-
N-亚硝胺类物质(以下简称亚硝胺),通式为R1(R2)=N—N=O(R是烷基或芳烃),其来源广泛,以极微量的成分分布于大气、水、土壤、食物、烟草、农药、化妆品和化工产品等介质中,也可经消毒过程产生。水中常见的亚硝胺有9种,物质结构图见图1,包括脂肪族(如N-亚硝基二甲胺NDMA)、杂环(如N-亚硝基吗啉NMOR)和芳香族(如N-亚硝基二苯胺NDPhA),一般为黄色液体,或低熔点固体。亚硝胺引起人们的广泛关注有两个原因。首先,亚硝胺是有毒有害物质,其致癌性远高于三卤甲烷等常规消毒副产物[1],亚硝胺的致癌性是其N-硝胺类似物的15倍,三卤甲烷的600倍[2]。美国环境保护署综合风险信息系统(USEPA IRIS)和国际癌症研究机构(IARC)对水中常见的9种亚硝胺的致癌等级进行了评定,结果显示亚硝胺的致癌等级均在2B级及以上[3]。美国等国家的相关部门已经对相应的亚硝胺含量及种类进行了监管,例如对于NDMA,美国环保局建议饮用水中的最大浓度为7 ng·L−1[4];在澳大利亚,饮用水中的最大允许值为10 ng·L−1[5]。近年来还发现了一些新型亚硝胺,比如烟草专属亚硝胺(TSNAs),它是一类仅存在于烟草及烟草制品中的亚硝胺。它可以在调制、加工等过程中,由烟草生物碱亚硝化作用产生[6-7],通过香烟燃烧大量释放。在已知的TSNAs中,N-亚硝基降烟碱(NNN)、4-(甲基亚硝胺基) -1-(3-吡啶基) -1-丁酮(NNK)最具致癌性, 已被IARC确定为1类(最高级别)致癌物[8]。其他的TSNAs包括N-亚硝基新烟草碱(NAT) 和N-亚硝基假木贼碱(NAB) 4-(N-亚硝基胺)-4-(3-吡啶基)-1-丁醛(NNA)等[9],因此需要进一步评估TSNAs对人类健康造成危害的可能性。其次,由于城市化和城市人口规模的发展,人们直接或间接受到被污染水体的危害逐渐增加。而这些水体中,多含有污水有机质或藻类有机质等高含氮的亚硝胺前体物,从而增加亚硝胺生成的概率[10]。这也是近年来在饮用水中常检出亚硝胺的重要原因[11-12]。这又进一步提高了人类接触亚硝胺类物质的可能性。
由于亚硝胺的亨利定律常数(Henry`s law constant)低,因此其主要存在于水体介质中[1]。基于此,迄今为止,对在固体环境基质中的亚硝胺的检测与环境行为的研究相对较少。土壤是生态环境的重要组成部分,更是人类赖以生存和发展的物质基础。目前已有研究表明土壤中亚硝胺可被检出,常见的亚硝胺类物质可以通过工业废水、污水处理厂污泥的填埋处理以及废水的农业利用等途径进入土壤环境中[13-15],需要进一步分析亚硝胺在土壤环境的浸出风险。对于TSNAs,虽然我国是烟草种植大国,但在种植环节中,TSNAs进入土壤的可能性有限。因为目前的研究显示,TSNAs在新鲜烟叶中很少产生或几乎不产生,可以在吸烟过程中直接产生,或经过二、三手烟产生。在吸烟后的最初6 h内,二手烟空气中的NNK浓度每小时增加50%—200%;对于三手烟,TSNAs可能通过尼古丁与臭氧、亚硝酸等大气氧化剂发生反应而产生。癌症风险评估表明,三手烟如:房间降尘等,是没有直接接触二手烟的儿童和非吸烟者接触TSNAs的主要途径[16]。这表明TSNAs有可能通过大气、房间降尘进入土壤环境,这值得进一步关注。
由于亚硝胺较高的水溶性,土壤对亚硝胺的保留作用通常较弱[17]。亚硝胺随污、废水等进入地表河流后,可以随着地表水和地下水的交换作用进入地下水中[18]。土壤作为承接地表水中污染物的载体,同时也是地表水中污染物进入地下水的主要通道,亚硝胺在土壤介质中的环境行为值得关注。另外,土壤可以为亚硝胺的生物降解提供大量的微生物。目前已有研究证实土壤中亚硝胺主要通过微生物降解来降低其含量,因此亚硝胺在土壤介质中的降解可能是影响亚硝胺下渗过程的主要影响因素之一[19]。
监测土壤中亚硝胺的含量、研究亚硝胺的土壤降解有助于进一步了解亚硝胺的环境行为,为亚硝胺污染的治理和修复提供科学依据。但是由于土壤环境的复杂性,以及亚硝胺及其降解产物的难识别等原因,亚硝胺在土壤环境下的降解途径及其降解机理仍需深入研究。同时,土壤中亚硝胺的分析测试方法作为降解研究的基础,仍然不够完善,需进一步优化。本文对土壤中亚硝胺的分析测试方法进行综述,总结目前分析测试的难点及发展方向,阐述目前土壤中亚硝胺的降解机理,进一步探索土壤中亚硝胺降解的路径。最后对未来的研究趋势进行展望。
