。鉴于OPEs是以简单物理添加而非键合的方式添加到材料中,可以通过挥发和表面磨损进入环境,近年来,OPEs在室内灰尘[4-5]、大气[6-7]、水体[8-13] 、土壤[14]、沉积物[11,15]、生物体[12,16]、污泥[11,17]和垃圾填埋场[18]等多种环境介质中频繁检出。尽管确切的人体暴露数据还比较有限,大量利用斑马鱼、大型溞、小鼠等模式生物或借助体外细胞进行的试验表明,OPEs具有多种毒性效应或指向了明显的致毒趋势,如急性毒性[19-22]、生殖与发育毒性[22-30]、神经毒性[24,31-34]、脏器毒性[35]、基因毒性和致突变性[19,36-38]、内分泌干扰性[39-43]和致癌性[20,44]。表1列出了主要OPEs的基本信息。
随着研究的深入,Cl-OPEs作为特殊的一类OPEs越来越受到学界关注。首先,Cl-OPEs是环境赋存最广的一类OPEs,在各介质的检出组成中占据主导地位,其浓度水平为ng·L−1—μg·L−1(水体和垃圾渗滤液),pg·m−3(空气),ng·g−1(土壤、室内灰尘、生物体和沉积物)。例如,TCPP和TCEP被证实是水环境中丰度最高的两种OPEs[8-10],浓度分别可达921 ng·L−1 (TCPP)和268 ng·L−1 (TCEP)[10];以TCPP为主的Cl-OPEs在我国土壤OPEs中占74%以上[14];TCEP在我国城市家庭和大学宿舍室内灰尘中的含量高达208 μg·g−1[5];TCPP在德国北海大气OPEs中的占比高达60%±16%[7],TCPP和TDCPP是韩国石洼人工湖沉积物中的主导OPEs[45],其中TCPP浓度达到2500 ng·g−1。其次,Cl-OPEs具有显著、广泛的生物毒性效应。一方面,在所有OPEs表现出的生物毒性种类中均观察到Cl-OPEs,且只有Cl-OPEs被报道具有致癌性[44];另一方面,研究也证实Cl-OPEs中的TDCPP生物毒性极强,例如TDCPP对虹鳟鱼的96 h-LC50仅为1.1 mg·L−1[20],对斑马鱼仔鱼和胚胎的116 h-LC50仅为7 mg·L−1[19],室内灰尘中的TDCPP可能引起男性激素水平改变和精液质量显著下降[29],其代谢物双(1,3-二氯-2-丙基)磷酸盐(BDCPP)对斑马鱼胚胎是比本体强4个数量级的致畸剂[31]等。另外,Cl-OPEs是最难降解的一类OPEs,由于其对生物和化学降解的抵制倾向,以活性污泥法为基础的常规污水处理技术收效甚微[46],改性沸石[47]和碳纳米管[48]等吸附剂被报道可以有效地吸附水中的Cl-OPEs,但后续处理较为棘手,在此背景下,高级氧化技术(AOPs)在Cl-OPEs降解上得到应用。然而,Cristale等的研究表明TCEP、TDCPP和TCPP在AOPs的应用中也是最顽固的OPFRs[49],例如,UV/H2O2过程中,TCPP、TCEP和TDCPP烷基链上的Cl的存在显著降低了·OH对烷基磷酸酯的反应活性,有机物如腐殖质对UV的辐射吸收抑制了H2O2的消耗,增大了污水处理厂(WWTP)废水中Cl-OPEs的去除难度。
由于Cl-OPEs在环境中检出浓度较高、毒性效应显著且难以生化降解,亟需研究控制Cl-OPEs的替代处理技术。目前,在Cl-OPEs降解领域三种具有代表性的探索方向是水解、微生物降解和光降解。近来,以复合金属/半导体基光催化剂、强自由基发生基质(例如过硫酸盐的活化溶液)和可持续光能体系为优化方向的光催化氧化技术日渐流行。本文综述了Cl-OPEs的3种主要降解途径和机理,其中重点介绍了光降解Cl-OPEs的方法、特点和效果,通过分析比较不同降解途径的优势与不足,对未来Cl-OPEs降解的研究方向和前景提出展望。
氯代有机磷酸酯阻燃剂的去除技术研究进展
Advances in the removal technology of chlorinated organophosphate flame retardants
-
摘要: 有机磷酸酯类阻燃剂(organophosphate flame retardants, OPFRs)作为溴代阻燃剂的替代品得到广泛使用,其中氯代有机磷酸酯(chlorinated organophosphates, Cl-OPEs)因其在多种环境介质中检出浓度较高、生物毒性强且难以生化降解越来越受到关注。目前Cl-OPEs的降解技术研究集中在水解、微生物降解和光降解三个方面;同时,以复合金属/半导体基光催化剂、活化过硫酸盐和可持续光能体系为优化方向的高级氧化技术(AOPs)日渐成为主流。本文综述了Cl-OPEs不同降解途径的研究进展,其中重点介绍了4种光降解Cl-OPEs方法的原理、特点、效果和影响因素,通过分析比较不同降解途径的优势和不足,对未来Cl-OPEs降解的研究方向和前景提出了展望。
-
关键词:
- 氯代有机磷酸酯阻燃剂 /
- 降解途径 /
- 光催化 /
- 水解 /
- 生物降解
