微塑料与有毒污染物相互作用及联合毒性作用研究进展

赵美静, 夏斌, 朱琳, 孙雪梅, 赵信国, 戴伟, 陈碧鹃, 曲克明. 微塑料与有毒污染物相互作用及联合毒性作用研究进展[J]. 生态毒理学报, 2021, 16(5): 168-185. doi: 10.7524/AJE.1673-5897.20210412001
引用本文: 赵美静, 夏斌, 朱琳, 孙雪梅, 赵信国, 戴伟, 陈碧鹃, 曲克明. 微塑料与有毒污染物相互作用及联合毒性作用研究进展[J]. 生态毒理学报, 2021, 16(5): 168-185. doi: 10.7524/AJE.1673-5897.20210412001
Zhao Meijing, Xia Bin, Zhu Lin, Sun Xuemei, Zhao Xinguo, Dai Wei, Chen Bijuan, Qu Keming. Research Progress on Interaction and Joint Toxicity of Microplastics with Toxic Pollutants[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 168-185. doi: 10.7524/AJE.1673-5897.20210412001
Citation: Zhao Meijing, Xia Bin, Zhu Lin, Sun Xuemei, Zhao Xinguo, Dai Wei, Chen Bijuan, Qu Keming. Research Progress on Interaction and Joint Toxicity of Microplastics with Toxic Pollutants[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 168-185. doi: 10.7524/AJE.1673-5897.20210412001

微塑料与有毒污染物相互作用及联合毒性作用研究进展

    作者简介: 赵美静(1996-),女,硕士研究生,研究方向为海洋生态毒理学,E-mail:1599960230@qq.com
    通讯作者: 朱琳, E-mail: zhulin@ysfri.ac.cn 戴伟, E-mail: daiweitj@126.com
  • 基金项目:

    中国水产科学研究院黄海水产研究所基本科研业务费资助项目(20603022019007,20603022020002);中国水产科学研究院基本科研业务费资助项目(2020TD12)

  • 中图分类号: X171.5

Research Progress on Interaction and Joint Toxicity of Microplastics with Toxic Pollutants