土壤中N-亚硝胺的预富集、分析测试方法及降解机理
The preconcentration, detection methods and degradation mechanisms of N-nitrosamine in soil: A review
-
摘要: N-亚硝胺(N-nitrosamines)是一类对人类具有高毒性和强致癌性的有机污染物,具有强亲水性,因此易随着水流穿透土壤迁移到地下环境。土壤作为地下水和地表水发生交换作用的重要通道,对亚硝胺的归趋具有重要意义。本文通过对目前已有的土壤中亚硝胺的分析测试方法及降解机理进行综述,研究在该介质中亚硝胺的分析测试难点及解决方法,探索土壤中亚硝胺降解的路径,并对下一步的研究方向进行展望。通过对分析测试方法的总结,为测定土壤中的亚硝胺提供参考,为土壤降解研究提供关键支持。现有的土壤亚硝胺降解研究,集中于几种化合物,缺乏全面的研究分析。已在室内降尘中检测出烟草特有亚硝胺,但目前尚不明确其能否通过大气沉降等途径进入到土壤环境。Abstract: N-nitrosamines are a kind of organic pollutants with high toxicity and strong carcinogenicity to human beings. Furthermore, these compounds are easily migrate to underground environment through the soil due to the water flow. As an important channel of exchange between groundwater and surface water, soil environment is of great significance to the fate of N-nitrosamines in water. Therefore, this paper summarized the existing analysis methods of N-nitrosamines. We studied the difficulties and the corresponding solution methods during the analysis of N-nitrosamines in soil. The degradation mechanisms such as the degradation pathway of these compounds in soil were explored. In the end, future research was prospected. By summarizing the analysis methods, this paper provided references for the determination of N-nitrosamines in soil. The summarization of degradation pathway of N-nitrosamines in soil was important for giving supporting information. However, the existing studies on soil degradation were focused only on a few compounds and lack of comprehensive research. Tobacco-specific nitrosamines have been studied in special environment, such as settled house dust. However, it was not clear whether these N-nitrosamines would enter the soil environment through atmospheric deposition or not.
