环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展

张佩萱, 高丽荣, 宋世杰, 乔林, 徐驰, 黄帝, 王爽, 蒋思静, 郑明辉. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
引用本文: 张佩萱, 高丽荣, 宋世杰, 乔林, 徐驰, 黄帝, 王爽, 蒋思静, 郑明辉. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
ZHANG Peixuan, GAO Lirong, SONG Shijie, QIAO Lin, XU Chi, HUANG Di, WANG Shuang, JIANG Sijing, ZHENG Minghui. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
Citation: ZHANG Peixuan, GAO Lirong, SONG Shijie, QIAO Lin, XU Chi, HUANG Di, WANG Shuang, JIANG Sijing, ZHENG Minghui. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603

环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展

    通讯作者: 郑明辉, E-mail: zhengmh@rcees.ac.cn
  • 基金项目:

    国家重点研发计划(2019YFC1804705,2018YFC1801601)资助.

Chlorinated paraffins in the environment: A review on their sources, levels and fate

    Corresponding author: ZHENG Minghui, zhengmh@rcees.ac.cn
  • Fund Project: Supported by the National Key R&D Program of China (2019YFC1804705, 2018YFC1801601).
  • 摘要: 短链氯化石蜡(SCCPs)是持久性有机污染物,已于2017年5月被正式列入《关于持久性有机污染物的斯德哥尔摩公约》附件A的受控名单.中链氯化石蜡(MCCPs)具有相似的性质.由于氯化石蜡(CPs)大量生产以及广泛应用,其在环境介质中的含量处于较高水平.本文综述了SCCPs和MCCPs的生产和排放,以及2016年以后文献报道的SCCPs和MCCPs在不同环境介质中的研究进展,包括在大气、水体、土壤和沉积物中的赋存、分布特征,探讨了SCCPs和MCCPs的环境行为,同时指出环境中CPs的溯源、界面过程及区域传输是未来的主要研究方向.
  • 醛酮类羰基化合物是环境中一类重要污染物[1-4],是我国及世界许多国家和地区重点监测的环境污染物之一。环境中醛酮类化合物一次污染源主要来源于工业排放、植被释放、香烟烟雾、烹饪油烟以及化石燃料和植物燃烧[5-9] 等。大气中VOCs的光氧化反应是醛酮类羰基化合物二次排放的主要来源[10]。在水[11-12]、土壤和沉积物[13-14],尤其是大气[15-16]等介质中均有不同程度的检出。

    测定醛酮类羰基化合物主要有GC法[17]、GC/MS(/MS)法[7-18],毛细管电泳-紫外法[19]、HPLC法[13-15, 20]以及HPLC/MS法[12, 21]等。空气样品醛酮类化合物中最常用的方法是用涂敷2,4-二硝基苯肼(DNPH)的硅胶管采集,使目标物与DNPH在酸性介质中发生衍生化反应生成醛酮-DNPH腙衍生物,用反相液相色谱法分离,紫外检测器检测。

    LC对比GC和GC/MS法的缺点是分辨率低、分析时间长、溶剂用量大,但GC或GC/MS只能分析样品在进样系统不发生分解且能产生较高不受干扰色谱或质谱峰的羰基化合物或羰基化合物衍生物,而大部分高沸点羰基化合物衍生物容易分解,使得GC或GC/MS分析的目标物种类受到很大限制。LC-MS(/MS)对比LC-UV主要优势在于其选择性和灵敏度,但LC法仪器成本低、方法稳定性好也是其不可被替代的优势。Ochs等[22-23] 建立了RRLC-APCI(-)-MS/MS法测定31种羰基化合物,并与RRLC-UV法的线性、相关系数、检测限和灵敏度进行了比较,RRLC-UV法灵敏度更高;RRLC-APCI(-)-MS/MS检测限为0.71—10.3 µg·L−1,略低于RRLC-UV法,但方法定性准确更高。Zurek等[24]对比了APCI和ESI正离子模式下测定羰基化合物与4-二甲氨基-6-(4-甲氧基-1-萘基)-1,3,5-三嗪-2-肼(DMNTH) 的Hantzsch衍生反应产物。随着高分辨质谱技术的发展,化合物定性准确性又有了大幅提高。孟志娟等[25] 将Orbitrap GC-MS用于农产品中70种农药残留的快速筛查分析,陈溪等[26]用UPLC-Q-Orbitrap MS对水中112种药品及个人护理品进行了筛查和定量测定,112 种PPCPs 的定量限可达 0.002—0. 8 µg·L−1,准确性和灵敏度大大提高。目前还未发现使用液相色谱/高分辨质谱分析醛酮类化合物的报道。

    本论文深入研究了25种羰基化合物-DNPH衍生物的HPLC-UV、UPLC-ESI-MS/MS和UPLC-ESI-Q- Orbitrap MS的最佳分析条件,建立了各自对应分析方法,并对分析结果的分离度、分辨率、检出限、线性范围和定性准确性等分析特征进行了比较评价。使用3种方法分别对加标模拟样及天津市大气实际样品进行了分析测定,明确3种方法各自特点和适用范围,Orbitrap MS还可对样品中非靶标污染物进行准确识别,并可通过理化性质相似的已知浓度化合物响应因子比较,提供半定量结果,为复杂环境样品污染物精准识别和准确检测提供了有力技术支持。

    高效液相色谱仪,带二极管阵列检测器(Agilent1260,美国Agilent公司);超高效液相色谱-串联质谱仪,带电喷雾离子源(Agilent 1290/6460,美国Agilent公司);超高效液相色谱-电喷雾离子源-四极杆/静电场轨道阱高分辨质谱仪(Ultimate 3000-Q Exactive Focuse,美国Thermo Fisher公司);N-EVAP111氮吹仪(Organomation公司);Milli-Q超纯水系统(美国Millipore公司);色谱柱1:Agilent ZORBAX Extend-C18,4.6 mm×250 mm,5 µm;色谱柱2 Agilent ZORBAX Eclipse Plus C18,2.1 mm×100 mm,1.8 μm (美国Agilent公司);色谱柱3:Thermo Accucore RP-MS,2.1 mm×100 mm,2.6 µm(美国Thermo公司);Cleanert DNPH-Silica醛酮气体采样管 (200 mg·3mL−1)及臭氧去除管(240 mg·3mL−1)(天津艾杰尔飞诺美公司);0.22 µm尼龙水相针式滤膜(美国Supelco公司)。

