塑料食品包装材料的环境污染综述

蓝敏怡, 李会茹, 胡立新, 杨愿愿, 应光国. 塑料食品包装材料的环境污染综述[J]. 生态毒理学报, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
引用本文: 蓝敏怡, 李会茹, 胡立新, 杨愿愿, 应光国. 塑料食品包装材料的环境污染综述[J]. 生态毒理学报, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
Lan Minyi, Li Huiru, Hu Lixin, Yang Yuanyuan, Ying Guangguo. A Review of the Environmental Pollution of Food Plastic Packaging Materials[J]. Asian journal of ecotoxicology, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
Citation: Lan Minyi, Li Huiru, Hu Lixin, Yang Yuanyuan, Ying Guangguo. A Review of the Environmental Pollution of Food Plastic Packaging Materials[J]. Asian journal of ecotoxicology, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002

塑料食品包装材料的环境污染综述

    作者简介: 蓝敏怡(1996-),女,硕士研究生,研究方向为环境化学,E-mail:minyi.lan@m.scnu.edu.cn
    通讯作者: 李会茹, E-mail: huiru.li@m.scnu.edu.cn 应光国, E-mail: guangguo.ying@m.scnu.edu.cn
  • 基金项目:

    广东省科技计划项目(2019B030301008)

  • 中图分类号: X171.5

A Review of the Environmental Pollution of Food Plastic Packaging Materials

    Corresponding authors: Li Huiru, huiru.li@m.scnu.edu.cn ;  Ying Guangguo, guangguo.ying@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 塑料食品包装材料是食品包装的重要组成部分,但其与食品直接接触时易释放大量化学品和添加剂,且废弃后会分解成粒径小的微塑料,由此造成的环境污染和生态健康风险受到世界各国的广泛关注,并针对食品包装塑料中有害化学品向食品中的释放迁移过程、微塑料及其中化学品的环境污染过程等开展了大量研究。本文综述了常用塑料食品包装材料的种类、用途及其中的化学物质,详细总结了食品包装塑料自身及其中化学品的环境污染过程和生态/健康毒性效应,并据此提出了塑料食品包装材料今后的控制措施及相关研究的发展方向。
  • 氟污染是一个全球性问题,特别是在发展中国家[1],其中钢铁冶金、铝电解、铅锌冶炼、铜冶炼、光伏产业、锂离子电池等冶金行业是氟污染的主要来源[2]。过量摄入氟化物将会对人体产生有害影响,阻碍儿童生长发育[3]。我国对地表水体及生活饮用水中的氟化物质量浓度有严格的限值,也不断强化关于氟化物排放的管控。目前,水体中氟化物的去除技术主要有沉淀絮凝法、膜处理法、离子交换法、吸附法[4-7],其中吸附法具有产生无害废物数量少、材料成本低、操作简便等优点,被认为是最有前途的除氟方法。

    生物炭具有较大的比表面积,表面含有丰富的含氧官能团,且相对廉价,可作为新型吸附材料用于环境修复领域[8-9]。近年来,已有关于不同生物质来源(改性)生物炭除氟应用的研究报道。汤家喜等[10]利用花生壳、玉米秸秆制备的生物炭,最大吸附容量为1.18 mg·g−1;邱会华等[11]制备的氢氧化钾活化的荷叶基生物炭,最大吸附容量为0.85 mg·g−1;张涛等[12]制备了铁改性猪粪生物炭,最大吸附容量为4.4 mg·g−1;徐凌云等[13]制备了铝负载酒糟生物炭,最大吸附容量为18.05 mg·g−1;FENG等[14]利用城市污水处理厂污泥合成的改性污泥生物炭最大吸附容量高达30.49 mg·g−1。显然,不同原料衍生的生物炭吸附除氟能力不尽相同,其中由于污泥含有更高含量的亲氟矿物,其衍生的污泥生物炭对氟的吸附能力最强。但是,未经改性的污泥生物炭直接除氟效果并不理想,一般需要通过铝、铁等金属的负载以提高其吸附性能。近年来发现镧[15]、铈[16]、钇[17]等稀土金属有更好的亲氟性,可用于氟化物的去除,但是单独使用成本较高,如与铁或铝复合使用,有望发挥协同作用并降低成本。另外,我国污泥产量巨大,据统计2021年我国含水率80%的城市污泥产量已超过6 000×104 t[18]。当前污泥的主流处置方式包括干化焚烧、污泥堆肥和卫生填埋,都可能产生二次污染,对环境造成巨大的风险[19-20]。因此,研发基于污泥生物炭的复合改性除氟材料,拓展污泥资源化利用途径,实现以废治废,具有较好的开发前景。

    本研究以南通市政污泥为原料,通过缺氧热解-醋酸钾活化-铝铈改性工艺,制备了铝铈改性污泥生物炭(Al/Ce-CSBC),运用SEM、EDS、BET、XRD及XPS等技术对材料吸附前后的表面形态和结构特征进行了表征和分析,探究了Al/Ce-CSBC对模拟废水中氟离子的吸附行为和吸附机理,以期为污泥生物炭在除氟的资源化利用研究提供参考。

    干化污泥来自南通市某污水处理厂,在90 ℃鼓风干燥箱中干燥12 h后,粉碎过50目筛备用。所用试剂包括六水合氯化铝(AlCl3·6H2O)、七水合氯化铈(CeCl3·7H2O)、氟化钠(NaF)、醋酸钾(CH3COOK)、氢氧化钠(NaOH)等均为分析纯。准确称取2.21 g干燥的氟化钠粉末溶解在1 000 mL去离子水中,配置成氟离子质量浓度为1 g·L−1的储备液,移取适量储备液用去离子水稀释,配成一定初始氟离子质量浓度的含氟模拟废水。

    污泥的热解制备生物炭。称取5.00 g经干燥的污泥粉末置于坩埚中,用锡纸包裹,放入马弗炉中以10 ℃·min−1的速度升至650 ℃,并保持温度1 h。将热解后的污泥与醋酸钾按质量比1:2的比例混合,再次放入马弗炉中以10 ℃·min−1的速度升至650 ℃热解1 h,离心洗涤3次,并在80~90 ℃下干燥8 h。第1次热解污泥生物炭产物产量为3.21 g,记为SBC;与醋酸钾混合的第2次热解产物产量为4.29 g,记为CSBC。

    生物炭的金属改性。将事先称取的1.00 g CSBC加入体积总量为50 mL的氯化铝(0.10 mol·L−1)、氯化铈(0.05 mol·L−1)或两者的等体积混合溶液中,磁力搅拌2 h,用1.00 mol·L−1氢氧化钠溶液调节溶液pH至7.5,搅拌12 h。离心洗涤3次,最后在80~90 ℃下干燥8 h得到改性污泥生物炭材料。对铝、铈以及铝铈联合改性的污泥生物炭分别命名为Al-CSBC、Ce-CSBC以及Al/Ce-CSBC,其中Al/Ce-CSBC的产量为1.29 g。