-
Key words:
- N-nitrosamines /
- soil /
- analysis methods /
- biodegradation
-
表 1 土壤、食品及室内降尘中亚硝胺前处理方法对比
Table 1. Comparison of pretreatment methods for nitrosamines in soil, food and room dust
前处理方法
Pretreatment method回收率/%
Recovery操作时间 /min
Operation
time分析对象
Analysis
object样品量/g
Sample
weight提取溶剂
Extraction
solvent溶剂用量/mL
Solvent
weight参考文献
Ref.加压液体萃取(PLE) 大多数>80 10 室内降尘 0.5 乙酸乙酯 33 [26] 有机溶液直接提取 85—115 20 二手烟颗粒 称重 甲醇 5 [25] 有机溶液直接提取 32—68、54—108 60 污水厂污泥、沉积物 6 乙腈、二氯甲烷 12 [23-24] 微波辅助提取-固相萃取 77—130 3 污泥、土壤、沉积物 6 甲醇 6 [13] 加压热水萃取-顶空固相微萃取 — 22 污泥 5 Milli-Q水 44 [29] 有机溶液直接提取 — 240 土壤 50 二氯甲烷 5 [19] 有机溶液直接提取 50—120 30 腌制肉类 2.5 乙腈 7.5 [22] 碱液处理萃取-C18 SPE小柱富集 77—130 90 腌制鱼干 200 二氯甲烷 100 [28] 表 2 土壤及室内降尘中亚硝胺上机测试方法对比
Table 2. Comparison of chromatography analytical methods for nitrosamines in soil and room dust
分析仪器
Detector色谱柱
Chromatographic
column目标亚硝胺
Target Nitrosamine流速/(mL·min−1)
Flow rate升温程序/梯度洗脱程序
Temperature program/Solvent
gradient program检出限/(ng·g−1)
Method detection
limitRSD/% 参考文献
Ref.GC×GC-NCD SGE BPX5、SGE BPX50 9种挥发性亚硝胺和5种TSNAs 1 一维色谱柱初始为55 ℃ 1 min,以
5 ℃·min−1至255 ℃保持1 min;二维柱70 ℃ 1 min,以5 ℃·min−1至
270 ℃保持1 min。2.5—15.8 <8 [26] GC-IT-MS/MS VF-5 ms NNN、NNA、NNK、NNAL 0.8 初始60 ℃ 2 min,以15 ℃·min−1至210 ℃ 保持6 min,以30 ℃·min−1至300 ℃保持4 min。 0.07—0.34 <10 [25] LC-ESI-MS/MS XBridge BEH C8 7种脂肪族和脂环族亚硝胺 0.4 0—2 min B为50%;2—11 min升至90%保持3 min;11—11.1 min返回至50%;平衡2 min。 0.06—5.7 <20 [23-24] GC-MS DB-5 MS 10种脂肪族和芳香族亚硝胺 1 初始50 ℃ 2 min,以5 ℃·min−1至
100 ℃,以9 ℃·min−1至100 ℃0.03—0.35 <6.5 [13] GC-CI-MS-MS Supelco熔融石英毛细管预柱、ZB-5 9种挥发性亚硝胺 1 初始40 ℃ 2.1 min,以25 ℃·min−1至100 ℃保持4.5 min,以 20 ℃·min−1至280 ℃保持2 min <0.15 <19 [29] GC-MS DB‐1701 NDMA 1 初始45 ℃ 2 min,以50 ℃·min−1至100 ℃ 保持2 min,以50 ℃·min−1至280 ℃保持1.5 min 0.2 — [19] HPLC-MS/MS Waters HSS T3 C18 NDMA 0.4 0—0.4 min A为2%;0.4—2 min升至10%; 2—2.5 min升至95%,保持
1.5 min;4—4.5 min降至2%保持2 min1 <11 [32] -
[1] MITCH W A, SHARP J O, TRUSSELL R R, et al. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review [J]. Environmental Engineering Science, 2003, 20(5): 389-404. doi: 10.1089/109287503768335896 [2] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways [J]. Environmental Science and Technology, 2012, 46(1): 119-131. doi: 10.1021/es203312s [3] GUSHGARI A J, HALDEN R U J C. Critical review of major sources of human exposure to N-nitrosamines [J]. Chemosphere, 2018, 210: 1124-1136. doi: 10.1016/j.chemosphere.2018.07.098 [4] PATTERSON B M, PITOI M M, FURNESS A J, et al. Fate of N-Nitrosodimethylamine in recycled water after recharge into anaerobic aquifer [J]. Water Research, 2012, 46(4): 1260-1272. doi: 10.1016/j.watres.2011.12.032 [5] NRMMC E. AHMC, Australian guidelines for water recycling: Managing health and environmental risks[C]. Canberra: Natural Resource Management Ministerial Council, 2008. [6] HAYES J R, MECKLEY D R, STAVANJA M S, et al. Effect of a flue-curing process that reduces tobacco specific nitrosamines on the tumor promotion in SENCAR mice by cigarette smoke condensate [J]. Food and Chemical Toxicology, 2007, 45(3): 419-430. doi: 10.1016/j.fct.2006.08.024 [7] PEELE D M, RIDDICK M G, EDWARDS