    25种醛酮-DNPH标准溶液,15 mg·L−1(美国ChemTek公司),分别为甲醛、乙醛、丙烯醛、丙酮、糠醛、丙醛、巴豆醛/丁烯醛、丁酮、甲基丙烯醛、丁醛、苯甲醛、异戊醛、环己酮、戊二醛、戊醛、对,间,邻-甲基苯甲醛、甲基异丁基酮、己醛、2,5-二甲基苯甲醛、庚醛、辛醛、壬醛和癸醛的DNPH衍生物;16种醛酮类标准液1000 mg·L−1(包括甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、丁酮、丁醛、苯甲醛、异戊醛、戊醛、对,间,邻-甲基苯甲醛、己醛、2,5-二甲基苯甲醛,CHEM SERVICE公司),其余9种醛酮为标准品,均为色谱纯 (DIKMA公司);2,4-二硝基苯肼(DNPH) (99.5%,百灵威公司);甲醇、乙腈(液相色谱纯,MERCK公司);超纯水,经Milli-Q超纯水器纯化得到。

    分别取9种醛酮类标准品用乙腈配制成质量浓度为1000 mg·L−1的混合储备溶液,与16种醛酮类标准溶液一起,各取100 µL于10 mL容量瓶中,用乙腈定容,配制成10 mg·L−1的25种醛酮类混合标准工作溶液,低于4 ℃冰箱保存。

    环境空气按照HJ 683—2014和EPA TO-11的规定采集样品,在真空泵的作用下,气体样品经除臭氧小柱去除臭氧后,用 DNPH柱吸附,样品中醛酮类化合物与DNPH发生衍生化反应。采样流量0.5 L·min−1,采气体积100 L。采样管用密封帽将两端管口封闭,放入避光密封袋中,低于4 ℃保存,时间不超过7 d。

    用乙腈洗脱采样管,洗脱方向与采样时气流方向相反,将洗脱液收集于5 mL容量瓶中,用氮吹仪浓缩至≤0.5 mL(液相色谱法浓缩至≤1.0 mL),若存在未溶解的橘红色颗粒物,用少量乙腈溶解,乙腈含量应≤0.5 mL,用纯水定容至1.0 mL,混匀,经针头过滤器过滤,滤液收集于2 mL棕色样品瓶中,待测。

    (1)色谱柱1;柱温:40 ℃;流动相:A相为纯水,B相为乙腈;检测波长:360 nm;进样量:10 μL。流速:1.0 mL·min−1

    (2)梯度洗脱程序:0—15 min,60%B; 15—23 min,60%—100%B;23—34 min,100%B;34—34.1 min,100%—60%B;34—36 min,60%B。

    (1)色谱柱2;柱温:40 ℃;流动相 A:1 mmol·mol−1乙酸铵/水溶液;流动相B:乙腈;流速:0. 3 mL·min−1;进样量:10 µL。

    (2)梯度洗脱程序:0—18 min,60%—70%B;18—23 min,70%—90%B;23—26 min,90%B;26—26.1 min,95%—60%B;26.1—30 min,60%B。

    (3)质谱条件:离子源:ESI,负离子模式;干燥气流量:10 L·min−1,温度:300 ℃;毛细管电压:4000 V;监测方式:MRM(多反应监测)。优化后得到25种醛酮腙的MRM条件见表1

    表 1  目标化合物的多反应监测条件
    Table 1.  MRM parameters for target compounds
    序号No.化合物缩写Compound abbreviation化合物Compound分子式Molecular formula母离子Precursor ions(m/z)子离子Product ions(m/z)碎裂电压/VFragmenter碰撞能/eVCE
    1DNPH2,4-二硝基苯肼2,4-dinitrophenylhydrazineC6H6N4O4197137608
    167.14
    2FA甲醛-DNPHFormaldehyde-DNPHC7H6N4O4209163.11000
    151.10
    3AA乙醛-DNPHAcetaldehyde-DNPHC8H8N4O422346.110016
    163.10
    4ACR丙烯醛-DNPHAcrolein-DNPHC9H8N4O4235158.21004
    163.128
    5PA丙醛-DNPHPropionaldehyde-DNPHC9H10N4O4237.146.110020
    163.116
    6AK丙酮-DNPHActone-DNPHC9H10N4O4237.146.110020
    122.00
    7CA巴豆醛/丁烯醛-DNPHCrotonaldehyde-DNPHC10H10N4O4249.1172.11004
    46.212
    8MA甲基丙烯醛-DNPHMethacrolein-DNPHC10H10N4O4249.146.210012
    172.14
    9BK丁酮-DNPHButanone-DNPHC10H12N4O4251.1152.11008
    122.016
    10BA丁醛-DNPHButylaldehyde-DNPHC10H12N4O4251.1152.11008
    122.016
    11IVA异戊醛-DNPHIsovaleraldehyde-DNPHC11H14N4O4265.1152.110012
    163.14
    12VA戊醛-DNPHValeraldehyde-DNPHC11H14N4O4265.1152.110012
    163.14
    132-FA糠醛-DNPH2-Furaldehyde-DNPHC11H8N4O527546.110012
    228.04
    14CHK环己酮-DNPHCyclohexanone-DNPHC12H14N4O4277.1247.21004
    231.112
    15HEXA己醛-DNPHHexaldehyde-DNPHC12H16N4O4279.1152.010012
    122.028
    16MIBK甲基异丁基酮-DNPHMethyl Isobutyl Ketone-DNPHC12H16N4O4279.1152.010012
    122.028
    17BZA苯甲醛-DNPHBenzaldehyde-DNPHC13H10N4O4285.146.210020
    163.120
    18HEPA庚醛-DNPHHeptaldehyde-DNPHC13H18N4O4293.1152.110012
    163.24
    19o-TA邻-甲基苯甲醛-DNPHo-Tolualdehyde-DNPHC14H12N4O4299.1162.91008
    252.18
    20,21p,m-TA对,间-甲基苯甲醛-DNPHp,m-Tolualdehyde-DNPHC14H12N4O4299.1162.91008
    252.18
    22OA辛醛-DNPHOctanal-DNPHC14H20N4O4307.1152.110020
    163.08
    23DMBA2,5-二甲基苯甲醛2,5-Dimethylbenzaldehyde-DNPHC15H14N4O4313.1181.014020
    163.020
    24NA壬醛-DNPHNonanal-DNPHC15H22N4O4321.1152.014020
    46.156
    25DA癸醛-DNPHDecanal-DNPHC16H24N4O4335.2152.114020
    163.08
    26GA戊二醛-DNPHGlutaraldehyde-DNPHC17H16N8O8459.1182.114012
    179.08
     | Show Table
    DownLoad: CSV

    (1)色谱柱3;柱温:40 ℃;流动相A:1 mmol·mol−1乙酸铵/水溶液;流动相B:乙腈;流速:0.3 mL·min−1;进样量:10 µL。

    (2)梯度洗脱:0—5 min, 50% B; 5—15 min, 50%—60% B; 15—20 min, 60%—70% B; 20—24 min, 70%—80% B; 24—25 min, 80%—95% B; 25—28 min, 95% B; 28—28.1 min, 95%—50% B; 28.1—30 min, 50% B。