    利用扫描电子显微镜(SEM)(Gemini SEM 300,德国)分析样品的表面形态;利用能谱仪(EDS)分析样品表面的元素;采用比表面积及孔径分析仪(ASAP2460,美国)分析样品的比表面积和孔容孔径;采用X射线粉末衍射仪(XRD)(Ultima IV,日本)分析样品的物相组成及结构;采用X射线光电子能谱仪(XPS)(K-Alpha+,美国)用于确定生物炭表面的成分和价态。

    准确称取0.04 g吸附剂(Al/Ce-CSBC)置于离心管中,加入40 mL 氟离子质量浓度为10 mg·L−1的模拟废水,立刻移至恒温振荡箱中以140 r·min−1的速度振荡20 h,过0.45 μm滤膜后,用氟离子选择电极(PXSJ-216F)测量滤液中氟离子的质量浓度,每次实验重复3次。pH影响实验只改变pH(3.0~10.0),其余参数不变。吸附等温线实验改变氟离子初始质量浓度(5~100 mg·L−1),采用Langmuir模型和Freundlich模型对实验数据进行拟合。

    吸附动力学实验在盛有2 000 mL氟离子初始质量浓度10 mg·L−1溶液的烧杯中进行,调节并保持溶液pH为6.0,将2.00 g吸附剂加入其中后开始磁力搅拌,至规定时间抽取20 mL混合液过滤,测量滤液中氟离子的质量浓度。采用Lagergren伪一阶、伪二阶模型以及Weber-Morris模型对实验数据进行拟合。

    图1为SBC、CSBC、Al/Ce-CSBC及吸附后的复合负载改性材料(F-Al/Ce-CSBC)的SEM图像。SBC表面呈现片状和层状结构,经醋酸钾活化后的CSBC表面呈现堆砌的颗粒状结构,经改性后的Al/Ce-CSBC表面呈块状且附着颗粒状结构,吸附后的F-Al/Ce-CSBC与Al/Ce-CSBC表面形态区别不大。图2为SBC和Al/Ce-CSBC的EDS图谱,SBC的表面元素主要为O、C、Ca及Fe,Al/Ce-CSBC的表面元素主要为C、O、Si和Ce。由表1可见,相对于SBC,Al/Ce-CSBC表面C和Ce的含量有所增加,O和Ca的含量有所降低。前者表明Ce的成功负载以及通过醋酸钾活化引入了大量的碳;后者与金属矿物组分的溶解损失有关,其中Ca的损失最严重,其含量从SBC的16.4%降至改性后的0.2%,几乎完全消失。

    图 1  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的SEM图像
    Figure 1.  SEM images of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC
    图 2  SBC及Al/Ce-CSBC的EDS图谱
    Figure 2.  EDS images of SBC and Al/Ce-CSBC
    表 1  样品元素含量变化
    Table 1.  Changes in the element content of the samples %
    样品OCCaFeAlSiPMgKCe
    SBC39.928.016.44.03.73.41.11.00.80
    Al/Ce-CSBC35.146.80.21.81.710.900.20.62.3
     | Show Table
    DownLoad: CSV

    图3(a)、图3(c)和图3(e)的N2吸附/脱附等温线可以看出,3种样品等温线都属于IV类,且具H3型回滞环特征,表明样品内部存在丰富狭缝形介孔。图3((b)、图3(d)和图3(f))的孔径分布结果表明,经醋酸钾活化和复合负载改性后的CSBC及Al/Ce-CSBC材料孔径分布更呈多样化,但尖锐峰向更小孔径方向移动,其平均孔径应减小,这在表2中得到验证。由表2可见,SBC经活化和改性后,平均孔径变小,但孔容和比表面积有所增大。比表面积由原来的25.59 m2·g−1增至活化后的69.78 m2·g−1及改性后的176.36 m2·g−1,平均孔径则相应由13.4 nm降至11.4 nm和6.6 nm。活化和改性均能显著增加比表面积,可能是由于醋酸钾在活化过程中分解产生大量的CO2,以及改性溶液中酸溶解样品中大量的CaCO3,使得生物炭片层开裂,暴露出更多更小孔径的介孔。

    图 3  吸附材料的N2吸附/脱附等温线与孔径分布
    Figure 3.  N2 adsorption and desorption isotherms and pore distribution of adsorbents
    表 2  样品的孔隙结构
    Table 2.  Pore structure of the studied samples
    样品BET比表面积/(m2·g−1)总孔体积/(cm3·g−1)平均孔径/nm
    SBC25.590.114 413.454
    CSBC69.780.144 011.395
    Al/Ce-CSBC176.360.174 86.610
     | Show Table
    DownLoad: CSV

    图4(a)为SBC、CSBC、Al/Ce-CSBC和F-Al/Ce-CSBC的XRD图谱。其中SBC中含有明显的SiO2和CaCO3的衍射峰,CSBC中SiO2和CaCO3的峰强明显下降,表明该矿物组分的部分消溶,可能是醋酸钾活化促进了SiO2和CaCO3在高温的消溶/蚀刻反应,进而形成较小的孔隙和较大的比表面积。改性后的Al/Ce-CSBC中CaCO3的衍射峰则完全消失,可能是改性过程引入的金属盐水解产生强酸,使得残留的CaCO3被进一步完全溶解,形成更小的孔隙和更大的比表面积,这与前述关于Ca元素及孔隙的变化相一致。相对于SBC,CSBC和Al/Ce-CSBC中的SiO2的峰强均有不同程度的降低,表明活化和改性对SiO2也有一定的消溶作用。由Al/Ce-CSBC的XRD图谱可知,改性污泥生物炭有SiO2及少量的Al2SiO5晶体,前者是污泥自有残留,后者应为溶出的硅与改性引入的铝反应的产物,此外并没有出现铝和铈的其他晶体结构,表明改性金属主要以无定形负载于污泥生物炭的表面。除了二氧化硅晶体峰强度有略微降低,吸附氟后材料(F-Al/Ce-CSBC)的XRD图谱与吸附前基本一致,表明材料中的晶体结构稳定,推测其不参与对氟的吸附过程,无定形双金属羟基/氧化物应是主要吸附活性组分。由XPS图谱(图4(b))可知,SBC在346.89 eV处有较强的Ca2p信号,在CSBC相对减少,在Al/Ce-CSBC及F-Al/Ce-CSBC则完全消失,趋势与XRD一致,再次验证了碳酸钙的逐步溶解至完全消失的过程。Al/Ce-CSBC的XPS图谱中74.97 eV和885.72 eV处的峰分别对应Al2p和Ce3d,表明铝和铈的成功负载,这与EDS和XRD的结果一致。

    图 4  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的XRD和XPS图谱
    Figure 4.  XRD and XPS patterns of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC

    图5较直观地显示了上述活化和改性过程的物性变化,即活化过程促进污泥生物炭中二氧化硅和碳酸钙晶体部分消溶,同时醋酸钾发生气化反应,产生造孔作用[21],使得CSBC的比表面积增大(表2);改性过程铝铈被成功负载,碳酸钙完全消失,形成更多的细小孔径,造孔作用更明显,比表面积增加更显著,而少量二氧化硅溶解后与铝(Ⅲ)形成硅酸铝晶体。

