淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例

冯永亮. 淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例[J]. 生态毒理学报, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
引用本文: 冯永亮. 淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例[J]. 生态毒理学报, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
Feng Yongliang. Study on the Sensitivity Differences of Indicators to Toxic Substances from Gene to Population Level in Freshwater and Marine Organisms: A Case Study of Copper[J]. Asian journal of ecotoxicology, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
Citation: Feng Yongliang. Study on the Sensitivity Differences of Indicators to Toxic Substances from Gene to Population Level in Freshwater and Marine Organisms: A Case Study of Copper[J]. Asian journal of ecotoxicology, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001

淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例

    作者简介: 冯永亮(1987-),男,博士研究生,讲师,研究方向为污染物的生态风险评价和水质基准构建,E-mail:yongliangfeng0511@126.com
    通讯作者: 冯永亮, E-mail: yongliangfeng0511@126.com
  • 基金项目:

    “沂南县医药健康产业园规划环境影响报告”横向项目(2018005);唐山学院博士创新基金资助项目

  • 中图分类号: X171.5

Study on the Sensitivity Differences of Indicators to Toxic Substances from Gene to Population Level in Freshwater and Marine Organisms: A Case Study of Copper

    Corresponding author: Feng Yongliang, yongliangfeng0511@126.com
  • Fund Project:
  • 摘要: 物种敏感度分布(SSD)是一种广泛用于生态风险评价和水质基准建立的统计分布模型,目前用于SSD分析的主要是生物个体水平的毒性数据。随着基因、生化、细胞、器官以及种群水平毒性数据的日渐丰富,这些不同层次毒理指标数据能否应用于水质基准制定和生态风险评价值得研究。本研究搜集了铜对淡水和海水生物基因、生化、细胞、器官、个体和种群水平的毒性数据,构建了相应的SSD曲线,采用双样本K-S检验和5%物种受影响的浓度(HC5)差异法比较了不同指标间的差异,采用拐点分析法确定了构建稳定SSD所需的最小样本量。K-S检验结果表明,水生生物个体急性指标对铜的敏感性要显著低于其他指标,淡水生物的个体慢性指标的敏感性显著高于生化和种群指标。HC5差异法结果显示,海水生物不同指标对铜的敏感性顺序为:基因≥器官≥种群>个体慢性≥生化≥细胞>个体急性,淡水生物为:个体慢性 > 种群≥器官 > 生化≥基因≥细胞 > 个体急性。淡水和海水生物不同指标毒性数据构建稳定SSD所需最小样本量范围分别为5~22和5~17。由于毒性数据的质量和数量问题,水生生物不同层次指标对铜的敏感性并没有呈现出逐级响应的关系,基于现有数据尚难以大范围地支持其在水质基准制定和风险评价中的应用。本研究结果可为我国水质基准的后期修订和风险评价提供借鉴。
  • United States Environmental Protection Agency. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses[R]. Washington DC:Office of Research and Development, 1985:1-57
    European Commission (EC). Technical Guidance Document on Risk Assessment[R]. Luxembourg:Office for Official Publications of the European Communities, 2003:149-150
    Australian and New Zealand Environmentent and Conservation Council, and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC & ARMCANZ). Australian and New Zealand Guidelines for Fresh and Marine Water Quality[R]. Canberra:ANZECC & ARMCANZ, 2000
    Del Signore A, Hendriks A J, Lenders H J R, et al. Development and application of the SSD approach in scientific case studies for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2016, 35(9):2149-2161
    中华人民共和国国家环境保护部. HJ 831-2017淡水水生生物水质基准制定技术指南[S]. 北京:中国环境科学出版社, 2017 Ministry of Environmental Protection of the People's Republic of China. HJ 831-2017 Technical Guideline for Deriving Water Quality Criteria for the Protection of Freshwater Aquatic Organisms[S]. Beijing:China Environmental Science Press, 2017

    (in Chinese)

    Fedorenkova A, Vonk J A, Lenders H J R, et al. Ecotoxicogenomics:Bridging the gap between genes and populations[J]. Environmental Science & Technology, 2010, 44(11):4328-4333
    Caldwell D J, Mastrocco F, Hutchinson T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol[J]. Environmental Science & Technology, 2008, 42(19):7046-7054
    Jin X W, Wang Y Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 2013, 48(2):1256-1262
    高祥云, 李霁, 王晓南, 等. 基于生长发育毒性终点的国内外部分水体中全氟辛烷磺酸盐生态风险评价[J]. 环境化学, 2018, 37(8):1789-1795

    Gao X Y, Li J, Wang X N, et al. Growth and development toxicity based ecological risk assessment of PFOS in freshwater of domestic and abroad[J]. Environmental Chemistry, 2018, 37(8):1789-1795(in Chinese)