    Corresponding authors: Zhu Lin, zhulin@ysfri.ac.cn ;  Dai Wei, daiweitj@126.com
  • Fund Project:
  • 摘要: 随着塑料产品的广泛应用,微塑料(microplastics,MPs)污染已经成为全球关注的重大环境问题。海洋中的MPs能够与有毒污染物(如有机污染物、重金属和纳米颗粒等)发生相互作用,对海洋生物产生复合效应。因此,MPs与环境中有毒污染物的联合毒性效应越来越引起人们的关注。本文首先概括总结出MPs对海洋生物的毒性效应及致毒机制,包括遮蔽效应、氧化应激、免疫毒性、生殖毒性、遗传毒性、神经毒性和行为毒性等方面;随后分别讨论了MPs和有机污染物、重金属以及人工纳米颗粒的联合毒性效应,从微塑料对污染物的吸附、富集和载体效应着手分析微塑料与污染物之间的相互作用,凝练得出MPs增强或抑制污染物毒性的作用机制,包括微塑料改变污染物的生物可利用性、微塑料改变生物体对污染物的胁迫响应、微塑料与污染物发生交互作用等;最后对微塑料与有毒污染物联合毒作用研究的发展方向进行了展望,建议在未来研究中重点关注环境特征的次生微塑料与有毒污染物相互作用的环境行为和生物效应,特别是通过食物链的传递作用。以期为准确评估和深入理解微塑料的海洋环境和人类健康风险提供理论依据。
  • 加载中
  • Plastics Europe. Plastics-The facts. An analysis of European plastics production, demand and waste data[R].Brussels:Plastics Europe, 2020
    Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771
    da Costa J P, Santos P S M, Duarte A C, et al. (Nano)plastics in the environment-Sources, fates and effects[J]. Science of the Total Environment, 2016, 566-567:15-26
    Arthur C, Baker J, Bamford H. Workshop on the occurrence, effects, and fate of microplastic marine debris[J]. Group, 2009, 1:530
    Magara G, Elia A C, Syberg K, et al. Single contaminant and combined exposures of polyethylene microplastics and fluoranthene:Accumulation and oxidative stress response in the blue mussel,Mytilus edulis[J]. Journal of Toxicology and Environmental Health, Part A, 2018, 81(16):761-773
    Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments:Occurrence, accumulation, and biological effects[J]. Science of Total Environment, 2020, 703:134699
    Long M, Moriceau B, Gallinari M, et al. Interactions between microplastics and phytoplankton aggregates:Impact on their respective fates[J]. Marine Chemistry, 2015, 175:39-46
    Lyakurwa D J. Uptake and effects of microplastic particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica[D]. Trondheim:Norwegian University of Science and Technology, 2017:1-38
    Zhang C, Chen X H, Wang J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220:1282-1288
    Nguyen M K, Moon J Y, Lee Y C. Microalgal ecotoxicity of nanoparticles:An updated review[J]. Ecotoxicology and Environmental Safety, 2020, 201:110781
    Cole M, Lindeque P, Fileman E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science & Technology, 2015, 49(2):1130-1137
    Green D S, Boots B, Sigwart J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208:426-434
    Tallec K, Huvet A, Di Poi C, et al. Nanoplastics impaired oyster free living stages, gametes and embryos[J]. Environmental Pollution, 2018, 242:1226-1235
    Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
    Yin L Y, Chen B J, Xia B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360:97-105
    Barboza L G A, Vieira L R, Branco V, et al. Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles[J]. Scientific Reports, 2018, 8(1):15655
    Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619
    Hazeem L J, Yesilay G, Bououdina M, et al. Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes[J]. Marine Pollution Bulletin, 2020, 156:111278
    Détrée C, Gallardo-Escárate C. Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible mussel Mytilus galloprovincialis[J]. Fish & Shellfish Immunology, 2018, 83:52-60
    Tang Y, Rong J H, Guan X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species[J]. Environmental Pollution, 2020, 258:113845
    Lee K W, Shim W J, Kwon O Y, et al. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicas[J]. Environmental Science & Technology, 2013, 47(19):11278-11283
    Tlili S, Jemai D, Brinis S, et al. Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus[J]. Chemosphere, 2020, 258:127344
    Tang Y, Zhou W S, Sun S G, et al. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa[J]. Environmental Pollution, 2020, 265:115115
    Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185:16-23
    屈沙沙, 朱会卷, 刘锋平, 等. 微塑料吸附行为及对生物影响的研究进展[J]. 环境卫生学杂志, 2017, 7(1):75-78

    Qu S S, Zhu H J, Liu F P, et al. Adsorption behavior and effect on biont of microplastic[J]. Journal of Environmental Hygiene, 2017, 7(1):75-78(in Chinese)