    图 5  污泥生物炭活化改性示意图
    Figure 5.  Schematic diagram of activation and modification process of sludge biochar

    不同合成阶段和金属改性的材料对F的吸附容量如图6所示,原始污泥生物炭SBC的吸附容量为5.42 mg·g−1,经醋酸钾活化后得CSBC的吸附容量则下降至2.90 mg·g−1,可能是SBC经活化后,部分有利于除氟的矿物(主要是含Ca矿物)溶解流失所致。CSBC再经金属改性后的吸附容量均有提升,但不同金属/金属组合改性提升程度不同,单一的Ce和Al改性使材料吸附容量分别提升了44%和157%,而Al-Ce联合改性则提升了228%,高于2种单一金属改性材料提升量之和,这表明铝铈双金属改性发挥了协同作用。

    图 6  不同吸附材料对F-的吸附容量
    Figure 6.  Adsorption capacity of different adsorption materials

    pH对Al/Ce-CSBC材料的吸附影响如图7所示,在氟离子初始质量浓度为10 mg·L−1,在酸性范围内,吸附容量随着pH的增加逐渐升高,在pH=6.0时达到最高值9.43 mg·g−1,随后随着pH的增加而逐渐降低,pH升至9.0以上,则急剧下降,其除氟率也有类似规律。Al/Ce-CSBC在溶液pH=4.0~9.0内均有75%以上的除氟率,这是由于生物炭的分散作用,将更多的活性位点充分暴露,使得其有更宽的pH适用范围[22]。同时考察了该体系吸附前后的pH变化,其结果见图8(a)。当pH<6.0时,吸附平衡后的pH有所升高,反之则有所降低,表明Al/Ce-CSBC吸附材料具有一定的pH缓冲作用,FENG等[14]研究其他氧化铝材料也有类似结果,认为该缓冲作用由铝盐的两性性质引起,具体表现为固态金属氧化物表面水解羟基化和质子化作用,详见后文机理分析部分。图8(b)为不同pH下Al/Ce-CSBC的Zeta电位变化。由图可见,该材料的零电位点(pHPZC)高达9.5,表明吸附剂在一定的碱性范围仍带正电荷,可能是因为Al/Ce-CSBC的比表面积较大,具有较好分散性,使得其表面正电荷得到较好维持和保护[22]。在pH<7.0时溶液中含有大量的H+,使得吸附剂表面发生质子化,体系Zeta电位为正值,能够与溶液中的F发生静电吸附,但过低的pH可能造成吸附剂表面负载的金属氧化物溶解,并有HF的生成,使吸附剂的吸附容量下降。在pH>7.0时,溶液中的OH会与F竞争吸附位点,使吸附容量有所下降。在pH=10.0时,吸附容量和除氟率下降更明显,其原因除了前述的竞争吸附,还由于吸附剂表面此时逆转为荷负电,对溶液中的F产生强烈的静电排斥作用。

    图 7  pH对Al/Ce-CSBC材料吸附性能的影响
    Figure 7.  Effect of pH on adsorption performance of Al/Ce-CSBC
    图 8  吸附前后pH的变化及pH对Al/Ce-CSBC 吸附剂Zeta电位的影响
    Figure 8.  Change in pH before and after adsorption and the effect of pH on the zeta potential of Al/Ce-CSBC

    在氟离子初始质量浓度为10 mg·L−1时,Al/Ce-CSBC的吸附容量随吸附时间的变化情况如图9所示。在前期吸附速率较快,10 min内吸附容量达到了8.30 mg·g−1;随后缓慢增加,在5 h时接近平衡状态。

    图 9  吸附动力学拟合
    Figure 9.  Adsorption kinetics fitting

    对吸附动力学数据的拟合结果表明,伪二级模型(R2=0.94)比伪一级模型(R2=0.49)更适合描述Al/Ce-CSBC对氟离子的吸附,表明氟化物在Al/Ce-CSBC上的吸附以化学吸附为主。颗粒内扩散模型如图9(b)所示。吸附反应可分为2个阶段,第1阶段,F通过界面膜扩散从液相水体转移到Al/Ce-CSBC的表面,并与表面大量的吸附位点结合产生快速吸附,这一阶段膜扩散是控制吸附速率的限制步骤;第2阶段,由于大量的F占据了吸附剂表面的吸附位点,部分F将渗透到吸附剂内部的孔径中,因此又被称为孔扩散阶段,第2阶段速率有所降低,该图没有通过原点表明颗粒内扩散不是唯一限速步骤[23]

    在常温且pH=6.0的条件下,Al/Ce-CSBC的吸附容量随氟离子初始质量浓度变化情况如图10所示。2种模型均能较好描述吸附过程,但Freundlich模型(R2=0.97)较Langmuir模型(R2=0.92)拟合程度更好,表明氟化物在Al/Ce-CSBC上的吸附以多层吸附为主,且Al/Ce-CSBC表面上的活性位点不均匀,1/n =0.29 (0<1/n<1)也表明吸附等温线类型是理想类型[24]。Langmuir模型中最大吸附容量41.47 mg·g−1,其与实际最大吸附容量45.66 mg·g−1相近。

    图 10  吸附等温线拟合
    Figure 10.  Adsorption isotherm fitting

    图11(a)为Al/Ce-CSBC材料的XPS全谱图,通过吸附前后的比较发现,吸附后的F-Al/Ce-CSBC在684.15 eV处新增了F1s的峰,表明氟离子被成功吸附在Al/Ce-CSBC吸附剂表面。为了研究其吸附机理,进一步分析了Al/Ce-CSBC吸附氟前后的XPS精细光谱(图11(b)~(d))。由图11(b)的O1s图谱中可见,吸附前531.28 eV和532.54 eV处的特征峰分别对应M―O和―OH,吸附后分别移至530.01 eV和531.39 eV,其中羟基氧占总氧的相对比率由吸附前的55.24%降至41.52%,金属氧化物中M―O的含量由吸附前的44.76%升至58.48%,表明―OH参与了与氟离子的交换。这与其他研究[25-26]结果一致。由图11(c)的Al2p图谱可见,74.46和75.17 eV处峰分别对应Al―O和Al―OH,均归属于负载于材料表面的无定形铝氧化物结构,吸附后峰位置分别移至73.10 eV和73.69 eV。这表明铝羟基/氧化物参与了氟离子的吸附[27-28]。吸附前后Ce元素XPS结果如图11(d)所示。Al/Ce-CSBC的Ce3d5/2的4个代表性峰位于882.78、886.30、888.64及899.35 eV,Ce3d3/2的3个代表性峰位于902.32、905.56及917.10 eV,以上7个峰吸附后分别移至881.34、884.50、886.98、898.37、901.83、904.88及915.65 eV,可清楚地观察到向低能方向位移。经计算Ce4+丰度由吸附前的36.51%下降到22.28%,说明F―Ce络合物的形成及电子转移[16, 29]