    (3)离子化模式:HESI电离源;扫描模式:负离子模式;毛细管温度: 325 ℃;加热温度: 350 ℃;鞘气: N2,流速 40 arb;辅助气: N2,流速10 arb;喷雾电压:2800 V; 透镜电压:60 V。

    (4)扫描模式:全扫描/数据依赖二级(Full MS/dd-MS2)用于筛查、定性和定量,Full MS参数:分辨率 70000,自动增益控制目标(AGC target) 1×106,最大驻留时间(maximum IT) 100 ms,扫描范围 m/z50—600;dd-MS2参数:分辨率17500,AGC target2×105,最大驻留时间60 ms,动态排除8.0 s;NCE/Stepped NCE 25、45、65,Loop count 3,Isolation window 1.0 m/z。

    对25种浓度为150 µg·L−1羰基化合物-DNPH混合标准溶液用3种分析仪器在优化的质谱条件下分别进行分离测定,通过优化各自的最佳流动相梯度,各自分别考察了柱1:Agilent ZORBAX Extend-C18、柱2:Agilent ZORBAX Eclipse Plus C18和柱3:Thermo Accucore RP-MS的分离效果。25种目标物中含丙烯醛、丙酮、糠醛;环己酮、戊二醛、异戊醛、戊醛;邻,间,对-甲基苯甲醛等3组难分离物质。

    UV法用化合物的特征紫外吸收波长以及其保留时间定性,大部分化合物最佳吸收波长均为360 nm,难分离物质需要单标辅助定性,否则容易造成目标峰识别错误,这对化合物分离的要求更高。通过调整流动相梯度,只有柱1能够实现所有化合物识别(对,间-甲基苯甲醛能够在峰顶分离,环己酮和戊二醛分离最差,仅能分辨出是两种物质接近共流出),其他两根色谱柱均完全不能实现这两组难分离物质对的识别,因此UV法选择柱1进行分析测定。

    质谱法均为串联超高效液相色谱,色谱柱容量比常压液相色谱小,溶剂效应影响较大,因此待分析物质溶剂中有机相比例不能高于流动相的初始比例,否则容易出现色谱峰变形,使分离变差。柱2和柱3均为超高压液相色谱柱,适用于质谱的分析。通过优化各自最佳的分离条件,两根色谱柱在各自质谱仪上分辨率相差不大,最终MS/MS法选择柱2,Orbitrap MS法以柱3为分析柱。柱2和柱3除对,间-甲基苯甲醛不能实现分离外,其余化合物在30 min之内均可获得良好的分离度和尖锐对称的色谱峰形.

    由于MS/MS法是以特征离子对和保留时间定性、特征子离子定量,Orbitrap MS法以保留时间和具有精确质量数的二级特征碎片离子定性、母离子定量,因此对,间-甲基苯甲醛合并定量外,其他保留时间接近化合物均可不受对方干扰,即可准确定性定量。具体色谱分析条件优化结果见1.5节,本研究3根色谱柱25种目标物出峰顺序略有不同,具体见图1—(a),(b),(c)。

    图 1  25种醛酮腙标样UV色谱图/质谱图(a)UV色谱图;(b)Orbitrap MS提取母离子质谱图;(c)MS/MS 提取离子质谱图.
    Figure 1.  Chromatograms of 25 carbonyl derivatives: (a) by UVD; (b) by Orbitrap MS; and (c) by MS/MS.

    羰基化合物-DNPH结构使得ESI离子源采用正/负离子模式都有可能,通过负离子模式以甲醇−1 mmol/mol乙酸铵/水溶液为流动相,正离子模式以甲醇−0.1%甲酸/水溶液为流动相,在MS/MS法分别优化最佳子离子及最佳离子响应、最佳framgenger和CE值,Orbitrap MS优化了最佳NCE值条件下,测定各自ESI(+/−)模式下的分离度和响应值,结果发现在相同的分离情况下,负离子模式对大多数目标物具有更高的响应值。图2即为MS/MS法ESI(+/−)总离子流图的比较。Orbitrap MS ESI(+/−)母离子提取质谱图对比发现同样是ESI(−)比ESI(+)具有更高的响应值,更适合分析25种醛酮类羰基化合物。具体质谱分析优化条件结果见1.5节。

    图 2  25种醛酮腙标样ESI(+/−)-MS/MS总离子流比较
    Figure 2.  TIC abundance comparison of 25 carbonyl hydrazones by ESI(+/−)-MS/MS

    分别量取一定量的羰基化合物-DNPH标准溶液于1.0 mL棕色进样瓶中,用纯水定容,混匀。配制成质量浓度分别为0.45、0.75、1.50、3.00、4.50、7.50、15.0、30.0、45.0、75.0、150、300、450、750、1500 µg·L−1的标准系列,在各自优化的色谱和质谱条件下,UV以目标物色谱峰面积、MS/MS法以母离子对应的定量子离子峰面积、Orbitrap MS以母离子的提取色谱峰面积为纵坐标,以目标物的质量浓度为横坐标,绘制标准曲线,具体线性范围、相关系数测定结果见表2。由测定结果可见,3组曲线相关系数r均大于 0.990,UV法比MS/MS法线性范围更宽,UV法所有目标物在15—1500 µg·L−1内线性关系良好,而MS/MS法线性最高点仅为300 µg·L−1。Orbitrap MS法测定浓度最低,约为0.45—300 µg·L−1。方法检出限测定按照HJ168—2010规定的方法,采用向空白醛酮采样管中加标的方式(不同检测方法加标量分别为各化合物线性最低点对应的量,按采样量为100 L,定容体积为1.0 mL计算),测定7组模拟样品,按照样品测定方法进行测定,并计算标准偏差,以3.14倍标准偏差计算方法检出限,测定结果见表2。由表2可见,各目标物检出限 UV法略高于MS/MS法,分别在0.12—0.40 µg·m−3和0.08—0.60 µg·m−3之间,Orbitrap MS法最低,在1.1—13 ng·m−3之间,更适用于环境低浓度样品的测定。