Abstract: Organophosphate flame retardants (OPFRs) have been widely used as an alternative to brominated flame retardants, of which chlorinated organophosphates (Cl-OPEs) have received increasing attention because of their high abundance in various environmental media, significant biotoxicity and strong resistance to conventional biochemical degradation. Efforts on Cl-OPEs degradation techniques are mainly focused on three aspects as follows: hydrolysis, microbial degradation and photodegradation. Meanwhile, advanced oxidation technologies (AOPs) with composite metal/semiconductor based photocatalysts, activated persulphates and sustainable light energy systems are becoming the mainstream. In this paper, advances in different degradation pathways of Cl-OPEs are reviewed. The principles, characteristics, effects and influencing factors of four photodegradation methods of Cl-OPEs were emphatically introduced. By analyzing and comparing the advantages and disadvantages of different degradation systems, the research direction and prospect of future degradation of Cl-OPEs are put forward. -
表 1 主要OPEs名称和理化性质
Table 1. Names and Physicochemical properties of the major OPEs
化合物名称及简写
Compounds and AbbreviationCAS 分子式
Molecular formula取代基
SubstituentlgKow Vp(Torr) 磷酸三乙酯
(Triethyl phosphate, TEP)78-40-0 C6H15O4P 0.80 3.93×10−1 磷酸三正丁酯
(Tri-n-butyl phosphate, TnBP)126-73-8 C13H27O5P 4.00 1.13×10−3 磷酸三异丁酯
(Tri-iso-butyl phosphate, TiBP)126-71-6 C12H27O4P 3.60 1.28×10−3 磷酸三丁氧基乙基酯
(Tributoxyethyl phosphate, TBEP)78-51-3 C18H39O7P 3.75 2.50×10−8 磷酸三(2-氯乙基)酯
(Tri(2-chloroethyl)phosphate, TCEP)115-96-8 C6H12Cl3O4P 1.44 6.13×10−2 磷酸三(2-氯丙基)酯
(Tri(1-chloro-2-propy)phosphate, TCPP)13674-84-5 C9H18Cl3O4P 2.59 2.02×10−5 磷酸三(1,3-二氯-2-丙基)酯
(Tris(1,3-dichloro-2-propyl)phosphate, TDCPP)13674-87-8 C9H15Cl6O4P 3.65 7.36×10−8 磷酸三苯酯
(Triphenyl phosphate, TPhP)115-86-6 C18H15O4P 4.59 6.28×10−6 磷酸三甲苯酯
(Tricresyl phosphate, TCrP)1330-78-5 C21H21O4P 5.11 6.00×10−7 三苯基氧化膦
(Triphenylphosphine oxide, TPPO)791-28-6 C18H15OP 2.83 2.62×10−8 注:Kow为正辛醇-水分配系数,Vp为蒸汽压。Note: Kow is the n-octyl alcohol-water distribution coefficient, Vp is the vapor pressure. 表 2 具有降解Cl-OPEs性能的微生物及其降解性能总结
Table 2. Summary of (Cl-OPEs)-degrading bacterial species and their performance
菌种
Bacterial speciesCl-OPEs及代谢物
Cl-OPEs and metabolites降解/解毒率
Degradation/detoxification rate参考文献
Reference(TCEP) Acidovorax spp.,
Sphingomonas spp.