    Llorca M, Schirinzi G, Martínez M, et al. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions[J]. Environmental Pollution, 2018, 235:680-691
    Fang S, Yu W S, Li C L, et al. Adsorption behavior of three triazole fungicides on polystyrene microplastics[J]. Science of Total Environment, 2019, 691:1119-1126
    Ateia M, Zheng T, Calace S, et al. Sorption behavior of real microplastics (MPs):Insights for organic micropollutants adsorption on a large set of well-characterized MPs[J]. Science of Total Environment, 2020, 720:137634
    Bakir A, O'Connor I A, Rowland S J, et al. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life[J]. Environmental Pollution, 2016, 219:56-65
    Ogata Y, Takada H, Mizukawa K, et al. International Pellet Watch:Global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs[J]. Marine Pollution Bulletin, 2009, 58(10):1437-1446
    Fisner M, Taniguchi S, Moreira F, et al. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets:Variability in the concentration and composition at different sediment depths in a sandy beach[J]. Marine Pollution Bulletin, 2013, 70(1-2):219-226
    Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8):1683-1692
    Mato Y, Isobe T, Takada H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2):318-324
    Zhang J H, Chen H B, He H, et al. Adsorption behavior and mechanism of 9-nitroanthracene on typical microplastics in aqueous solutions[J]. Chemosphere, 2020, 245:125628
    Gao F L, Li J X, Sun C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment[J]. Marine Pollution Bulletin, 2019, 144:61-67
    Xia B, Zhang J, Zhao X G, et al. Polystyrene microplastics increase uptake, elimination and cytotoxicity of decabromodiphenyl ether (BDE-209) in the marine scallop Chlamys farreri[J]. Environmental Pollution, 2020, 258:113657
    Koelmans A A, Besseling E, Wegner A, et al. Plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science & Technology, 2013, 47(14):7812-7820
    Beckingham B, Ghosh U. Differential bioavailability of polychlorinated biphenyls associated with environmental particles:Microplastic in comparison to wood, coal and biochar[J]. Environmental Pollution, 2017, 220:150-158
    Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3:3263
    Yang H L, Lai H, Huang J, et al. Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish[J]. Chemosphere, 2020, 255:127040
    Rainieri S, Conlledo N, Larsen B K, et al. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 2018, 162:135-143
    Avio C G, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues:First observations in commercial species from Adriatic Sea[J]. Marine Environmental Research, 2015, 111:18-26
    Islam N, Garcia da Fonseca T, Vilke J, et al. Perfluorooctane sulfonic acid (PFOS) adsorbed to polyethylene microplastics:Accumulation and ecotoxicological effects in the clam Scrobicularia plana[J]. Marine Environmental Research, 2021, 164:105249
    Paul-Pont I, Lacroix C, González Fernández C, et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics:Toxicity and influence on fluoranthene bioaccumulation[J]. Environmental Pollution, 2016, 216:724-737
    Karami A, Romano N, Galloway T, et al. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 2016, 151:58-70
    Zhou W S, Han Y, Tang Y, et al. Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species:Potential mechanisms and implications for human health[J]. Environmental Science & Technology, 2020, 54(13):8115-8122
    Han Y, Zhou W S, Tang Y, et al. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects[J]. Science of Total Environment, 2021, 770:145273
    Wang F, Gao J, Zhai W J, et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment[J]. Journal of Hazardous Materials, 2020, 394:122517
    Chua E M, Shimeta J, Nugegoda D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa[J]. Environmental Science & Technology, 2014, 48(14):8127-8134
    Sleight V A, Bakir A, Thompson R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish[J]. Marine Pollution Bulletin, 2017, 116(1-2):291-297
    Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243:1106-1112
    Trevisan R, Voy C, Chen S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14):8405-8415
    Zhang S S, Ding J N, Razanajatovo R M, et al. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Science of Total Environment, 2019, 648:1431-1439
    Kedzierski M, D'Almeida M, Magueresse A, et al. Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants[J]. Marine Pollution Bulletin, 2018, 127:684-694
    Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178:189-195
    Tang S, Lin L J, Wang X S, et al. Pb(II) uptake onto nylon microplastics:Interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2020, 386:121960
    Ashton K, Holmes L, Turner A. Association of metals with plastic production pellets in the marine environment[J]. Marine Pollution Bulletin, 2010, 60(11):2050-2055
    Holmes L A, Turner A, Thompson R C. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 2012, 160:42-48
    Artham T, Sudhakar M, Venkatesan R, et al. Biofouling and stability of synthetic polymers in sea water[J]. International Biodeterioration & Biodegradation, 2009, 63(7):884-890
    Wang J D, Peng J P, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone:Composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171:248-258
    Johansen M P, Prentice E, Cresswell T, et al. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm[J]. Journal of Environmental Radioactivity, 2018, 190-191:130-133
    Wang Z S, Dong H, Wang Y, et al. Effects of microplastics and their adsorption of cadmium as vectors on the cladoceran Moina monogolica Daday:Implications for plastic-ingesting organisms[J]. Journal of Hazardous Materials, 2020, 400:123239
    Sun J H, Xia S D, Ning Y, et al. Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the Yellow Seahorse, Hippocampus kuda Bleeker[J]. Marine Pollution Bulletin, 2019, 149:110510
    Lu K, Qiao R X, An H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202:514-520
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Banaee M, Soltanian S, Sureda A, et al. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio)[J]. Chemosphere, 2019, 236:124335
    Wen B, Jin S R, Chen Z Z, et al. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus)[J]. Environmental Pollution, 2018, 243:462-471
    Khan F R, Syberg K, Shashoua Y, et al. Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio)[J]. Environmental Pollution, 2015, 206:73-79
    Li P H, Zou X Y, Wang X D, et al. A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments[J]. Journal of Hazardous Materials, 2020, 385:121601
    Wu S M, Zhang S H, Gong Y, et al. Identification and quantification of titanium nanoparticles in surface water:A case study in Lake Taihu, China[J]. Journal of Hazardous Materials, 2020, 382:121045
    Xu L N, Wang Z Y, Zhao J, et al. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS[J]. Environmental Pollution, 2020, 260:114043
    Thiagarajan V, Iswarya V, Abraham J P, et al. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp.[J]. Aquatic Toxicology, 2019, 207:208-216
    Davarpanah E, Guilhermino L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually?[J]. Ecotoxicology and Environmental Safety, 2019, 181:60-68
    Huang B, Wei Z B, Yang L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae[J]. Environmental Science & Technology, 2019, 53(7):3871-3879
    Pacheco A, Martins A, Guilhermino L. Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna[J]. Science of Total Environment, 2018, 628-629:474-483
    Zhu X L, Zhao W H, Chen X H, et al. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure[J]. Marine Environmental Research, 2020, 158:105005
  • 加载中
计量
  • 文章访问数:  4494
  • HTML全文浏览数:  4494
  • PDF下载数:  234
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-04-12