M E, et al. Formation of tobacco-specific nitrosamines in flue-cured tobacco [J]. Recent Advances in Tobacco Science, 2001, 27: 3-12. [8] RAMíREZ N, VALLECILLOS L, LEWIS A C, et al. Comparative study of comprehensive gas chromatography-nitrogen chemiluminescence detection and gas chromatography-ion trap-tandem mass spectrometry for determining nicotine and carcinogen organic nitrogen compounds in thirdhand tobacco smoke [J]. Journal of Chromatography A, 2015, 1426: 191-200. doi: 10.1016/j.chroma.2015.11.035 [9] KONSTANTINOU E, FOTOPOULOU F, DROSOS A, et al. Tobacco-specific nitrosamines: A literature review [J]. Food and Chemical Toxicology, 2018, 118: 198-203. doi: 10.1016/j.fct.2018.05.008 [10] WESTERHOFF P, MASH H. Dissolved organic nitrogen in drinking water supplies: a review [J]. Journal of Water Supply:Research and Technology:AQUA, 2002, 51(8): 415-448. doi: 10.2166/aqua.2002.0038 [11] PLANAS C, PALACIOS Ó, VENTURA F, et al. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent [J]. Talanta, 2008, 76(4): 906-913. doi: 10.1016/j.talanta.2008.04.060 [12] WANG W, REN S, ZHANG H, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors [J]. Water Research, 2011, 45(16): 4930-4938. doi: 10.1016/j.watres.2011.06.041 [13] JURADO-SáNCHEZ B, BALLESTEROS E. GALLEGO M. Comparison of microwave assisted, ultrasonic assisted and Soxhlet extractions of N-nitrosamines and aromatic amines in sewage sludge, soils and sediments [J]. Science of the Total Environment, 2013, 463: 293-301. [14] EKICI P, LEUPOLD G. PARLAR H. Degradability of selected azo dye metabolites in activated sludge systems [J]. Chemosphere, 2001, 44(4): 721-728. doi: 10.1016/S0045-6535(00)00345-3 [15] BRAKSTAD O G, SøRENSEN L, ZAHLSEN K, et al. Biotransformation in water and soil of nitrosamines and nitramines potentially generated from amine-based CO2 capture technology [J]. International Journal of Greenhouse Gas Control, 2018, 70: 157-163. doi: 10.1016/j.ijggc.2018.01.021 [16] RAMíREZ N, ÖZEL M Z, LEWIS A C, et al. Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers [J]. Environment International, 2014, 71: 139-147. doi: 10.1016/j.envint.2014.06.012 [17] GUNNISON D, ZAPPI M E, TEETER C, et al. Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat groundwater remediation system [J]. Journal of Hazardous Materials, 2000, 73(2): 179-197. doi: 10.1016/S0304-3894(99)00175-2 [18] MA F, WAN Y, YUAN G, et al. Occurrence and source of nitrosamines and secondary amines in groundwater and its adjacent Jialu River Basin, China [J]. Environmental Science and Technology, 2012, 46(6): 3236-3243. doi: 10.1021/es204520b [19] YANG W, GAN J, LIU W, et al. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils [J]. Journal of Environmental Quality, 2005, 34(1): 336-341. doi: 10.2134/jeq2005.0336 [20] MCDONALD J A, HARDEN N B, NGHIEM L D, et al. Analysis of N-nitrosamines in water by isotope dilution gas chromatography–electron ionisation tandem mass spectrometry [J]. Talanta, 2012, 99: 146-154. doi: 10.1016/j.talanta.2012.05.032 [21] BRADLEY P M, CARR S A, BAIRD R B, et al. Biodegradation of N-nitrosodimethylamine in soil from a water reclamation facility [J]. Bioremediation Journal, 2005, 9(2): 115-120. doi: 10.1080/10889860500276607 [22] HERRMANN S S, DUEDAHL-OLESEN L. GRANBY K. Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation [J]. Journal of Chromatography A, 2014, 1330: 20-29. doi: 10.1016/j.chroma.2014.01.009 [23] VENKATESAN A K, PYCKE B F. HALDEN R U. Detection and occurrence of N-nitrosamines in archived biosolids from the targeted national sewage sludge survey of the US Environmental Protection Agency [J]. Environmental Science and Technology, 2014, 48(9): 5085-5092. doi: 10.1021/es5001352 [24] GUSHGARI A J, HALDEN R U. VENKATESAN A K. Occurrence of N-nitrosamines in US freshwater sediments near wastewater treatment plants [J]. Journal of Hazardous Materials, 2017, 323: 109-115. doi: 10.1016/j.jhazmat.2016.03.091 [25] SLEIMAN M, MADDALENA R L, GUNDEL L A, et al. Rapid and sensitive gas chromatography–ion-trap tandem mass spectrometry method for the determination of tobacco-specific N-nitrosamines in secondhand smoke [J]. Journal of Chromatography A, 2009, 1216(45): 7899-7905. doi: 10.1016/j.chroma.2009.09.020 [26] RAMíREZ N, ÖZEL M Z, LEWIS A C, et al. Determination of nicotine and N-nitrosamines in house dust by pressurized liquid extraction and comprehensive gas chromatography—Nitrogen chemiluminiscence detection [J]. Journal of Chromatography A, 2012, 1219: 180-187. doi: 10.1016/j.chroma.2011.11.017 [27] 李婷, 鲜啟鸣, 孙成, 等. 水中N-亚硝胺类消毒副产物的污染现状及分析技术 [J]. 环境化学, 2012, 31(11): 1767-1774. LI T, XIAN Q M, SUN C, et al. The level and analysis of N-nitrosamines in waters [J]. Environmental Chemistry, 2012, 31(11): 1767-1774(in Chinese).
[28] 夏日耀, 梁棋, 杜莲朵, 等. GC-FID法同时测定腌制鱼干中9种N-亚硝胺类化合物 [J]. 食品工业科技, 2020, 41(10): 213-218,223. XIA R Y, LIANG Q, DU L D, et al. Simultaneous Determination of Nine N-nitrosamine in Pickling Dried Fish by GC-FID [J]. Science and Technology of Food Industry, 2020, 41(10): 213-218,223(in Chinese).
[29] LLOP A, BORRULL F, POCURULL E. Pressurised hot water extraction followed by headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry for the determination of N-nitrosamines in sewage sludge [J]. Talanta, 2012, 88: 284-289. doi: 10.1016/j.talanta.2011.10.042 [30] SUN C, WANG R, WANG T, et al. Primary evaluation of nine volatile N-nitrosamines in raw red meat from Tianjin, China, by HS-SPME-GC–MS [J]. Food Chemistry, 2020, 310: 125945. doi: 10.1016/j.foodchem.2019.125945 [31] 杨光, 李博. 李岳桦. QuEChERS-气相色谱-串联质谱法测定香肠和火腿肠制品中 13 种 N-亚硝胺化合物 [J]. 食品安全质量检测学报, 2019, 10(24): 8436-8443. YANG G, LI B, LI Y H. Determination of 13 kinds of volatile N-nitrosamines in sausage and ham products by gas chromatograpy tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2019, 10(24): 8436-8443(in Chinese).
[32] 张伟伟, 赵春华, 付萌, 等. 水蒸气蒸馏分离-高效液相色谱-串联质谱法测定食品中 N-二甲基亚硝胺的含量 [J]. 理化检验-化学分册, 2019, 55(9): 1028. ZHANG W W, ZHAO C H, FU M, et al. HPLC-MS/MS determination of N-dimethyl nitrosamine in food with separation by steam distillation [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2019, 55(9): 1028(in Chinese).