(TDCPP) Acidovorax spp.,
Aquabacterium spp.,
Sphingomonas spp.TCEP
TDCPP100% (6 h, [TCEP]0=20 µmol·L−1)
100% (3 h, [TDCPP]0=20 µmol·L−1)[67] (TCEP) Sphingobium
sp.strain TCM1,
(2-CE) Xanthobacter
autotrophicus strain GJ10TCEP
2-CE最佳条件测试:降解100% (30 ℃, pH=8.5,
[Co2+]=50 μmol·L−1, OD660=0.8,
[TCEP]0=10 µmol·L−1) 解毒100%
(24 h, [2-CE]0=180 µmol·L−1)
分步解毒:降解/解毒100%
(①4 h,[TCEP]0=10 µmol·L−1;
②144 h,[2-CE]0=29 µmol·L−1)[68] (TDCPP)Sphingobium
sp.strain TCM1,
(1,3-DCP)Arthrobacter
sp.strain PY1TDCPP
1,3-DCP最佳条件测试:降解100% (30 ℃, pH=8.5,
[MOPS]=50 mmol·L−1, [TDCPP]0=50 µmol·L−1)
解毒100% (35 ℃, pH=9.5,
[Tris-H2SO4]=50 mmol·L−1, [1,3-DCP]0=5 mmol·L−1)
同时解毒:降解/解毒率100%
(12 h, 30 ℃, pH=9, [Tris-H2SO4]=50 mmol·L−1,
[TDCPP]0=53.2 µmol·L−1,)[69] Pseudomonas spp.
Sphingobium spp.TCEP
TCPP(48.37±9.52)%—(82.28±7.48)% [73] 表 3 光降解Cl-OPEs的方法和效率总结
Table 3. Summary of methods, efficiency and kinetics of photodegradation of Cl-OPEs
方法
MethodsCl-OPEs浓度
Cl-OPEs concentration关键试剂
Key reagents照射波长
Irradiation wavelength光降解效率
Photodegradation efficiency参考文献
ReferenceUV/H2O2 5 mg·L−1 TCEP 50 mg·L−1,30% H2O2 254 nm >95% [77] UV/H2O2 143 mg·L−1 TCEP 5 mmol·L−1,30% H2O2 200—420 nm (1 h)>85% [80] UV/H2O2 50 μg·L−1 TCPP
50 μg·L−1 TCEP
50 μg·L−1 TDCPP30% H2O2 254 nm (1 h)97%
(1 h)91%
(1 h)84%[81] UV/H2O2 500 μg·L−1 TCEP 1.5 mg·L−1,30% H2O2 200—400 nm (6 h)100% [82] UV/H2O2 500 mg·L−1 TCEP 30% H2O2,50 mg·L−1 185—400 nm (13 h)97% [54] UV/H2O2 5 mg·L−1 TCPP 30% H2O2,0.1mmol·L−1 200—400 nm (15 h)96% [75] UV/H2O2 4 mg·L−1 TCPP 30% H2O2 200—400 nm (25 min)96.1% [84] UV/TiO2(P25) 4 mg·L−1 TCPP 1000 mg·L−1 TiO2-P25 365 nm (12 h)80% [85] UV/TiO2-001 4 mg·L−1 TCPP 1000 mg·L−1 TiO2-001 365 nm (6 h)100% [85] UV/TiO2(P25) 1 mg·L−1 TCEP 70 mg·L−1 TiO2 254 nm (10 min)99% [86] UV/TiO2(P25) 1 mg·L−1 TCPP 100 mg·L−1 TiO2 254 nm (25 min)100% [90] UV/MIL
-101(Fe)/PS1 mg·L−1 TCEP 500 mg·L−1 MIL-101(Fe)
500 mg·L−1 PS420 nm (3 h)>80% [89] UV/PS 1 mg·L−1 TCEP 500 mg·L−1 PS 280 nm (3 h)>95% [89] UV/PS 1 mg·L−1 TCEP 175 μmol·L−1 PS 254 nm (30 min)99% [91] UV/PMS 1 mg·L−1 TCEP 20 mg·L−1 PMS 365 nm (30 min)94.6% [92] UV/PS 1 mg·L−1TCPP 75 mg·L−1 PS 254 nm (25 min)98.2% [93] 模拟太阳光/
TiO2(P25)250 μg·L−1 TCPP 50 mg·L−1 TiO2 290—800 nm (2 h)95% [97] Vis/N、-TiO2 100 μg·L−1 TCPP 250 mg·L−1 N、S-TiO2 400—800 nm (2 h)65%—70% [94] Vis/GO@MIL
-101(Fe)/H2O21 mg·L−1 TCEP 500 mg·L−1 GO@MIL-101(Fe)
165 mmol·L−1 30% H2O2420 nm (30 min)95% [95] -
[1] ANDRESEN J A, GRUNDMANN A, BESTER K. Organophosphorus flame retardants and plasticisers in surface waters [J]. Science of the Total Environment, 2004, 332(1-3): 155-166. doi: 10.1016/j.scitotenv.2004.04.021 [2] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from california [J]. Environmental Science & Technology, 2012, 46(24): 13056-13066. [3] YAN S H, WU H M, QIN J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea) [J]. Environmental Pollution, 2017, 