微塑料与有毒污染物相互作用及联合毒性作用研究进展

    通讯作者: 朱琳, E-mail: zhulin@ysfri.ac.cn ;  戴伟, E-mail: daiweitj@126.com
    作者简介: 赵美静(1996-),女,硕士研究生,研究方向为海洋生态毒理学,E-mail:1599960230@qq.com
  • 1. 天津农学院水产学院, 天津 300384;
  • 2. 农业部海洋渔业资源可持续发展重点实验室, 山东省渔业资源与生态环境重点实验室, 中国水产科学研究院黄海水产研究所, 青岛 266071;
  • 3. 青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室, 青岛 266237
基金项目:

中国水产科学研究院黄海水产研究所基本科研业务费资助项目(20603022019007,20603022020002);中国水产科学研究院基本科研业务费资助项目(2020TD12)

摘要: 随着塑料产品的广泛应用,微塑料(microplastics,MPs)污染已经成为全球关注的重大环境问题。海洋中的MPs能够与有毒污染物(如有机污染物、重金属和纳米颗粒等)发生相互作用,对海洋生物产生复合效应。因此,MPs与环境中有毒污染物的联合毒性效应越来越引起人们的关注。本文首先概括总结出MPs对海洋生物的毒性效应及致毒机制,包括遮蔽效应、氧化应激、免疫毒性、生殖毒性、遗传毒性、神经毒性和行为毒性等方面;随后分别讨论了MPs和有机污染物、重金属以及人工纳米颗粒的联合毒性效应,从微塑料对污染物的吸附、富集和载体效应着手分析微塑料与污染物之间的相互作用,凝练得出MPs增强或抑制污染物毒性的作用机制,包括微塑料改变污染物的生物可利用性、微塑料改变生物体对污染物的胁迫响应、微塑料与污染物发生交互作用等;最后对微塑料与有毒污染物联合毒作用研究的发展方向进行了展望,建议在未来研究中重点关注环境特征的次生微塑料与有毒污染物相互作用的环境行为和生物效应,特别是通过食物链的传递作用。以期为准确评估和深入理解微塑料的海洋环境和人类健康风险提供理论依据。

English Abstract

参考文献 (76)

目录

/

返回文章
返回