    表 2  不同方法测定25种醛酮类化合物线性方程、相关系数、方法检出限比较
    Table 2.  Comparison of linear equations, correlation Coefficients, method detection limits of 25 carbonyl derivatives by different methods
    化合物compoundHPLC-UV法HPLC-ESI-MS/MS法HPLC-ESI-Q-Orbitrap MS法
    线性方程Linear equations线性范围/ (µg·L−1)Linear range相关系数r检出限/ (µg·m−3)MDL线性方程Linear equations线性范围/(µg·L−1)Linear range 相关系数r检出限/ (µg·m−3)MDL线性方程Linear equations线性范围/(µg·L−1)Linear range 相关系数r检出限/ (ng·m−3)MDL
    FAy=0.362x+0.8073.0—15000.9990.12y=226x+55.615—3000.9990.15y=7.43e6x+2.026e60.75—3000.9997.5
    AAy=0.267x+0.6707.5—15000.9990.15y=259x+1307.5—3000.9970.08y=1.0917x−3.05360.75—3000.9994.6
    2-FAy=0.0981x+0.25615—15000.9990.25y=143x+1817.5—3000.9960.08y=1.06e7x−6.78e60.75—3000.9996.5
    ACRy=0.231x+0.67915—15000.9990.15y=213x+80.27.5—3000.9940.08y=1.47e6x−1.57e60.75—3000.9994.5
    AKy=0.209x+0.48615—15001.0000.16y=121x+1767.5—3000.9950.08y=6.87e6x−1.16e61.50—3000.99915
    PAy=0.207x+0.52415—15000.9990.16y=430x+5457.5—3000.9970.08y=1.16e7x−5.58e60.75—3000.9998.5
    CAy=0.182x+0.36515—15000.9990.20y=342x+3967.5—3000.9970.08y=1.53e7x−5.54e60.75—1500.9999.1
    MAy=0.184x+0.72215—15000.9990.20y=352x+2907.5—3000.9990.08y=1.51e7x−6.12e50.45—3000.9995.1
    BKy=0.153x+0.33815—15000.9990.21y=764x−10.67.5—3000.9940.08y=7.04e6x−3.74e61.50—3000.99915
    BAy=0.160x+0.38815—15000.9990.21y=889x+1097.5—3000.9980.08y=1.47e7x−9.78e40.75—3000.9997.5
    BZAy=0.125x+0.25515—15000.9990.25y=165x+70.315—3000.9980.15y=1.58e7x-4.47e60.45—75.00.9994.5
    CHKy=0.0911x+0.31030—15000.9990.28y=191x+17230—3000.9980.30y=7.20e6x-2.61e60.45—1500.9993.8
    IVAy=0.113x+1.1630—15000.9990.30y=538x+1097.5—3000.9980.08y=3.14e7x−9.02e60.45—3000.9994.1
    GAy=0.191x+1.1030—15000.9990.30y=1939x15497.5—3000.9980.08y=1.69e7x−2.16e61.50—75.00.99915
    VAy=0.119x+1.3330—15000.9990.35y=798x+29.37.5—3000.9990.08y=1.50e7x+1.90e60.45—3000.9994.5
    o−TAy=0.105x+1.5030—15000.9990.38y=325x+27630—3000.9950.30y=1.63e7x−6.86e60.75—75.00.9995.5
    p−TAy=0.0879x+0.49630—15000.9990.38y=567x+28360—6000.9970.60y=2.66e7x+4.00e61.5—1500.9995.5
    m−TAy=0.121x−0.004730—15000.9990.38
    MIBKy=0.120x+0.25830—15000.9990.38y=838x+3467.5—3000.9980.08y=1.09e7x−6.70e60.45—3000.9994.5
    DMBAy=0.102x+0.92730—15000.9990.40y=278x+26630—3000.9980.30y=1.48e7x−4.44e60.45—75.00.9993.5
    HEXAy=0.0951x+0.24130—15000.9990.40y=521x+26615—3000.9930.15y=1.58e7x+6.15e60.45—3000.9993.8
    HEPAy=0.108x+0.37815—15000.9990.20y=509x+1117.5—3000.9970.08y=1.53e7x+2.39e60.45—3000.9992.5
    OAy=0.0954x+0.19215—15000.9990.20y=553x+7387.5—3000.9960.08y=1.74e7x−4.66e60.45—75.00.9991.1
    NAy=0.0897x+0.11715—15001.0000.21y=638x+1167.5—3000.9940.08y=1.81e7x−2.58e60.45—75.00.9991.1
    DAy=0.0840x+0.70915—15000.9990.21y=854x+3087.5—3000.9970.08y=1.82e7x+2.24e60.45—75.00.9991.1
     | Show Table
    DownLoad: CSV

    向3个6组空白醛酮采样管口分别加入25种醛酮标准混合溶液,按照样品采集方法,用高纯氮气代替实际样品,模拟采集环境空气中醛、酮类化合物,连续采样 1 h,制成加标量分别为75 ng的模拟样品,按照样品测定方法进行测定,计算加标回收率平均值和相对标准偏差。具体测定结果见表3。25种目标物的UV法、MS/MS法和Orbitrap MS测得平均回收率范围分别为68.9%—98.8%,67.9%—97.6%和66.5%—107%,相对标准偏差范围分别为4.9%—10%,6.9%—18%和5.6%—11%,精密度和准确度均能够满足测定要求。

    表 3  UV法、MS/MS法和Orbitrap法精密度、准确度和实际样品测定结果比较
    Table 3.  Comparison of the accuracy, precision and real sample test results by UV, MS/MS and Orbitrap methods respectively
    化合物Compound加标样/% Spiked sample(n=6)样品1/(µg·m−3) Sample 1样品2/(µg·m−3) Sample 2
    UVMS/MSOrbitrap MSUVMS/MSOrbitrap MSUVMS/MSOrbitrap MS
    回收率RecoveryRSD回收率RecoveryRSD回收率RecoveryRSD
    FA94.710.490.31297.97.12.312.062.252.452.702.56
    AA98.87.390.78.11078.92.051.781.961.801.761.92
    2-FA83.67.186.17.988.55.6NDND0.052NDND0.017
    ACR75.87.567.96.974.16.2ND0.1460.136NDND0.049
    AK81.37.470.31274.5113.273.133.802.782.672.84
    PA90.95.689.51394.57.10.330.250.3000.250.220.229
    CA84.15.978.78.881.58.9NDND0.10NDND0.013
    MA85.36.680.29.183.37.8NDND0.033NDND0.016
    BK77.49.778.61566.56.70.640.7020.6560.350.410.364
    BA68.95.575.68.285.37.90.410.4680.4770.220.260.235
    BZA91.15.692.59.697.49.7NDND0.114NDND0.043
    CHK75.68.870.71486.78.2ND0.460.048NDND0.040
    IVA80.97.478.91794.89.9ND0.120.108NDND0.027
    GA71.79.872.51877.111NDNDNDNDNDND
    VA79.35.875.11299.47.5ND0.330.274ND0.120.117
    o−TA79.34.980.11198.48.1NDND0.015NDNDND
    p−TA92.97.697.6121018.7NDND0.009NDNDND
    m−TA90.56.7NDND
    MIBK82.25.478.48.877.76.2NDND0.040NDND0.015
    DMBA90.87.191.21693.28.6NDND0.024NDND0.007
    HEXA84.87.683.48.879.49.2ND0.400.3340.500.630.536
    HEPA86.57.378.31181.07.8ND0.160.1920.310.290.322
    OA93.28.487.89.390.95.70.470.540.5180.830.780.895
    NA90.96.788.71086.49.12.292.122.404.454.374.84
    DA93.47.992.21590.47.70.430.310.3360.770.710.820
      注:ND., 未检出.  ND., not detected.
     | Show Table
    DownLoad: CSV