    图 11  吸附前后Al/Ce-CSBC的XPS分析
    Figure 11.  XPS spectra of Al/Ce-CSBC before and after adsorption

    基于上述对氟化物吸附过程pH的变化、等温线模型、动力学模型以及XPS表征分析结果,认为Al/Ce-CSBC对氟化物的吸附为物理吸附和化学吸附,其中化学吸附包括离子交换和表面络合占主导作用。改性过程中形成大量带正电荷的金属羟基/氧化物,且以无定形形式非均匀分散于污泥生物炭的表面,产生大量有效吸附位点并处于相对受保护的高分散体系中,使其表现出较高的零电荷点[22]和酸碱缓冲特性[14]。在碱性条件下产生大量的表面羟基和O2,并带负电荷(式(1)~式(2));酸性条件下则质子化并带正电荷(式(3))。

    M++OH→≡MOH (1)
    MOH+OH→≡MO2+H2O (2)
    MOH+H+→≡MOH+2 (3)

    在酸性条件下吸附剂表面的Zeta电位较高,对溶液中氟离子产生较强静电吸引,进一步引起式(4)反应,产物以金属氟化络合物形式结合在吸附剂表面,表现很高的吸附量和吸附能力,但是酸性过低时,氟主要以氟化氢形式存在,兼吸附剂表面金属的溶出,使得吸附容量下降;随着溶液pH的增加,吸附剂表面的Zeta电位降低,静电吸引减弱,超过零电点后吸附剂表面荷负电产生静电排斥,此时吸附以离子交换为主(式(5))。

    MOH+2+F→≡MF+H2O (4)
    MOH+F→≡MF+OH (5)

    通过与其他文献报道的吸附剂除氟性能的比较(表3),本研究使用的Al/Ce-CSBC有明显的相对优势。Al/Ce-CSBC最大吸附容量为41.47 mg·g−1,高于其他材料的吸附量,包括传统活性氧化铝(16.30 mg·g−1)、双金属和三金属复合材料(27~32 mg·g−1)、其他改性生物炭材料(18~28 mg·g−1)以及铝铁改性污泥生物炭材料(30 mg·g−1)。就酸碱适用性而言,Al/Ce-CSBC在较广的范围(pH=4.0~9.0)内均有75%以上的去除率,其他材料(除了三元金属复合材料)则类似传统的活性氧化铝,只能在较窄的酸性范围才有较高的除氟率。因此,铝铈改性污泥生物炭在较广的酸碱范围有较好的强化除氟作用,并可实现污泥的低碳固定和以废治废,在实际废水处理中有潜在应用价值。

    表 3  不同吸附剂的氟离子吸附性能对比
    Table 3.  Comparison of fluorine ion adsorption performance of different adsorbents
    吸附剂最适pHqm/(mg·g−1)文献
    活性氧化铝5.0~7.016.30[30]
    氢氧化铝基吸附剂7.725.80[31]
    Fe-La复合材料3.8~7.127.42[32]
    Y-Zr-Al复合材料7.031.00[17]
    Mg-Al-La三金属氧化物4.0~10.031.72[15]
    Tea-Al-Fe茶渣4.0~8.018.52[33]
    La改性柚子皮生物炭6.519.86[34]
    ALCS-Fe-Al磁性复合材料3.0~6.030.49[14]
    Al/Ce-CSBC4.0~9.041.47本文
     | Show Table
    DownLoad: CSV

    1)以市政污泥为原料,通过热解-活化-双金属改性成功制备了铝铈负载污泥生物炭Al/Ce-CSBC,活化和改性均可通过造孔和促消溶作用增加材料比表面积和分散性,使负载的无定形金属羟基/氧化物保持吸附活性,材料具较高的等电点和酸碱缓冲性;

    2) Al/Ce-CSBC对氟的最大吸附容量达到41.74 mg·g−1,在pH=4.0~9.0内均有较高的除氟率。其吸附动力学符合伪二级模型,吸附等温线符合Freundlich模型,为多层不均质吸附和化学吸附,其吸附机制包括静电吸附、表面络合和离子交换。

    3) Al/Ce-CSBC可发挥铝铈双金属协同吸附作用,且在较广的酸碱范围有较好的强化除氟作用。该吸附材料制备简单、廉价,有望实现以废治废和污泥的低碳固定,有潜在的应用价值。

  • 何泽. 塑料餐盒中邻苯二甲酸酯的迁移规律研究[D]. 天津:天津科技大学, 2017:1 He Z. Migration regularity of phthalate in plastic food container[D]. Tianjin:Tianjin University of Science & Technology, 2017:1(in Chinese)
    郝倩, 苏荣欣, 齐崴, 等. 食品包装材料中有害物质迁移行为的研究进展[J]. 食品科学, 2014, 35(21):279-286

    Hao Q, Su R X, Qi W, et al. Review of current knowledge on the migration of harmful substances from food packaging materials[J]. Food Science, 2014, 35(21):279-286(in Chinese)

    洪梦寒, 陈晋阳, 顾婕. 浅析我国食品包装材料的问题与发展趋势[J]. 上海包装, 2019(4):22-25
    姜欢. 2019年欧盟食品接触材料快速预警系统通报(RASFF)情况. (2020-01-09

    ). https://mp.weixin.qq.com/s/YUCdrYt2WJsCmMbJxfThrw

    李俊峰. 毒奶粉事件透视下的我国食品安全及监管问题初探[J]. 中国经贸, 2009(24):76-77
    杨涛. 台湾塑化剂风暴对饮料及饮料包装行业的影响[J]. 塑料包装, 2011, 21(4):35-39
    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    李继鸿. 塑料材质对食品包装产品的安全性能影响分析[J]. 塑料工业, 2019, 47(2):153-156

    Li J H. Analysis of the influence of plastic material on the safety performance of food packaging products[J]. China Plastics Industry, 2019, 47(2):153-156(in Chinese)

    孙秋菊, 辛士刚. 塑料食品包装材料与食品安全[J]. 沈阳师范大学学报:自然科学版, 2014, 32(2):151-155

    Sun Q J, Xin S G. Plastic food packaging materials and food safety[J]. Journal of Shenyang Normal University:Natural Science Edition, 2014, 32(2):151-155(in Chinese)

    吴新华. 食品包装中酞酸酯及双酚物质检测方法研究[D]. 长沙:中南林业科技大学, 2011:1 Wu X H. Study on the determination method of plasticizer and bisphenol in food contact materials[D]. Changsha:Central South University of Forestry & Technology, 2011:1(in Chinese)
    Ike M, Chen M Y, Jin C S, et al. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A[J]. Environmental Toxicology, 2002, 17(5):457-461
    胡伟, 马俊辉, 张晓飞, 等. ASE-GC-NCI-MS测定食品接触塑料及纸制品中的短链氯化石蜡[J]. 包装工程, 2019, 40(13):67-75

    Hu W, Ma J H, Zhang X F, et al. Determination of short chain chlorinated paraffins in food contact plastic and paper products by ASE-GC-NCI-MS[J]. Packaging Engineering, 2019, 40(13):67-75(in Chinese)