    Huang Q S, Bu Q W, Zhong W G, et al. Derivation of aquatic predicted no-effect concentration (PNEC) for ibuprofen and sulfamethoxazole based on various toxicity endpoints and the associated risks[J]. Chemosphere, 2018, 193:223-229
    P é rez-Iglesias J M, Franco-Belussi L, Natale G S, et al. Biomarkers at different levels of organisation after atrazine formulation (SIPTRAN 500SC®) exposure in Rhinella schineideri (Anura:Bufonidae) Neotropical tadpoles[J]. Environmental Pollution, 2019, 244:733-746
    Wo K T, Lam P K S, Wu R S S. A comparison of growth biomarkers for assessing sublethal effects of cadmium on a marine gastropod, Nassarius festivus[J]. Marine Pollution Bulletin, 1999, 39(1-12):165-173
    Spurgeon D J, Ricketts H, Svendsen C, et al. Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress[J]. Environmental Science & Technology, 2005, 39(14):5327-5334
    刘娜, 金小伟, 王业耀, 等. 生态毒理数据筛查与评价准则研究[J]. 生态毒理学报, 2016, 11(3):1-10

    Liu N, Jin X W, Wang Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data[J]. Asian Journal of Ecotoxicology, 2016, 11(3):1-10(in Chinese)

    Yan Z G, Yang N Y, Wang X N, et al. Preliminary analysis of species sensitivity distribution based on gene expression effect[J]. Science China:Earth Sciences, 2012, 55(6):907-913
    Nichols J W, Breen M, Denver R J, et al. Predicting chemical impacts on vertebrate endocrine systems[J]. Environmental Toxicology and Chemistry, 2011, 30(1):39-51
    Lin B L, Tokai A, Nakanishi J. Approaches for establishing predicted-no-effect concentrations for population-level ecological risk assessment in the context of chemical substances management[J]. Environmental Science & Technology, 2005, 39(13):4833-4840
    Iwasaki Y, Hayashi T I, Kamo M. Estimating population-level HC5 for copper using a species sensitivity distribution approach[J]. Environmental Toxicology and Chemistry, 2013, 32(6):1396-1402
    金小伟, 王子健, 王业耀, 等. 淡水水生态基准方法学研究:繁殖/生殖毒性类化合物水生态基准探讨[J]. 生态毒理学报, 2015, 10(1):31-39

    Jin X W, Wang Z J, Wang Y Y, et al. Methodologies for deriving aquatic life criteria (ALC):Discussion of ALC for chemicals causing reproductive toxicity[J]. Asian Journal of Ecotoxicology, 2015, 10(1):31-39(in Chinese)

    Guo L, Li Z Y, Gao P, et al. Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints[J]. Chemosphere, 2015, 139:133-137
    Liu N, Wang Y Y, Yang Q, et al. Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish[J]. Environmental Pollution, 2016, 213:482-488
    Kamo M, Naito W. A novel approach to determining a population-level threshold in ecological risk assessment:A case study of zinc[J]. Human and Ecological Risk Assessment, 2008, 14(4):714-727
    Rohr J R, Salice C J, Nisbet R M. The pros and cons of ecological risk assessment based on data from different levels of biological organization[J]. Critical Reviews in Toxicology, 2016, 46(9):756-784
    Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data[J]. Regulatory Toxicology and Pharmacology, 1997, 25(1):1-5
    Duboudin C, Ciffroy P, Magaud H. Effects of data manipulation and statistical methods on species sensitivity distributions[J]. Environmental Toxicology and Chemistry, 2004, 23(2):489-499
    Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015, 54:227-237
    Zhao J S, Chen B Y. Species sensitivity distribution for chlorpyrifos to aquatic organisms:Model choice and sample size[J]. Ecotoxicology and Environmental Safety, 2016, 125:161-169
    Jin X W, Zha J M, Xu Y P, et al. Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol:Comparing native species data with non-native species data[J]. Chemosphere, 2011, 84(10):1506-1511
    Wang X N, Yan Z G, Liu Z T, et al. Comparison of species sensitivity distributions for species from China and the USA[J]. Environmental Science and Pollution Research, 2014, 21(1):168-176
    Dyer S D, Versteeg D J, Belanger S E, et al. Interspecies correlation estimates predict protective environmental concentrations[J]. Environmental Science & Technology, 2006, 40(9):3102-3111
    Wu F C, Mu Y S, Chang H, et al. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids[J]. Environmental Science & Technology, 2012, 47(1):446-453
    Jin X W, Wang Z J, Wang Y Y, et al. Do water quality criteria based on nonnative species provide appropriate protection for native species?[J]. Environmental Toxicology and Chemistry, 2015, 34(8):1793-1798
    Wang B, Yu G, Huang J, et al. Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China[J]. Environmental Monitoring and Assessment, 2009, 157(1-4):29-42
    Newman M C, Ownby D R, Mézin L C A, et al. Applying species-sensitivity distributions in ecological risk assessment:Assumptions of distribution type and sufficient numbers of species[J]. Environmental Toxicology and Chemistry, 2000, 19(2):508-515
    Grist E P M, Leung K M Y, Wheeler J R, et al. Better Bootstrap estimation of hazardous concentration thresholds for aquatic assemblages[J]. Environmental Toxicology and Chemistry, 2002, 21(7):1515-1524
    Killick R, Eckley I. Changepoint:An R package for changepoint analysis[J]. Journal of Statistical Software, 2014, 58(3):1-19
    Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1-12):192-202
    United States Environmental Protection Agency. National Recommended Water Quality Criteria[R]. Washington DC:Office of Water, Office of Science and Technology, 2006
    United States Environmental Protection Agency. National Recommended Water Quality Criteria[R]. Washington DC:Office of Water, Office of Science and Technology, 2009
    Wong L C, Kwok K W H, Leung K M Y, et al. Relative sensitivity distribution of freshwater planktonic crustaceans to trace metals[J]. Human and Ecological Risk Assessment, 2009, 15(6):1335-1345
    孔祥臻, 何伟, 秦宁, 等. 重金属对淡水生物生态风险的物种敏感度分布评估[J]. 中国环境科学, 2011, 31(9):1555-1562