    将所建立的方法应用于来自天津市区某采样点于2020年3月9日(样品1)和3月27日(样品2)采集的环境空气样品,采用相同的前处理方法,制备好的试样分别分成3份,使用不同分析仪器针对25种羰基化合物分别进行了定性和定量测定。

    测定结果见根据测定结果可知,2个样品中除戊二醛未检出、样品2苯甲醛未检出外,Orbitrap法24种目标物均有检出,且其保留时间及一级母离子精确质量数测定值与理论值相差均<5×10−6,二级质谱5个碎片与筛查谱库离子碎片一致,测得24种目标物平均浓度在0.007—4.84 µg·m−3之间,其中浓度最高分别为丙酮、甲醛、乙醛、壬醛和己醛,浓度均高于1.00 µg·m−3;浓度最低依次是甲基苯甲醛、甲基丙烯醛、糠醛、丁烯醛和甲基异丁基酮。3种方法UV法和MS/MS法检出的化合物均远少于Orbitrap法,UV法检出最少。3种方法均能检出的目标物相对偏差均小于20%。

    本研究通过优化流动相梯度、最佳离子化模式和离子对、最佳碰撞能量等色谱质谱条件,建立了分别用HPLC-UV、UPLC-ESI-MS/MS和UPLC-ESI-Q-Orbitrap MS法同时测定空气中25种醛酮类羰基化合物的分析方法并进行了比较。研究结果表明3种检测方法线性相关系数、精密度和准确度均良好,MS方法定性准确性高,检出限较UV法低,而Orbitrap MS法最低,可达ng·m−3水平。UV法适用于检测相对高浓度样品,线性范围最宽;MS/MS法适用于测定中等浓度样品;而Orbitrap MS法适用于环境中低浓度样品检测,同时通过分析碎片离子,根据裂解规律、母离子和子离子精确质量,还可扩展筛查其他可能存在的非靶标羰基化合物。3种方法应用于实际样品测定发现Orbitrap MS法能够准确定性定量测定的化合物种类最多,UV法最少,但3种法均能检出的目标物相对偏差均小于20%。3种方法各有侧重,相互补充,为环境醛酮类羰基化合物准确定性定量提供了完善的技术手段,同时为其他适用于液相色谱和液相色谱质谱测定的化合物方法建立提供了可靠的例证。

  • [1] JACOB D B, EI-SAYED A T, FIEDLER H, et al. The handbook of environment chemistry[M]. Berlin:Springer-Verlag Press, 2010.
    [2] TOMY G T, FISK A T, WESTMORE J B, et al. Environmental chemistry and toxicology of polychlorinated n-alkanes[J]. Reviews of Environmental Contamination and Toxicology, 1998, 158:53-128.
    [3] HILGER B, FROMME H, VöLKEL W, et al. Occurrence of chlorinated paraffins in house dust samples from Bavaria, Germany[J]. Environmental Pollution, 2013, 175:16-21.
    [4] 王坤然. 氯化石蜡的检测技术及其环境行为研究[D]. 北京:中国科学院大学, 2020. WANG K R. Detection technology and environmental behavior of chlorinated paraffins[D].Beijing:University of Chinese Academy of Sciences,2020(in Chinese).
    [5] VAN MOURIK L M, GAUS C, LEONARDS P E G, et al. Chlorinated paraffins in the environment:A review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155:415-428.
    [6] WEI G L, LIANG X L, LI D Q, et al. Occurrence, fate and ecological risk of chlorinated paraffins in Asia:A review[J]. Environment International, 2016, 92/93:373-387.
    [7] 徐淳, 徐建华, 张剑波. 中国短链氯化石蜡排放清单和预测[J]. 北京大学学报(自然科学版), 2014, 50(2):369-378. XU C, XU J H, ZHANG J B. Emission inventory prediction of short chain chlorinated paraffins (SCCPs) in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2):369-378(in Chinese).
    [8] 黄慧婷. 短链和中链氯化石蜡的人体外暴露水平研究[D]. 北京:中国科学院大学, 2017. HUANG H T.Human exposure to short-and medium-chain chlorinated paraffins in China[D]. Beijing:University of Chinese Academy of Sciences,2017(in Chinese).
    [9] CHEN L, HUANG Y, HAN S, et al. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry[J]. Journal of Chromatography A, 2013, 1274:36-43.
    [10] ZENG L, WANG T, RUAN T, et al. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in china[J]. Environmental Pollution, 2012, 160:88-94.
    [11] GLUGE J, WANG Z, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins-a minimum scenariol[J]. Science of the Total Environment, 2016, 573:1132-1146.
    [12] CHAEMFA C, XU Y, LI J, et al. Screening of atmospheric short- and medium-chain chlorinated paraffins in India and Pakistan using polyurethane foam based passive air sampler[J]. Environmental Science&Technology, 2014, 48(9):4799-4808.
    [13] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9):919-929.

    WANG Y W,WANG Y,JINAG G B. Analytical methods,environmental pollutions and toxicity of short chain chlorinated paraffins[J]. Progress in Chemistry, 2017, 29(9):919-929(in Chinese).