    汪仕韬, 邵卫卫, 薛娜娜, 等. 食品塑料包装材料危害物安全风险分析[J]. 塑料包装, 2015, 25(6):41-43

    Wang S T, Shao W W, Xue N N, et al. Safety risk analysis of harmful substances in food plastic packaging materials[J]. Plastics Packaging, 2015, 25(6):41-43(in Chinese)

    刘冬宁. 国内胺类、酚类等抗氧剂发展的大致趋势[J]. 化工管理, 2013(22):199, 201
    European Commission. Commission Regulation (EU) No 10/2011/EC of 14 January 2011 on plastic materials and articles intended to come into contact with food[S]. Brussel:European Commission, 2011
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品接触材料及制品用添加剂使用标准:GB 9685-2016[S]. 北京:中国标准出版社, 2017
    颜庆宁. 国内外塑料助剂产业发展状况(一)[J]. 精细与专用化学品, 2014, 22(11):10-13

    Yan Q N. Development situation of plastic additive industry at home and abroad (Ⅰ)[J]. Fine and Specialty Chemicals, 2014, 22(11):10-13(in Chinese)

    陶强, 吴雄杰, 齐敏, 等. 塑料食品包装材料的概述及发展对策[J]. 上海塑料, 2019(1):1-5 Tao Q, Wu X J, Qi M, et al. Overview of plastic food packaging materials and development countermeasures[J]. Shanghai Plastics, 2019

    (1):1-5(in Chinese)

    Park M Y, Lee Y K, Lim B S. Influence of fluorescent whitening agent on the fluorescent emission of resin composites[J]. Dental Materials, 2007, 23(6):731-735
    Santos M D L, Nerín C, Domeño C, et al. The analysis of fluorescent whitening agents using reversed-phase HPLC and mass spectrometry[J]. LC GC Europe, 2004, 17(11):6-13
    邹孝, 张丽妮, 唐加利, 等. 食品塑料接触材料中荧光增白剂检测方法研究进展[J]. 食品工业, 2019, 40(7):256-260

    Zou X, Zhang L N, Tang J L, et al. Research progress in detection methods of fluorescent brighteners in food plastic contact materials[J]. The Food Industry, 2019, 40(7):256-260(in Chinese)

    吕亮. 食品塑料包装材料安全性及检测方法的探讨[J]. 绿色包装, 2017(4):40-44 Lv L. Explore of security and detection methods in plastic packaging products materials[J]. Green Packaging, 2017

    (4):40-44(in Chinese)

    李波. 聚乙烯塑料食品包装材料中有毒有害物质的测定及迁移研究[D]. 太原:山西大学, 2011:3 Li B. Study on the determination and migration of hazardous chemicals in polyethylene plastic food packaging materials[D]. Taiyuan:Shanxi University, 2011:3(in Chinese)
    叶柱华. 食品包装的发展与安全[J]. 口岸卫生控制, 2012, 17(4):5-10

    Ye Z H. Development and safety of foodstuff packing[J]. Port Health Control, 2012, 17(4):5-10(in Chinese)

    康智勇, 杨浩雄. 我国塑料食品包装的安全性分析[J]. 中国塑料, 2018, 32(10):13-19

    Kang Z Y, Yang H X. A brief analysis of safety concerns for plastic food packaging materials in China[J]. China Plastics, 2018, 32(10):13-19(in Chinese)

    于红. 食品包装袋中二氨基甲苯的测定[J]. 分析试验室, 2008, 27(S2):92-94
    中华人民共和国卫生部. 复合食品包装袋卫生标准:GB 9683-1988[S]. 北京:中国标准出版社
    Toensmeier P. Plastics and the circular economy[J]. Plastics Engineering, 2020, 76:12-15
    Derraik J G B. The pollution of the marine environment by plastic debris:A review[J]. Marine Pollution Bulletin, 2002, 44(9):842-852
    Lebreton L C M, van der Zwet J, Damsteeg J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8:15611
    Mai L, You S N, He H, et al. Riverine microplastic pollution in the Pearl River Delta, China:Are modeled estimates accurate?[J]. Environmental Science & Technology, 2019, 53(20):11810-11817
    Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523:74-81
    De Falco F, Gullo M P, Gentile G, et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics[J]. Environmental Pollution, 2018, 236:916-925
    Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20):10777-10779
    Hämer J, Gutow L, K hler A, et al. Fate of microplastics in the marine isopod Idotea emarginata[J]. Environmental Science & Technology, 2014, 48(22):13451-13458
    Zubris K A V, Richards B K. Synthetic fibers as an indicator of land application of sludge[J]. Environmental Pollution, 2005, 138(2):201-211
    刘沙沙, 付建平, 郭楚玲, 等. 微塑料的环境行为及其生态毒性研究进展[J]. 农业环境科学学报, 2019, 38(5):957-969

    Liu S S, Fu J P, Guo C L, et al. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 2019, 38(5):957-969(in Chinese)

    Napper I E, Bakir A, Rowland S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1-2):178-185
    Browne M A, Galloway T, Thompson R. Microplastic-An emerging contaminant of potential concern?[J]. Integrated Environmental Assessment and Management, 2007, 3(4):559-561
    Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179
    Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(12):2588-2597
    Murphy F, Ewins C, Carbonnier F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808
    Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771
    Cózar A, Echevarría F, González-Gordillo J I, et al. Plastic debris in the open ocean[J]. PNAS, 2014, 111(28):10239-10244
    Cole M, Lindeque P K, Fileman E, et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6):3239-3246
    Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1-2):290-293
    Liu K, Wang X H, Fang T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Science of the Total Environment, 2019, 675:462-471
    Allen S, Allen D, Phoenix V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5):339-344
    Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health:A short review[J]. Environmental Science and Pollution Research, 2017, 24(27):21530-21547
    Walling D. Studying the impact of global change on erosion and sediment dynamics:Current progress and future challenges[J]. Isi Workshop, 2008, 2008:1
    Besseling E, Quik J T K, Sun M Z, et al. Fate of nano- and microplastic in freshwater systems:A modeling study[J]. Environmental Pollution, 2017, 220:540-548
    Obbard R W, Sadri S, Wong Y Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice[J]. Earth's Future, 2014, 2(6):315-320
    Moore C J, Moore S L, Leecaster M K, et al. A comparison of plastic and plankton in the north Pacific central gyre[J]. Marine Pollution Bulletin, 2001, 42(12):1297-1300
    Eriksen M, Lebreton L, Carson H, et al. Plastic pollution in the world's oceans:More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea[J]. PLoS One, 2014, 9(12):e111913
    Law K L, Morét-Ferguson S, Maximenko N A, et al. Plastic accumulation in the North Atlantic subtropical gyre[J]. Science, 2010, 329(5996):1185-1188
    Zhang K, Su J, Xiong X, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 2016, 219:450-455
    王彤, 胡献刚, 周启星. 环境中微塑料的迁移分布、生物效应及分析方法的研究进展[J]. 科学通报, 2018, 63(4):385-395