225: 559-568. doi: 10.1016/j.envpol.2017.02.071 [4] ALI N, DIRTU A C, VAN DEN EEDE N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment [J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100 [5] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure [J]. Chemosphere, 2015, 133: 47-52. doi: 10.1016/j.chemosphere.2015.03.043 [6] SALAMOVA A, HERMANSON M H, HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a european arctic site [J]. Environmental Science & Technology, 2014, 48(11): 6133-6140. [7] MOLLER A, XIE Z Y, CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea [J]. Environmental Pollution, 2011, 159(12): 3660-3665. doi: 10.1016/j.envpol.2011.07.022 [8] BOLLMANN U E, MOLER A, XIE Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters [J]. Water Research, 2012, 46(2): 531-538. doi: 10.1016/j.watres.2011.11.028 [9] REGNERY J, PUTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024 [10] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037 [11] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286 [12] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b [13] REEMTSMA T, QUINTANA J B, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate [J]. Trac-Trends in Analytical Chemistry, 2008, 27(9): 727-737. doi: 10.1016/j.trac.2008.07.002 [14] WANG Y, YAO Y, LI W, et al. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment [J]. Science of the Total Environment, 2019, 671: 528-535. doi: 10.1016/j.scitotenv.2019.03.335 [15] TAN X X, LUO X J, ZHENG X B, et al. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China [J]. Science of the Total Environment, 2016, 544: 77-84. doi: 10.1016/j.scitotenv.2015.11.089 [16] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020 [17] FU L, DU B, WANG F, et al. Organophosphate triesters and diester degradation products in municipal sludge from wastewater treatment plants in China: Spatial patterns and ecological implications [J]. Environmental Science & Technology, 2017, 51(23): 13614-13623. [18] QI C D, YU G, ZHONG M M, et al. Organophosphate flame retardants in leachates from six municipal landfills across China [J]. Chemosphere, 2019, 218: 836-844. doi: 10.1016/j.chemosphere.2018.11.150 [19] LIU C S, WANG Q W, LIANG K, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2013, 128: 147-157. [20] ORGANIZATION W H. Environmental Health Criteria 209: Flame retardants: Tris-(chloropropyl) phosphate and tris-(2-chloroethyl) phosphate [J]. Geneva: WHO, 1998 [21] CRISTALE J, GARCIA VAZQUEZ A, BARATA C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment [J]. Environment International, 2013, 59: 232-243. doi: 10.1016/j.envint.2013.06.011 [22] 皮天星, 蔡磊明, 蒋金花, 等. 新型阻燃剂TCPP对斑马鱼的毒性研究 [J]. 生态毒理学报, 2016, 11(2): 247-256. PI T S, CAI L M, JIANG J H, et al. Toxicity of a new flame retardant TCPP to zebrafish [J]. Journal of Ecotoxicology, 2016, 11(2): 247-256(in Chinese).