    [14] POPRC. Short-chained chlorinated paraffins revised draft risk profile. Stockholm convention on persistent organic pollutants.[EB/OL].[2020-8-18]. Http://www.Pops.Int/theconvention/conferenceoftheparties/meetings/cop7/tabid/4251/mctl/viewdetails/eventmodid/870/eventid/543/xmid/13075/default.Aspx.
    [15] EU. Technical guidance document on risk assessment, part Ⅱ[EB/OL].[2020-8-18].Https://www.Ecdc.Europa.Eu/en/publications-data/technical-guidance-risk-assessment-guidelines-diseases-transmitted-aircraft
    [16] EU. Risk assessment of alkanes, C14-C17, chloro[EB/OL].[2020-8-18].Https://echa.Europa.Eu/documents/10162/d317126f-75bc-4ba6-a8be-7ecaa2a96656
    [17] ZHANG B Y, ZHAO B, XU C, et al. Emission inventory and provincial distribution of short-chain chlorinated paraffins in China[J]. Science of the Total Environment, 2017, 581:582-588.
    [18] WANG T, HAN S, YUAN B, et al. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting[J]. Environmental Pollution 2012, 171:38-45.
    [19] ZHU X, BAI H, GAO Y, et al. Concentrations and inhalation risk assessment of short-chain polychlorinated paraffins in the urban air of Dalian, China[J]. Environmental Science and Pollution Research, 2017, 24(26):21203-21212.
    [20] WANG P, ZHAO N, CUI Y, et al. Short-chain chlorinated paraffin (SCCP) pollution from a CP production plant in china:Dispersion, congener patterns and health risk assessment[J]. Chemosphere, 2018, 211:456-464.
    [21] LI Q, LI J, WANG Y. Atmospheric short-chain chlorinated paraffins in China, Japan, and South Korea[J]. Environmental Science & Technology, 2012, 46(21):11948-11954.
    [22] DIEFENBACHER P S, BOGDAL C, GERECKE A C, et al. Short-chain chlorinated paraffins in Zurich, Switzerland-atmospheric concentrations and emissions[J]. Environmental Science & Technology, 2015, 49(16):9778-9786.
    [23] GILLETT R W, GALBALLY I E, KEYWOOD M D, et al. Atmospheric short-chain-chlorinated paraffins in Melbourne, Australia-first extensive Southern Hemisphere observations[J]. Environmental Chemistry, 2017, 14(2):106-114.
    [24] MA X D, ZHANG H J, ZHOU H Q, et al. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica[J]. Atmospheric Environment, 2014, 90:10-15.
    [25] BORGEN A R, SCHLABACH M, GUNDERSEN H. Polychlorinated alkanes in arctic air[J]. Organohalogen Compd, 2000, 47:272-274.
    [26] WANG Y, LI J, CHENG Z, et al. Short- and medium-chain chlorinated paraffins in air and soil of subtropical terrestrial environment in the Pearl River Delta, South China:Distribution, composition, atmospheric deposition fluxes, and environmental fate[J]. Environmental Science & Technology, 2013, 47(6):2679-2687.
    [27] ZHUO M H, MA S T, LI G Y, et al. Chlorinated paraffins in the indoor and outdoor atmospheric particles from the Pearl River Delta:Characteristics, sources, and human exposure risks[J]. Science of the Total Environment, 2019, 650:1041-1049.
    [28] ZHOU W, SHEN M, LAM J C W, et al. Size-dependent distribution and inhalation exposure characteristics of particle-bound chlorinated paraffins in indoor air in Guangzhou, China[J]. Environment International, 2018, 121:675-682.
    [29] BARBER J L, SWEETMAN A J, THOMAS G O, et al. Spatial and temporal variability in air concentrations of short-chain (C10-C13) and medium-chain (C14-C17) chlorinated n-alkanes measured in the UK atmosphere[J]. Environmental Science & Technology, 2005, 39(12):4407-4415.
    [30] FRIDEN U E, MCLACHLAN M S, BERGER U. Chlorinated paraffins in indoor air and dust:Concentrations, congener patterns, and human exposure[J]. Environment International, 2011, 37(7):1169-1174.
    [31] SAKHI A K, CEQUIER E, BECHER R, et al. Concentrations of selected chemicals in indoor air from Norwegian homes and schools[J]. Science of the Total Environment, 2019, 674:1-8.
    [32] GAO W, CAO D, WANG Y, et al. External exposure to short- and medium-chain chlorinated paraffins for the general population in Beijing, China[J]. Environmental Science & Technology, 2018, 52:32-39.
    [33] HUANG H T, GAO L R, XIA D, et al. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China[J]. Environmental Pollution, 2017, 225:674-680.
    [34] SHANG H, FAN X, KUBWABO C, et al. Short-chain and medium-chain chlorinated paraffins in Canadian house dust and NIST SRM 2585[J]. Environmental Science and Pollution Research, 2019, 26(8):7453-7462.
    [35] KERSTEN W, REICH T. Non-volatile organic substances in Hamburg indoor dust[J]. Gefahrstoffe Reinhaltung der Luft, 2003, 63(3):85-91.
    [36] HE C, BRANDSMA S H, JIANG H, et al. Chlorinated paraffins in indoor dust from Australia:Levels, congener patterns and preliminary assessment of human exposure[J]. Science of the Total Environment, 2019, 682:318-323.
    [37] CHEN H, LAM J C W, ZHU M, et al. Combined effects of dust and dietary exposure of occupational workers and local residents to short- and medium-chain chlorinated paraffins in a mega e-waste recycling industrial park in South China[J]. Environmental Science & Technology, 2018, 52(20):11510-11519.
    [38] CAO Z, XU F, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15):8839-8846.
    [39] LIU L H, MA W L, LIU L Y, et al. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of Northeast China[J]. Environmental Pollution, 2017, 225:232-243.
    [40] SHI L, GAO Y, ZHANG H, et al. Concentrations of short- and medium-chain chlorinated paraffins in indoor dusts from malls in China:Implications for human exposure[J]. Chemosphere, 2017, 172:103-110.
    [41] ZENG L, WANG T, WANG P, et al. Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant[J]. Environmental Science & Technology, 2011, 45(13):5529-5535.
    [42] ZENG L X, LI H J, WANG T, et al. Behavior, fate, and mass loading of short chain chlorinated paraffins in an advanced municipal sewage treatment plant[J]. Environmental Science & Technology, 2013, 47:732-740.
    [43] ⅡNO F, TAKASUGA T, SENTHILKUMAR K, et al. Risk assessment of short-chain chlorinated paraffins in Japan based on the first market basket study and species sensitivity distributions[J]. Environmental Science & Technology, 2005, 39(3):859-866.
    [44] RUBIROLA A, SANTOS F, BOLEDA M, et al. Routine method for the analysis of short-chain chlorinated paraffins in surface water and wastewater[J]. Clean-Soil Air Water, 2018, 46:1600151.
    [45] COELHAN M. Levels of chlorinated paraffins in water[J]. Clean-Soil Air Water, 2010, 38(5/6):452-456.
    [46] GANDOLFI F, MALLERET L, SERGENT M, et al. Parameters optimization using experimental design for headspace solid phase micro-extraction analysis of short-chain chlorinated paraffins in waters under the European water framework directive[J]. Journal of Chromatography A, 2015, 1406:59-67.
    [47] HOUDE M, MUIR D C G, TOMY G T, et al. Bioaccumulation and trophic magnification of short- and medium-chain chlorinated paraffins in food webs from Lake Ontario and Lake Michigan[J]. Environmental Science & Technology, 2008, 42(10):3893-3899.
    [48] WANG X, XU S, WANG X, et al. Occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in suburban soils of Shanghai, China[J]. Chemosphere, 2017, 180:302-311.
    [49] 王迎军, 王亚韡, 江桂斌. 固相萃取法测定水中短链氯化石蜡[J]. 分析化学, 2018, 46(7):1102-1108.

    WANG Y J,WANG Y W,JIANG G B. Solid-phase extraction for analysis of short-chain chlorinated paraffins in water samples[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1102-1108(in Chinese).