    Wang T, Hu X G, Zhou Q X. The research progress in migration, distribution, biological effects and analytical methods of microplastics[J]. Chinese Science Bulletin, 2018, 63(4):385-395(in Chinese)

    Bergmann M, Mützel S, Primpke S, et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic[J]. Science Advances, 2019, 5(8):eaax1157
    O'Connor D, Pan S Z, Shen Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249:527-534
    Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1):1362
    Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235:150-154
    Maaß S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225:456-459
    Nizzetto L, Bussi G, Futter M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science Processes & Impacts, 2016, 18(8):1050-1059
    Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222:527-533
    Huerta Lwanga E, Thapa B, Yang X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts:A potential for soil restoration[J]. Science of the Total Environment, 2018, 624:753-757
    Luo H W, Xiang Y H, He D Q, et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate toChlorella vulgaris[J]. Science of the Total Environment, 2019, 678:1-9
    Chen Q Q, Allgeier A, Yin D Q, et al. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions[J]. Environment International, 2019, 130:104938
    Albert A, Koelmans E, Besseling A, et al. Correction to plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science & Technology, 2013, 47(15):8992-8993
    周庆华, 金赞晖, 陈金媛, 等. 一次性塑料餐盒中双酚化合物的迁移规律研究[J]. 浙江工业大学学报, 2019, 47(3):334-337

    , 347 Zhou Q H, Jin Z H, Chen J Y, et al. Study of migration of bisphenols in disposable plastic food box[J]. Journal of Zhejiang University of Technology, 2019, 47(3):334-337, 347(in Chinese)

    杜珍妮. 含乳食品接触材料中塑化剂的检测及迁移规律研究[D]. 武汉:武汉轻工大学, 2016:59-60 Du Z N. Determination and migration regular research of plasticizers in dairy food contact materials[D]. Wuhan:Wuhan Polytechnic University, 2016:59

    -60(in Chinese)

    曹雪慧. 聚碳酸酯包装材料中双酚A迁移研究[D]. 沈阳:沈阳农业大学, 2013:55-57 Cao X H. Study on the bisphenol A in polycarbonate materials and its migration[D]. Shenyang:Shenyang Agricultural University, 2013:55

    -57(in Chinese)

    Yang J L, Song W Z, Wang X J, et al. Migration of phthalates from plastic packages to convenience foods and its cumulative health risk assessments[J]. Food Additives & Contaminants:Part B, 2019, 12(3):151-158
    Jarošová A, Bogdanovičová S. Phthalate migration from packaging materials into food[J]. Potravinarstvo, 2015, 9(1):275-279
    陈明, 商贵芹, 王红松. 塑料食品包装中邻苯二甲酸酯类塑化剂含量调查[J]. 中国食品卫生杂志, 2013, 25(4):355-358

    Chen M, Shang G Q, Wang H S. Investigation on the content of phthalate acid esters plasticizers in plastic food packaging[J]. Chinese Journal of Food Hygiene, 2013, 25(4):355-358(in Chinese)

    方丽, 林泽鹏, 林晨, 等. 气质联用法测定食品包装材料中22种邻苯二甲酸酯残留方法的探讨[J]. 食品工业, 2015, 36(1):291-296

    Fang L, Lin Z P, Lin C, et al. Determination of 22 kinds of phthalates residual in food packaging materials by GC-MS[J]. The Food Industry, 2015, 36(1):291-296(in Chinese)

    祝惠惠, 罗世鹏, 刘君峰, 等. 快餐和早点包装中邻苯二甲酸酯类塑化剂迁移风险的研究[J]. 食品安全质量检测学报, 2014, 5(11):3571-3575

    Zhu H H, Luo S P, Liu J F, et al. Studies on migration risk of phthalic acid esters in packaging of fast food and breakfast[J]. Journal of Food Safety & Quality, 2014, 5(11):3571-3575(in Chinese)

    Page B D, Lacroix G M. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985-1989:A survey[J]. Food Additives & Contaminants, 1995, 12(1):129-151
    杨小萍, 谢跃勤, 毛小庆. 一次性塑料饭盒中双酚A在食品模拟溶剂中的迁移[J]. 广东化工, 2013, 40(23):40-41

    Yang X P, Xie Y Q, Mao X Q. Study on the migration of bisphenol A from disposable plastic lunch-box into food simulation solvents[J]. Guangdong Chemical Industry, 2013, 40(23):40-41(in Chinese)

    刘忠瑞, 孙立文, 李洋洋, 等. 塑料食品包装材料中双酚A的迁移量检测[J]. 食品安全质量检测学报, 2018, 9(10):2350-2355

    Liu Z R, Sun L W, Li Y Y, et al. Determination of migration quantity of bisphenol A from plastic packaging materials of food[J]. Journal of Food Safety & Quality, 2018, 9(10):2350-2355(in Chinese)

    Noonan G O, Ackerman L K, Begley T H. Concentration of bisphenol A in highly consumed canned foods on the U.S. market[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7178-7185
    Jabeen K, Su L, Li J N, et al. Microplastics and mesoplastics in fish from coastal and fresh waters of China[J]. Environmental Pollution, 2017, 221:141-149
    Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.)[J]. Environmental Science & Technology, 2008, 42(13):5026-5031
    Cao D D, Wang X, Luo X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[J]. IOP Conference Series:Earth and Environmental Science, 2017, 61:012148
    Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
    Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
    Rodriguez-Seijo A, Lourenço J, Rocha-Santos T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché[J]. Environmental Pollution, 2017, 220:495-503
    Wang J, Li Y J, Lu L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2019, 254:113024
    Avio C G, Gorbi S, Milan M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels[J]. Environmental Pollution, 2015, 198:211-222
    van Cauwenberghe L, Janssen C R. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 2014, 193:65-70
    Yang D, Shi H, Li L, et al. Microplastic pollution in table salts from China[J]. Environmental Science & Technology, 2015, 49(22):13622-13627
    Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21):12300-12310
    Smith M, Love D C, Rochman C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3):375-386
    包木太, 程媛, 陈剑侠, 等. 海洋微塑料污染现状及其环境行为效应的研究进展[J]. 中国海洋大学学报:自然科学版, 2020, 50(11):69-80

    Bao M T, Cheng Y, Chen J X, et al. Research progress on the current status and environmental behavior effect of microplastic pollution[J]. Periodical of Ocean University of China:Natural Science Edition, 2020, 50(11):69-80(in Chinese)

    Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3:3263
    Rochman C M, Kurobe T, Flores I, et al. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 2014, 493:656-661
    Oliveira M, Ribeiro A, Hylland K, et al. Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)[J]. Ecological Indicators, 2013, 34:641-647
    Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris[J]. Marine Pollution Bulletin, 2011, 62(1):197-200
    Goldstein M C, Rosenberg M, Cheng L. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5):817-820
    张颖. 塑料食品包装材料中有毒有害化学残留物及分析方法[J]. 现代食品, 2020(5):207-209 Zhang Y. Toxic and harmful chemical residues in plastic food packaging materials and analysis methods[J]. Modern Food, 2020