[33] ZHOU Q, MCCRAVEN S, GARCIA J, et al. Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge [J]. Water Research, 2009, 43(3): 793-805. doi: 10.1016/j.watres.2008.11.011 [34] LEE C, CHOI W. YOON J. UV photolytic mechanism of N-nitrosodimethylamine in water: roles of dissolved oxygen and solution pH [J]. Environmental Science and Technology, 2005, 39(24): 9702-9709. doi: 10.1021/es051235j [35] PLUMLEE M H, REINHARD M. Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water [J]. Environmental Science and Technology, 2007, 41(17): 6170-6176. doi: 10.1021/es070818l [36] SGROI M, VAGLIASINDI F G, SNYDER S A, et al. N-nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal [J]. Chemosphere, 2018, 191: 685-703. doi: 10.1016/j.chemosphere.2017.10.089 [37] DAI N, MITCH W A. Relative importance of N-nitrosodimethylamine compared to total N-nitrosamines in drinking waters [J]. Environmental Science and Technology, 2013, 47(8): 3648-3656. doi: 10.1021/es305225b [38] GAN J, BONDARENKO S, ERNST F, et al. Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation [J]. Journal of Environmental Quality, 2006, 35(1): 277-284. doi: 10.2134/jeq2005.0264 [39] WIJEKOON K C, FUJIOKA T, MCDONALD J A, et al. Removal of N-nitrosamines by an aerobic membrane bioreactor [J]. Bioresource Technology, 2013, 141: 41-45. doi: 10.1016/j.biortech.2013.01.057 [40] WEBSTER T S, CONDEE C. HATZINGER P B. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor [J]. Water Research, 2013, 47(2): 811-820. doi: 10.1016/j.watres.2012.11.011 [41] SHARP J O, SALES C M, LEBLANC J C, et al. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1 [J]. Applied and Environmental Microbiology, 2007, 73(21): 6930-6938. doi: 10.1128/AEM.01697-07 [42] SHARP J O, WOOD T K. ALVAREZ-COHEN L. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains [J]. Biotechnol Bioeng, 2005, 89(5): 608-618. doi: 10.1002/bit.20405 [43] SHARP J O, SALES C M. ALVAREZ‐COHEN L. Functional characterization of propane‐enhanced N‐nitrosodimethylamine degradation by two actinomycetales [J]. Biotechnology and Bioengineering, 2010, 107(6): 924-932. doi: 10.1002/bit.22899 [44] FOURNIER D, HAWARI J, HALASZ A, et al. Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425 [J]. Applied and Environmental Microbiology, 2009, 75(15): 5088-5093. doi: 10.1128/AEM.00418-09 [45] HOMME C L, SHARP J O. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase [J]. Environmental Science and Technology, 2013, 47(13): 7388-7395. doi: 10.1021/es401129u [46] FOURNIER D, HAWARI J, STREGER S H, et al. Biotransformation of N-nitrosodimethylamine by Pseudomonas mendocina KR1 [J]. Applied and Environmental Microbiology, 2006, 72(10): 6693-6698. doi: 10.1128/AEM.01535-06 [47] PATTERSON B M, SHACKLETON M, FURNESS A J, et al. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies [J]. Water Research, 2010, 44(5): 1471-1481. doi: 10.1016/j.watres.2009.10.044 [48] SZECSODY J E, COMFORT S, FREDRICKSON H L, et al., In situ degradation and remediation of energetics TNT, RDX, HMX, and CL-20 and a byproduct NDMA in the sub-surface environment [M]. Biological Remediation of Explosive Residues, Springer International Publishing, 2014: 313-369. [49] PITOI M, PATTERSON B, FURNESS A, et al. Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: A column study [J]. Water Research, 2011, 45(8): 2550-2560. doi: 10.1016/j.watres.2011.02.018 [50] ROWLAND I, GRASSO P. Degradation of N-nitrosamines by intestinal bacteria [J]. Applied and Environmental Microbiology, 1975, 29(1): 7-12. doi: 10.1128/am.29.1.7-12.1975 [51] TEZEL U, PADHYE L P, HUANG C-H, et al. Biotransformation of nitrosamines and precursor secondary amines under methanogenic conditions [J]. Environmental Science and Technology, 2011, 45(19): 8290-8297. doi: 10.1021/es2005557 [52] PADHYE L, TEZEL U, MITCH W A, et al. Occurrence and fate of nitrosamines and their precursors in municipal sludge and anaerobic digestion systems [J]. Environmental Science and Technology, 2009, 43(9): 3087-3093. doi: 10.1021/es803067p [53] WANG W, GUO Y, YANG Q, et al. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters [J]. Science of the Total Environment, 2015, 521: 219-225. [54] PIAZZOLI A, BREIDER F, AQUILLON C G, et al. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination [J]. Water Research, 2018, 135: 311-321. doi: 10.1016/j.watres.2018.02.019