[23] WANG Q, LAI N L S, WANG X, et al. Bioconcentration and transfer of the organophorous flame retardant 1, 3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae [J]. Environmental Science & Technology, 2015, 49(8): 5123-5132. [24] WANG Q, LAM J C W, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001 [25] OLIVERI A N, BAILEY J M, LEVIN E D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish [J]. Neurotoxicology And Teratology, 2015, 52: 220-227. doi: 10.1016/j.ntt.2015.08.008 [26] WANG Q, LAM J C W, HAN J, et al. Developmental exposure to the organophosphorus flame retardant tris (1, 3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish [J]. Aquatic Toxicology, 2015, 160: 163-171. doi: 10.1016/j.aquatox.2015.01.014 [27] MCGEE S P, COOPER E M, STAPLETON H M, et al. Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure [J]. Environmental Health Perspectives, 2012, 120(11): 1585-1591. doi: 10.1289/ehp.1205316 [28] LIJ H, SU G, ZOU M, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of daphnia magna at environmentally relevant concentrations [J]. Environmental Science & Technology, 2015, 49(21): 12975-12983. [29] MEEKER J D, STAPLETON H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters [J]. Environmental Health Perspectives, 2010, 118(3): 318-323. doi: 10.1289/ehp.0901332 [30] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants-TCPP and TDCPP-on pipping success, development, mrna expression, and thyroid hormone levels in chicken Embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100 [31] NOYES P D, HAGGARD D E, GONNERMAN G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants [J]. Toxicological Sciences, 2015, 145(1): 177-195. doi: 10.1093/toxsci/kfv044 [32] DISHAW L V, POWERS C M, RYDE I T, et al. Is the PentaBDE replacement, tris (1, 3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells [J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289. doi: 10.1016/j.taap.2011.01.005 [33] YUAN L, LI J, ZHA J, et al. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus) [J]. Environmental Pollution, 2016, 208: 670-677. doi: 10.1016/j.envpol.2015.10.045 [34] 顾杰, 吴江, 王宏烨, 等. 有机磷酸酯对斑马鱼的早期神经毒性作用研究 [J]. 生态毒理学报, 2019, 14(5): 152-158. Gu J, WU J, WANG H Y, et al. Study on the early neurotoxicity of organophosphate on zebrafish [J]. Journal of Ecotoxicology, 2019, 14(5): 152-158(in Chinese).
[35] LIU C, SU G, GIESY J P, et al. Acute exposure to tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish [J]. Scientific Reports, 2016, 6: 19054. doi: 10.1038/srep19054 [36] LI F, CAO L, LI X, et al. Affinities of organophosphate flame retardants to tumor suppressor gene p53: An integrated in vitro and in silico study [J]. Toxicology Letters, 2015, 232(2): 533-541. doi: 10.1016/j.toxlet.2014.12.006 [37] LI J, GIESY J P, YU L, et al. Effects of Tris (1, 3-dichloro-2-propyl) Phosphate (TDCPP) in tetrahymena thermophila: Targeting the ribosome [J]. Scientific Reports, 2015, 5: 10562. doi: 10.1038/srep10562 [38] KRIVOSHIEV B V, DARDENNE F, BLUST R, et al. Elucidating toxicological mechanisms of current flame retardants using a bacterial gene profiling assay [J]. Toxicology In Vitro, 2015, 29(8): 2124-2132. doi: 10.1016/j.tiv.2015.09.001 [39] LIU X, CAI Y, WANG Y, et al. Effects of tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) on sex-dependent alterations of thyroid hormones in adult zebrafish [J]. Ecotoxicology and Environmental Safety, 2019, 170: 25-32. doi: 10.1016/j.ecoenv.2018.11.058 [40] LIU X, JI K, CHOI K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish [J]. Aquatic Toxicology, 2012, 114: 173-181. [41] CHEN G, JIN Y, WU Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption [J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 310-318. doi: 10.1016/j.etap.2015.06.021 [42] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors [J]. Toxicology, 2013, 314(1): 76-83. doi: 10.1016/j.tox.2013.09.004 [43] FERNIE K J, PALACE V, PETERS L E, et al. Investigating endocrine and physiological parameters of captive american kestrels exposed by diet to selected organophosphate flame retardants [J]. Environmental