    [50] HUANG Y M, CHEN L G, JIANG G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. Science of the Total Environment, 2019, 671:262-269.
    [51] 于国龙. 海洋环境短链氯化石蜡分析方法及应用研究[D]. 大连:大连海事大学, 2012. YU G L. Study on method and application for analysis of short chain chlorinated paraffins in marine environment[D]. Dalian:Dalian Maritime University,2012(in Chinese).
    [52] MA X, ZHANG H, WANG Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environ Sci Technol, 2014, 48(10):5964-5971.
    [53] SUN R, LUO X, TANG B, et al. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in South China:Bioaccumulation factors, tissue distribution, and trophic transfer[J]. Environmental Pollution, 2017, 222:165-174.
    [54] WANG X T, ZHANG Y, MIAO Y, et al. Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China:Occurrence, distribution, and congener profiles[J]. Environmental Science and Pollution Research, 2013, 20(7):4742-4749.
    [55] ZENG L X, ZHAO Z S, LI H J, et al. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea:Influencing factors, transport and implications[J]. Environmental Science & Technology, 2012, 46(18):9898-9906.
    [56] BRANDSMA S H, VAN MOURIK L, O'BRIEN J W, et al. Medium-chain chlorinated paraffins (CPs) dominate in Australian sewage sludge[J]. Environmental Science & Technology, 2017, 51(6):3364-3372.
    [57] NICHOLLS C R, ALLCHIN C R, LAW R J. Levels of short and medium chain length polychlorinated n-alkanes in environmental samples from selected industrial areas in England and Wales[J]. Environmental Pollution, 2001, 114(3):415-430.
    [58] STEVENS J L, NORTHCOTT G L, STERN G A, et al. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. Sewage sludge:Survey results and implications[J]. Environmental Science & Technology, 2003, 37(3):462-467.
    [59] BOGDAL C, ALSBERG T, DIEFENBACHER P S, et al. Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution[J]. Analytical Chemistry, 2015, 87(5):2852-2860.
    [60] XU J, GAO Y, ZHANG H, et al. Dispersion of short- and medium-chain chlorinated paraffins (CPs) from a CP production plant to the surrounding surface soils and coniferous leaves[J]. Environmental Science & Technology, 2016, 50(23):12759-12766.
    [61] XU C, ZHANG Q, GAO L R, et al. Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China[J]. Science of the Total Environment, 2019, 649:821-828.
    [62] ZENG L X, WANG T, HAN W Y, et al. Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands[J]. Environmental Science & Technology, 2011, 45(6):2100-2106.
    [63] HUANG D, GAO L R, QIAO L, et al. Concentrations of and risks posed by short-chain and medium-chain chlorinated paraffins in soil at a chemical industrial park on the southeast coast of China[J]. Environmental Pollution, 2020, 258:113704.
    [64] HALSE A K, SCHLABACH M, SCHUSTER J K, et al. Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from western europe[J]. Environmental Pollution, 2017, 220:1477-1479.
    [65] BOGDAL C, NIGGELER N, GLVGE J, et al. Temporal trends of chlorinated paraffins and polychlorinated biphenyls in Swiss soils[J]. Environmental Pollution, 2017, 220:891-899.
    [66] AAMIR M, YIN S, ZHOU Y, et al. Congener-specific C10-C13 and C14-C17 chlorinated paraffins in Chinese agricultural soils:Spatio-vertical distribution, homologue pattern and environmental behavior[J]. Environmental Pollution, 2019, 245:789-798.
    [67] WANG X, WANG X, ZHANG Y, et al. Short- and medium-chain chlorinated paraffins in urban soils of Shanghai:Spatial distribution, homologue group patterns and ecological risk assessment[J]. Science of the Total Environment, 2014, 490:144-152.
    [68] WANG K R, GAO L R, ZHU S, et al. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China[J]. Chemosphere, 2020, 247:8.
    [69] LI H J, FU J J, PAN W X, et al. Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of NY-Alesund and London Island, Svalbard, in the Arctic[J]. Science of the Total Environment, 2017, 590:163-170.
    [70] LI Y, HOU X, CHEN W, et al. Carbon chain decomposition of short chain chlorinated paraffins mediated by pumpkin and soybean seedlings[J]. Environmental Science & Technology, 2019, 53(12):6765-6772.
    [71] CHEN M Y, LUO X J, ZHANG X L, et al. Chlorinated paraffins in sediments from the Pearl River Delta, South China:Spatial and temporal distributions and implication for processes[J]. Environmental Science & Technology, 2011, 45(23):9936-9943.
    [72] 陈晨, 马新东, 国文,等. 辽河口海域短链氯化石蜡污染特征及生物富集[J]. 科学通报, 2014, 59(7):578-585.

    CHEN C, MA X D,GUO W, et al. Congener specific distribution and bioaccumulation of short-chain chlorinated paraffins in Liao Estuary[J]. Chinese Science Bulletin, 2014, 59(7):578-585(in Chinese).

    [73] 潘晓辉. 莱州湾区域表层沉积物中多氯化萘、多溴联苯醚和氯化石蜡的研究[D]. 北京:中国科学院大学,2010. PAN X H. Polychlorinated naphthalenes, polybrominated diphenyl ethers and polychlorinated paraffins in surface sediments of rivers and marine environment in the laizhou bay area[D]. Beijing:University of Chinese Academy of Sciences, 2010(in Chinese).
    [74] 高媛, 王成, 张海军,等.HRGC/ECNI-LRMS测定大辽河入海口表层沉积物中短链氯化石蜡[J]. 环境科学,2010,31(8):1904-1908.

    GAO Y, WANG C, ZHANG H J, et al. Analysis of short-chain chlorinated paraffins in sediment samples from the mouth of the daliao river by HRGC/ECNI-LRMS[J]. Environmental Science, 2010, 31(8):1904-1908(in Chinese).