    (5):207-209(in Chinese)

    陈志锋, 潘健伟, 储晓刚, 等. 塑料食品包装材料中有毒有害化学残留物及分析方法[J]. 食品与机械, 2006, 22(2):3-7

    Chen Z F, Pan J W, Chu X G, et al. Test and analysis methods for chemical contaminants in plastic food packaging materials[J]. Food & Machinery, 2006, 22(2):3-7(in Chinese)

    李圆圆, 付旭锋, 赵亚娴, 等. 双酚A与其替代品对黑斑蛙急性毒性的比较[J]. 生态毒理学报, 2015, 10(2):251-257

    Li Y Y, Fu X F, Zhao Y X, et al. Comparison on acute toxicity of bisphenol A with its substitutes to Pelophylax nigromaculatus[J]. Asian Journal of Ecotoxicology, 2015, 10(2):251-257(in Chinese)

    任文娟, 汪贞, 杨先海, 等. 双酚A及其类似物对斑马鱼成鱼及胚胎的急性毒性[J]. 生态与农村环境学报, 2017, 33(4):372-378

    Ren W J, Wang Z, Yang X H, et al. Acute toxicity effect of bisphenol A and its analogues on adult and embryo of zebrafish[J]. Journal of Ecology and Rural Environment, 2017, 33(4):372-378(in Chinese)

    中华人民共和国国家质量监督检验检疫总局, 中华人民共和国国家标准化管理委员会. 化学品分类和标签规范第28部分:对水生环境的危害:GB 30000.28-2013[S]. 北京:中国标准出版社, 2014
    王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9):919-929

    Wang Y W, Wang Y, Jiang G B. Analytical methods, environmental pollutions and toxicity of short chain chlorinated paraffins[J]. Progress in Chemistry, 2017, 29(9):919-929(in Chinese)

    陈学敏, 杨克敌. 现代环境卫生学[M]. 第2版. 北京:人民卫生出版社, 2008:88
    Lithner D, Damberg J, Dave G, et al. Leachates from plastic consumer products-Screening for toxicity with Daphnia magna[J]. Chemosphere, 2009, 74(9):1195-1200
    Nobre C R, Santana M F M, Maluf A, et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata:Echinoidea)[J]. Marine Pollution Bulletin, 2015, 92(1-2):99-104
    Bejgarn S, MacLeod M, Bogdal C, et al. Toxicity of leachate from weathering plastics:An exploratory screening study with Nitocra spinipes[J]. Chemosphere, 2015, 132:114-119
    Tarapore P, Ying J, Ouyang B, et al. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro[J]. PLoS One, 2014, 9(3):e90332
    沈杰, 刘建超, 陆光华, 等. 双酚S和双酚F在水环境中的分布、毒理效应及其生态风险研究进展[J]. 生态毒理学报, 2018, 13(5):37-48

    Shen J, Liu J C, Lu G H, et al. A review of the occurrence, toxicology and ecological risk assessment of bisphenol S and F in aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(5):37-48(in Chinese)

    杨蕴嘉, 尹杰, 邵兵. 双酚A替代物-双酚S的研究进展[J]. 首都公共卫生, 2016, 10(5):222-225

    Yang Y J, Yin J, Shao B. Research progress of bisphenol S:A substitute for bisphenol A[J]. Capital Journal of Public Health, 2016, 10(5):222-225(in Chinese)

    Shi J C, Jiao Z H, Zheng S, et al. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring[J]. Chemosphere, 2015, 128:252-257
    Buršková B, Bláha L, Vršková D, et al. Sublethal toxic effects and induction of gutathione S-transferase by short-chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos[J]. Acta Veterinaria Brno, 2006, 75(1):115-122
    Cooley H M, Fisk A T, Wiens S C, et al. Examination of the behavior and liver and thyroid histology of juvenile rainbow trout (Oncorhynchus mykiss) exposed to high dietary concentrations of C(10)-, C(11)-, C(12)- and C(14)-polychlorinated n-alkanes[J]. Aquatic Toxicology, 2001, 54(1):81-99
    文明宇. 食品用塑料软包材的检测重点研究[J]. 中国高新区, 2018(7):28
    陈荣圻. 邻苯二甲酸酯类增塑剂对人类健康的危害[J]. 染料与染色, 2015, 52(6):52-58

    Chen R Q. Harmfulness of phthalic acid ester plasticizers to human health[J]. Dyestuffs and Coloration, 2015, 52(6):52-58(in Chinese)

    Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates:Toxicology and exposure[J]. International Journal of Hygiene and Environmental Health, 2007, 210(5):623-634
    杜鹃, 胡淼, 崔克勤. 双酚A对小鼠生殖内分泌影响的实验研究[J]. 中国热带医学, 2007, 7(6):891-892

    Du J, Hu M, Cui K Q. Experimental observation on the impact of BPA on reproductive endocrine system of mice[J]. China Tropical Medicine, 2007, 7(6):891-892(in Chinese)

    vom Saal F S, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment[J]. Environ Health Perspect, 2005, 113(8):926-933
    Melzer D, Rice N, Lewis C, et al. Association of urinary bisphenol A concentration with heart disease:Evidence from NHANES 2003/06[J]. PLoS One, 2010, 5(1):e8673
    Moreman J, Lee O, Trznadel M, et al. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae[J]. Environmental Science & Technology, 2017, 51(21):12796-12805
    Ji K, Hong S, Kho Y, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15):8793-8800
    Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47
    Ivry del Moral L, Le Corre L, Poirier H, et al. Obesogen effects after perinatal exposure of 4,4'-sulfonyldiphenol (bisphenol S) in C57BL/6 mice[J]. Toxicology, 2016, 357-358:11-20
    Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds[J]. Toxicological Sciences, 2005, 84(2):249-259
    Matsushima A, Liu X H, Okada H, et al. Bisphenol AF is a full agonist for the estrogen receptor ERα but a highly specific antagonist for ERβ[J]. Environmental Health Perspectives, 2010, 118(9):1267-1272
    Neves D, Sobral P, Ferreira J L, et al. Ingestion of microplastics by commercial fish off the Portuguese coast[J]. Marine Pollution Bulletin, 2015, 101(1):119-126
    Kosuth M, Mason S A, Wattenberg E V. Anthropogenic contamination of tap water, beer, and sea salt[J]. PLoS One, 2018, 13(4):e0194970
    Mercogliano R, Avio C G, Regoli F, et al. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(19):5296-5301
    Prata J C. Airborne microplastics:Consequences to human health?[J]. Environmental Pollution, 2018, 234:115-126
    Liu C G, Li J, Zhang Y L, et al. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure[J]. Environment International, 2019, 128:116-124
    林肖惠, 李建平, 胡骁. 环境中微塑料的污染现状及健康危害[J]. 中华劳动卫生职业病杂志, 2020, 38(2):153-154
    Zuskin E, Mustajbegovic J, Schachter E N, et al. Respiratory findings in synthetic textile workers[J]. American Journal of Industrial Medicine, 1998, 33(3):263-273
    Hollóczki O, Gehrke S. Nanoplastics can change the secondary structure of proteins[J]. Scientific Reports, 2019, 9:16013
    Duffy E, HeartyA P, McCarthy S, et al. Estimation of exposure to food packaging materials. 3:Development of consumption factors and food-type distribution factors from data collected on Irish children[J]. Food Additives and Contaminants, 2007, 24(1):63-74
    高建. 国内外塑料食品包装材料安全性问题与包装标准差异的对比研究[D]. 无锡:江南大学, 2009:23 Gao J. Research on the safety of plastic food packaging materials and the differences in standards between China and other countries[D]. Wuxi:Jiangnan University, 2009:23(in Chinese)
    黄彦红, 周从恒, 王爱民, 等. 聚对苯二甲酸乙二醇酯老化研究进展[J]. 现代塑料加工应用, 2016, 28(4):61-63