Science & Technology, 2015, 49(12): 7448-7455. [44] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [45] LEE S, CHO H J, CHOI W, et al. Organophosphate flame retardants (OPFRs) in water and sediment: Occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea [J]. Marine Pollution Bulletin, 2018, 130: 105-112. doi: 10.1016/j.marpolbul.2018.03.009 [46] MEYER J, BESTER K. Organophosphate flame retardants and plasticisers in wastewater treatment plants [J]. Journal of Environmental Monitoring, 2004, 6(7): 599-605. doi: 10.1039/b403206c [47] GRIECO S A, RAMARAO B V. Removal of TCEP from aqueous solutions by adsorption with zeolites [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013, 434: 329-338. [48] 严炜, 景传勇. 有机磷阻燃剂在不同含氧碳纳米管上的吸附行为 [J]. 环境化学, 2014, 33(10): 1692-1699. doi: 10.7524/j.issn.0254-6108.2014.10.003 Yan W, JING C Y. Adsorption behavior of organophosphate flame retardants on different oxygen-containing carbon nanotubes [J]. Environmental Chemistry, 2014, 33(10): 1692-1699(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.003
[49] CRISTALE J, RAMOS D D, DANTAS R F, et al. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants? [J]. Environmental Research, 2016, 144: 11-18. doi: 10.1016/j.envres.2015.10.008 [50] WU T, GAN Q, JANS U. Nucleophilic substitution of phosphorothionate ester pesticides with bisulfide (HS-) and polysulfides (Sn2-) [J]. Environmental Science & Technology, 2006, 40(17): 5428-5434. [51] 刘佳. 有机磷酸酯阻燃剂污染现状及降解过程研究进展 [J]. 应用化工, 2018, 47(12): 2705-2710,2714. doi: 10.3969/j.issn.1671-3206.2018.12.036 LIU J. Pollution status and degradation process of organophosphate flame retardants [J]. Applied Chemical Engineering, 2018, 47(12): 2705-2710,2714(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.12.036
[52] KAWAGOSHI Y, FUKUNAGA I, ITOH H. Distribution of organophosphoric acid triesters between water and sediment at a sea-based solid waste disposal site [J]. Journal of Material Cycles & Waste Management, 1999, 1(1): 53-61. [53] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution: pH-dependent hydrolysis, kinetics, and pathways [J]. Environmental Science & Technology, 2016, 50(15): 8103-8111. [54] WU L, CHLADKOVA B, LECHTENFELD O J, et al. Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis [J]. Science of the Total Environment, 2018, 615: 20-28. doi: 10.1016/j.scitotenv.2017.09.233 [55] FANG Y, KIM E, STRATHMANN T J. Mineral and base-catalyzed hydrolysis of organophosphate flame retardants: potential major fate-controlling sink in soil and aquatic environments [J]. Environmental Science & Technology, 2018, 52(4): 1997-2006. [56] KULKARNI S V, MARKAD V L, MELO J S, et al. Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3 [J]. Applied Microbiology and Biotechnology, 2014, 98(2): 919-929. doi: 10.1007/s00253-013-4938-2 [57] NANCHARAIAH Y V, REDDY G K K, MOHAN T V K, et al. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms [J]. Journal of Hazardous Materials, 2015, 283: 705-711. doi: 10.1016/j.jhazmat.2014.09.065 [58] RANGU S S, BASU B, MURALIDHARAN B, et al. Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS [J]. Applied Microbiology and Biotechnology, 2016, 100(1): 461-468. doi: 10.1007/s00253-015-6979-1 [59] XIONG J, LI G, AN T. The microbial degradation of 2, 4, 6-tribromophenol (TBP) in water/sediments interface: Investigating bioaugmentation using Bacillus sp. GZT [J]. Science of the Total Environment, 2017, 575: 573-580. doi: 10.1016/j.scitotenv.2016.09.017 [60] RANGU S S, MURALIDHARAN B, TRIPATHI S C, et al. Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp strain RSMS [J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2289-2296. doi: 10.1007/s00253-013-5158-5 [61] BERNE C, MONTJARRET B, GUOUNTTI Y, et al. Tributyl phosphate degradation by serratia odorifera [J]. Biotechnology Letters, 2004, 26(8): 681-686. doi: 10.1023/B:BILE.0000023030.69207.c0 [62] 刘佳. 有机磷酸酯类阻燃剂化学氧化及微生物降解过程的机理研究[D]. 北京: 北京科技大学, 2019. Liu J. Mechanism of chemical oxidation and microbial degradation of organophosphate flame retardants [D]. Beijing : University of Science and Technology Beijing, 2019 (in Chinese).