    Kong X Z, He W, Qin N, et al. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions[J]. China Environmental Science, 2011, 31(9):1555-1562(in Chinese)

    杜建国, 赵佳懿, 陈彬, 等. 应用物种敏感度分布评估重金属对海洋生物的生态风险[J]. 生态毒理学报, 2013, 8(4):561-570

    Du J G, Zhao J Y, Chen B, et al. Assessing ecoloigical risks of heavy metals to marine organisms by species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2013, 8(4):561-570(in Chinese)

    Levy J L, Stauber J L, Jolley D F. Sensitivity of marine microalgae to copper:The effect of biotic factors on copper adsorption and toxicity[J]. Science of the Total Environment, 2007, 387(1-3):141-154
    Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741
    Wang Y, Na G S, Zong H M, et al. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments:A case study on Tianjin City, China[J]. Environmental Toxicology and Chemistry, 2018, 37(2):551-562
    Maltby L, Blake N, Brock T C M, et al. Insecticide species sensitivity distributions:Importance of test species selection and relevance to aquatic ecosystems[J]. Environmental Toxicology and Chemistry, 2005, 24(2):379-388
    Zhang L M, Wei C D, Zhang H, et al. Criteria for assessing the ecological risk of nonylphenol for aquatic life in Chinese surface fresh water[J]. Chemosphere, 2017, 184:569-574
  • 加载中
计量
  • 文章访问数:  2171
  • HTML全文浏览数:  2171
  • PDF下载数:  110
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-08
冯永亮. 淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例[J]. 生态毒理学报, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
引用本文: 冯永亮. 淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例[J]. 生态毒理学报, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
Feng Yongliang. Study on the Sensitivity Differences of Indicators to Toxic Substances from Gene to Population Level in Freshwater and Marine Organisms: A Case Study of Copper[J]. Asian journal of ecotoxicology, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001
Citation: Feng Yongliang. Study on the Sensitivity Differences of Indicators to Toxic Substances from Gene to Population Level in Freshwater and Marine Organisms: A Case Study of Copper[J]. Asian journal of ecotoxicology, 2020, 15(4): 268-279. doi: 10.7524/AJE.1673-5897.20191008001

淡水生物和海水生物从基因到种群水平指标对毒性物质的敏感性差异研究——以铜为例

    通讯作者: 冯永亮, E-mail: yongliangfeng0511@126.com
    作者简介: 冯永亮(1987-),男,博士研究生,讲师,研究方向为污染物的生态风险评价和水质基准构建,E-mail:yongliangfeng0511@126.com
  • 唐山学院基础教学部, 唐山 063000
基金项目:

“沂南县医药健康产业园规划环境影响报告”横向项目(2018005);唐山学院博士创新基金资助项目

摘要: 物种敏感度分布(SSD)是一种广泛用于生态风险评价和水质基准建立的统计分布模型,目前用于SSD分析的主要是生物个体水平的毒性数据。随着基因、生化、细胞、器官以及种群水平毒性数据的日渐丰富,这些不同层次毒理指标数据能否应用于水质基准制定和生态风险评价值得研究。本研究搜集了铜对淡水和海水生物基因、生化、细胞、器官、个体和种群水平的毒性数据,构建了相应的SSD曲线,采用双样本K-S检验和5%物种受影响的浓度(HC5)差异法比较了不同指标间的差异,采用拐点分析法确定了构建稳定SSD所需的最小样本量。K-S检验结果表明,水生生物个体急性指标对铜的敏感性要显著低于其他指标,淡水生物的个体慢性指标的敏感性显著高于生化和种群指标。HC5差异法结果显示,海水生物不同指标对铜的敏感性顺序为:基因≥器官≥种群>个体慢性≥生化≥细胞>个体急性,淡水生物为:个体慢性 > 种群≥器官 > 生化≥基因≥细胞 > 个体急性。淡水和海水生物不同指标毒性数据构建稳定SSD所需最小样本量范围分别为5~22和5~17。由于毒性数据的质量和数量问题,水生生物不同层次指标对铜的敏感性并没有呈现出逐级响应的关系,基于现有数据尚难以大范围地支持其在水质基准制定和风险评价中的应用。本研究结果可为我国水质基准的后期修订和风险评价提供借鉴。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回