    [75] ZENG L X, CHEN R, ZHAO Z S, et al. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas[J]. Environmental Science & Technology, 2013, 47(20):11449-11456.
    [76] IOZZA S, SCHMID P, OEHME M. Development of a comprehensive analytical method for the determination of chlorinated paraffins in spruce needles applied in passive air sampling[J]. Environmental Pollution, 2009, 157(12):3218-3224.
    [77] WANG T, YU J, HAN S, et al. Levels of short chain chlorinated paraffins in pine needles and bark and their vegetation-air partitioning in urban areas[J]. Environmental Pollution, 2015, 196:309-312.
    [78] WANG X T, ZHOU J, LEI B L, et al. Atmospheric occurrence, homologue patterns and source apportionment of short- and medium-chain chlorinated paraffins in Shanghai, China:Biomonitoring with Masson pine (Pinus massoniana L.) needles[J]. Science of the Total Environment, 2016, 560-561:92-100.
    [79] HUANG H, GAO L, XIA D, et al. Bioaccumulation and biomagnification of short and medium chain polychlorinated paraffins in different species of fish from Liaodong Bay, North China[J]. Scientific Reports, 2017, 7(1):10749.
    [80] ZHOU Y, YIN G, DU X, et al. Short-chain chlorinated paraffins (SCCPs) in a freshwater food web from dianshan lake:Occurrence level, congener pattern and trophic transfer[J]. Science of the Total Environment, 2018, 615:1010-1018.
    [81] DU B, GE J, YANG R, et al. Altitude-dependent accumulation of short chain chlorinated paraffins in fish from alpine lakes and Lhasa River on the Tibetan Plateau[J]. Environmental Pollution, 2019, 250:594-600.
    [82] LABADIE P, BLASI C, LE MENACH K, et al. Evidence for the widespread occurrence of short- and medium-chain chlorinated paraffins in fish collected from the Rhône River basin (France)[J]. Chemosphere, 2019, 223:232-239.
    [83] VORKAMP K, RIGÉT F F, BOSSI R, et al. Endosulfan, short-chain chlorinated paraffins (SCCPs) and octachlorostyrene in wildlife from greenland:Levels, trends and methodological challenges[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(4):542-551.
    [84] YUAN B, VORKAMP K, ROOS A M, et al. Accumulation of short-, medium-, and long-chain chlorinated paraffins in marine and terrestrial animals from Scandinavia[J]. Environmental Science & Technology, 2019, 53(7):3526-3537.
    [85] CASÀ M V, VAN MOURIK L M, WEIJS L, et al. First detection of short-chain chlorinated paraffins (SCCPs) in humpback whales (Megaptera novaeangliae) foraging in Antarctic waters[J]. Environmental Pollution, 2019, 250:953-959.
    [86] FRIDÉN U, JANSSON B, PARLAR H. Photolytic clean-up of biological samples for gas chromatographic analysis of chlorinated paraffins[J]. Chemosphere, 2004, 54(8):1079-1083.
    [87] KOH I O, THIEMANN W. Study of photochemical oxidation of standard chlorinated paraffins and identification of degradation products[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 139(2):205-215.
    [88] MUKHERJEE A B. The use of chlorinated paraffins and their possible effects in the environment[M]. Helsinki:Vesi- ja ympäristöhallitus, 1990.
    [89] WILLIS B, CROOKES M J, DIMENT J. Environmental hazard assessment:Chlorinated paraffins[R]. London:Toxicsubstances Division Dept of Theenvironmentl, 1994.
    [90] RIEGER R, BALLSCHMITER K. Semivolatile organic compounds-polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF), biphenyls (PCB), hexachlorobenzene (HCB), 4,4'-dde and chlorinated paraffins (CP)-as markers in sewer films[J]. Fresenius' Journal of Analytical Chemistry, 1995, 352(7):715-724.
    [91] ATKINSON R, L. C W P. Experimental investigation of the atmospheric chemistry of aromatic hydrocarbons and long-chain alkanes[J]. Abstracts of Papers of the American Chemical Society, 1986, 192:1-10.
    [92] FISK A T, WIENS S C, WEBSTER G R B, et al. Accumulation and depuration of sediment-sorbed C12- and C16-polychlorinated alkanes by oligochaetes (Lumbriculus variegatus)[J]. Environmental Toxicology and Chemistry 1998, 17(10):2019-2026.
    [93] SIJM D T H M, SINNIGE T L. Experimental octanol/water partition coefficients of chlorinated paraffins[J]. Chemosphere, 1995, 31(11):4427-4435.
    [94] DROUILLARD K, TOMY G, MUIR D, et al. Volatility of chlorinated n-alkanes (C10-C12):Vapor pressures and henry's law constants[J]. Environmental Toxicology and Chemistry, 1998, 17(7):1252-1260.
    [95] THOMPSON R S, MADELEY J R. Toxicity of a chlorinated paraffin (58% chlorination of short chain length n-paraffins) to the marine alga Skeletonema costatum[R]. London:Brixham Laboratory, 1983.
    [96] FISK A T, BERGMAN A, CYMBALISTY C D, et al. Dietary accumulation of C12- and C16-chlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 1996, 15:1775-1782.
    [97] FISK A T, CYMBALISTY C D, TOMY G T, et al. Dietary accumulation and depuration of individual C10-, C11- and C14-polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 1998, 43(2):209-221.
    [98] FISK A T, TOMY G T, CYMBALISTY C D, et al. Dietary accumulation and quantitative structure activity relationships for depuration and biotransformation of short, medium and long carbon chain polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2000, 19(6):1508-1516.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.8 %DOWNLOAD: 8.8 %HTML全文: 87.3 %HTML全文: 87.3 %摘要: 3.9 %摘要: 3.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.8 %其他: 97.8 %XX: 0.8 %XX: 0.8 %上海: 0.2 %上海: 0.2 %北京: 0.5 %北京: 0.5 %呼和浩特: 0.1 %呼和浩特: 0.1 %廊坊: 0.1 %廊坊: 0.1 %杭州: 0.1 %杭州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.2 %深圳: 0.2 %郑州: 0.2 %郑州: 0.2 %其他XX上海北京呼和浩特廊坊杭州沈阳济南淄博深圳郑州Highcharts.com
计量
  • 文章访问数:  10058
  • HTML全文浏览数:  10058
  • PDF下载数:  361
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-16
张佩萱, 高丽荣, 宋世杰, 乔林, 徐驰, 黄帝, 王爽, 蒋思静, 郑明辉. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
引用本文: 张佩萱, 高丽荣, 宋世杰, 乔林, 徐驰, 黄帝, 王爽, 蒋思静, 郑明辉. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
ZHANG Peixuan, GAO Lirong, SONG Shijie, QIAO Lin, XU Chi, HUANG Di, WANG Shuang, JIANG Sijing, ZHENG Minghui. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
Citation: ZHANG Peixuan, GAO Lirong, SONG Shijie, QIAO Lin, XU Chi, HUANG Di, WANG Shuang, JIANG Sijing, ZHENG Minghui. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, (2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603

环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展

    通讯作者: 郑明辉, E-mail: zhengmh@rcees.ac.cn
  • 1. 西安科技大学地质与环境学院, 西安, 710054;
  • 2. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 3. 江汉大学环境与健康研究院, 武汉, 430056
基金项目:

国家重点研发计划(2019YFC1804705,2018YFC1801601)资助.

摘要: 短链氯化石蜡(SCCPs)是持久性有机污染物,已于2017年5月被正式列入《关于持久性有机污染物的斯德哥尔摩公约》附件A的受控名单.中链氯化石蜡(MCCPs)具有相似的性质.由于氯化石蜡(CPs)大量生产以及广泛应用,其在环境介质中的含量处于较高水平.本文综述了SCCPs和MCCPs的生产和排放,以及2016年以后文献报道的SCCPs和MCCPs在不同环境介质中的研究进展,包括在大气、水体、土壤和沉积物中的赋存、分布特征,探讨了SCCPs和MCCPs的环境行为,同时指出环境中CPs的溯源、界面过程及区域传输是未来的主要研究方向.

English Abstract

参考文献 (98)

返回顶部

目录

/

返回文章
返回