    Huang Y H, Zhou C H, Wang A M, et al. Research progress on polyethylene terephthalate aging[J]. Modern Plastics Processing and Applications, 2016, 28(4):61-63(in Chinese)

    Yen T H, Lin-Tan D T, Lin J L. Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizer-containing clouding agents[J]. Journal of the Formosan Medical Association, 2011, 110(11):671-684
    Bornehag C G, Nanberg E. Phthalate exposure and asthma in children[J]. International Journal of Andrology, 2010, 33(2):333-345
    Fromme H, Lahrz T, Kraft M, et al. Phthalates in German daycare centers:Occurrence in air and dust and the excretion of their metabolites by children (LUPE 3)[J]. Environment International, 2013, 61:64-72
    European Commission. Commission Directive 2007/19/EC of 30 March 2007 amending Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with food and Council Directive 85/572/EEC laying down the list of simulants to be used for testing migration of constituents of plastic materials and articles intended to come into contact with foodstuffs[S]. Brussel:European Commission, 2007
    Michałowicz J, Mokra K, Bąk A. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study)[J]. Toxicology in Vitro, 2015, 29(7):1464-1472
    Héliès-Toussaint C, Peyre L, Costanzo C, et al. Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study[J]. Toxicology and Applied Pharmacology, 2014, 280(2):224-235
    Geng N B, Zhang H J, Zhang B Q, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5):3076-3083
    European Commission. Amending Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants as regards Annex Ⅰ[S]. Brussel:European Commission, 2015
    陈立伟, 吴楚森, 汪毅, 等. 超高效液相色谱法同时测定食品塑料包装材料中的紫外吸收剂和抗氧化剂[J]. 分析测试学报, 2016, 35(2):206-212

    Chen L W, Wu C S, Wang Y, et al. Determination of ultraviolet absorbers and antioxidants in plastic food packing materials by ultra high performance liquid chromatography[J]. Journal of Instrumental Analysis, 2016, 35(2):206-212(in Chinese)

    吕水源, 张云, 唐庆强, 等. LC-MS/MS测定塑料食品接触材料中荧光增白剂[J]. 食品工业, 2014, 35(10):251-255

    Lv S Y, Zhang Y, Tang Q Q, et al. Simultaneous determination of fluorescent whiteningagents residues in plastic food contact materials by LC-MS/MS[J]. The Food Industry, 2014, 35(10):251-255(in Chinese)

    中华人民共和国国家质量监督检验检疫总局, 中华人民共和国国家标准化管理委员会. 包装用塑料复合膜、袋干法复合、挤出复合:GB/T 10004-2008[S]. 北京:中国标准出版社, 2009
    刘海潮, 王玮. 食品塑料包装材料与食品安全[J]. 中国食物与营养, 2007, 13(12):31-33
    汪仕韬, 邵卫卫, 薛娜娜, 等. 食品包装用塑料中酚类抗氧化剂检测研究进展[J]. 塑料科技, 2016, 44(3):89-92

    Wang S T, Shao W W, Xue N N, et al. Research progress on detection of phenolic antioxidants in food plastic packaging materials[J]. Plastics Science and Technology, 2016, 44(3):89-92(in Chinese)

    中华人民共和国中共中央网络安全和信息化委员会办公室, 中华人民共和国国家互联网信息办公室, 中国互联网络信息中心. 第47次中国互联网络发展状况统计报告[R]. 北京:中华人民共和国中共中央网络安全和信息化委员会办公室, 中华人民共和国国家互联网信息办公室, 中国互联网络信息中心, 2021
    新华网. 外卖体系需要告别"辛苦钱". (2021-01-01). http://www.xinhuanet.com/food/2021-01/12/c_1126971924.htm.
  • 加载中
计量
  • 文章访问数:  6473
  • HTML全文浏览数:  6473
  • PDF下载数:  198
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-09
蓝敏怡, 李会茹, 胡立新, 杨愿愿, 应光国. 塑料食品包装材料的环境污染综述[J]. 生态毒理学报, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
引用本文: 蓝敏怡, 李会茹, 胡立新, 杨愿愿, 应光国. 塑料食品包装材料的环境污染综述[J]. 生态毒理学报, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
Lan Minyi, Li Huiru, Hu Lixin, Yang Yuanyuan, Ying Guangguo. A Review of the Environmental Pollution of Food Plastic Packaging Materials[J]. Asian journal of ecotoxicology, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002
Citation: Lan Minyi, Li Huiru, Hu Lixin, Yang Yuanyuan, Ying Guangguo. A Review of the Environmental Pollution of Food Plastic Packaging Materials[J]. Asian journal of ecotoxicology, 2021, 16(5): 186-210. doi: 10.7524/AJE.1673-5897.20201209002

塑料食品包装材料的环境污染综述

    通讯作者: 李会茹, E-mail: huiru.li@m.scnu.edu.cn ;  应光国, E-mail: guangguo.ying@m.scnu.edu.cn
    作者简介: 蓝敏怡(1996-),女,硕士研究生,研究方向为环境化学,E-mail:minyi.lan@m.scnu.edu.cn
  • 1. 华南师范大学环境研究院, 广东省化学品污染与环境安全重点实验室, 环境理论化学教育部重点实验室, 广州 510006;
  • 2. 华南师范大学环境学院, 广州 510006
基金项目:

广东省科技计划项目(2019B030301008)

摘要: 塑料食品包装材料是食品包装的重要组成部分,但其与食品直接接触时易释放大量化学品和添加剂,且废弃后会分解成粒径小的微塑料,由此造成的环境污染和生态健康风险受到世界各国的广泛关注,并针对食品包装塑料中有害化学品向食品中的释放迁移过程、微塑料及其中化学品的环境污染过程等开展了大量研究。本文综述了常用塑料食品包装材料的种类、用途及其中的化学物质,详细总结了食品包装塑料自身及其中化学品的环境污染过程和生态/健康毒性效应,并据此提出了塑料食品包装材料今后的控制措施及相关研究的发展方向。

English Abstract

参考文献 (152)

返回顶部

目录

/

返回文章
返回