[63] WEI K, YIN H, PENG H, et al. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments [J]. Science of the Total Environment, 2019, 649: 563-570. doi: 10.1016/j.scitotenv.2018.08.342 [64] HOU R, LUO X, LIU C, et al. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms [J]. Environmental Pollution, 2019, 254: 113040. doi: 10.1016/j.envpol.2019.113040 [65] JURGENS S S, HELMUS R, WAAIJERS S L, et al. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge [J]. Chemosphere, 2014, 111: 238-242. doi: 10.1016/j.chemosphere.2014.04.016 [66] 卫昆. 磷酸三苯酯的微生物降解机制及其降解产物毒性研究[D]. 广州: 华南理工大学, 2018. WEI K. Microbial degradation mechanism of triphenyl phosphate and toxicity of its degradation products [D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
[67] TAKAHASHI S, KAWASHIMA K, KAWASAKI M, et al. Enrichment and characterization of chlorinated organophosphate ester-degrading mixed bacterial cultures [J]. Journal of Bioscience and Bioengineering, 2008, 106(1): 27-32. doi: 10.1263/jbb.106.27 [68] TAKAHASHI S, MIURA K, ABE K, et al. Complete detoxification of tris (2-chloroethyl) phosphate by two bacterial strains: Sphingobium sp. strain TCM1 and Xanthobacter autotrophicus strain GJ10 [J]. Journal of Bioscience and Bioengineering, 2012, 114(3): 306-311. doi: 10.1016/j.jbiosc.2012.04.010 [69] TAKAHASHI S, OBANA Y, OKADA S, et al. Complete detoxification of tris(1, 3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1 [J]. Journal of Bioscience and Bioengineering, 2012, 113(1): 79-83. doi: 10.1016/j.jbiosc.2011.08.020 [70] ABE K, YOSHIDA S, SUZUKI Y, et al. Haloalkylphosphorus hydrolases purified from Sphingomonas sp Strain TDK1 and Sphingobium sp strain TCM1 [J]. Applied and Environmental Microbiology, 2014, 80(18): 5866-5873. doi: 10.1128/AEM.01845-14 [71] ABE K, MUKAI N, MOROOKA Y, et al. An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1 [J]. Scientific Reports, 2017, 7(1): 2842. doi: 10.1038/s41598-017-03142-9 [72] TAKAHASHI S, KATANUMA H, ABE K, et al. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris (2-chloroethyl) phosphate, in Sphingobium sp strain TCM1 [J]. Applied Microbiology and Biotechnology, 2017, 101(5): 2153-2162. doi: 10.1007/s00253-016-7991-9 [73] LIU T, LU S Y, WANG R W, et al. Behavior of selected organophosphate flame retardants (OPFRs) and their influence on rhizospheric microorganisms after short-term exposure in integrated vertical-flow constructed wetlands (IVCWs) [J]. Science of the Total Environment, 2020, 710: 136403. doi: 10.1016/j.scitotenv.2019.136403 [74] DIAO Z H, LIU J J, HU Y X, et al. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism [J]. Separation and Purification Technology, 2017, 184: 374-383. doi: 10.1016/j.seppur.2017.05.016 [75] HE H, JI Q, GAO Z, et al. Degradation of tri (2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation [J]. Chemosphere, 2019, 236: 124388. doi: 10.1016/j.chemosphere.2019.124388 [76] LOHSE S, ROSENTRETER J J. Photooxidation of aqueous trichloroethylene using a buoyant photocatalyst with reaction progress monitored via micro-headspace GC/MS [J]. Microchemical Journal, 2006, 82(1): 66-72. doi: 10.1016/j.microc.2005.09.002 [77] WATTS M J, LINDEN K G. Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water [J]. Water Research, 2008, 42(20): 4949-4954. doi: 10.1016/j.watres.2008.09.020 [78] WATTS M J, LINDEN K G. Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers [J]. Environmental Science & Technology, 2009, 43(8): 2937-2942. [79] SANTORO D, RAISEE M, MOGHADDAMI M, et al. Modeling hydroxyl radical distribution and trialkyl phosphates oxidation in UV-H2O2 photoreactors using computational fluid dynamics [J]. Environmental Science & Technology, 2010, 44(16): 6233-6241. [80] RUAN X C, AI R, JIN X, et al. Photodegradation of Tri (2-chloroethyl) phosphate in aqueous solution by UV/H2O2 [J]. Water Air and Soil Pollution, 2013, 224(1): 1406. doi: 10.1007/s11270-012-1406-z [81] YUAN X J, LACORTE S, CRISTALE J, et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments [J]. Separation and Purification Technology, 2015, 156: 1028-1034. doi: 10.1016/j.seppur.2015.09.052 [82] ROCHA O R S D, DANTAS R F, NASCIMENTO JúNIOR W J, et al. Organophosphate esters removal by UV/H2O2 process monitored by 31p nuclear magnetic resonance spectroscopy [J]. Brazilian Journal of Chemical Engineering, 2018, 35(2): 521-530. doi: 10.1590/0104-6632.20180352s20160568 [83] TANG T, LU G N, WANG R, et al. Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method [J]. Ecotoxicology and Environmental Safety, 2019, 170: 300-305. doi: 10.1016/j.ecoenv.2018.11.142 [84] YU X, YIN H, PENG H, et al. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide [J]. Chemosphere, 2020, 241: 124991. doi: 10.1016/j.chemosphere.2019.124991 [85] 刘青. TiO2光催化降解水体中氯代有机磷酸酯类阻燃剂研究[D]. 南京: 南京大学, 2013. Liu Q. Photocatalytic degradation of chlorinated organophosphate flame retardants in water by TiO2 [D]. Nanjing : Nanjing University, 2013 (in Chinese).
[86] YE J, LIU J, LI C, et al. Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome [J]. Water Research, 2017, 124: 29-38. doi: 10.1016/j.watres.2017.07.034 [87] TANG T, LU G, WANG W, et al. Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid [J]. Chemosphere, 2018, 206: 26-32. doi: 10.1016/j.chemosphere.2018.04.161 [88] ABDULLAH A M, O’SHEA K E. TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 377: 130-137. doi: 10.1016/j.jphotochem.2019.03.026 [89] HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes [J]. Chemical Engineering Journal, 2019, 368: 273-284. doi: 10.1016/j.cej.2019.02.190 [90] YU X, YIN H, YE J S, et al. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses [J]. Chemical Engineering Journal, 2019, 374: 263-273. doi: 10.1016/j.cej.2019.05.193 [91] OU H S, LIU J, YE J S, et al. Degradation of tris (2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and intermediate impact on proteome of Escherichia coli [J]. Chemical Engineering Journal, 2017, 308: 386-395. doi: 10.1016/j.cej.2016.09.076 [92] XU X, CHEN J, QU R, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways [J]. Chemosphere, 2017, 185: 833-843. doi: 10.1016/j.chemosphere.2017.07.090 [93] YU X, YIN H, PENG H, et al. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses [J]. Science of the Total Environment, 2019, 687: 732-740. doi: 10.1016/j.scitotenv.2019.06.163 [94] ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts [J]. Chemical Engineering Journal, 2017, 318: 231-239. doi: 10.1016/j.cej.2016.06.124 [95] LIN J, HU H, GAO N, et al. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant [J]. Journal of Water Process Engineering, 2020, 33: 101010. doi: 10.1016/j.jwpe.2019.101010 [96] KRUITHOF J C, KAMP P C, MARTIJN B J. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection [J]. Ozone-Science & Engineering, 2007, 29(4): 273-280. [97] ANTONOPOULOU M, KARAGIANNI P, KONSTANTINOU I K. Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP) [J]. Applied Catalysis B:Environmental, 2016, 192: 152-160. doi: 10.1016/j.apcatb.2016.03.039