-
邻苯二甲酸酯(phthalates esters,PAEs)又称酞酸酯,是邻苯二甲酸形成的酯类总称,传统的PAEs具有性能良好、生产工艺成熟的特性[1],被大量合成以生产各种塑料[2] ,其产量约占塑化剂总产量的80%[3]。PAEs被广泛应用于食品包装、医疗卫生、化妆品等生活各个方面[4],其在环境中无处不在,可以通过呼吸、饮食和皮肤接触等途径进入生物体内[5],由于PAEs具有类雌性激素活性,其进入生物体后会促使生殖系统紊乱[6]。PAEs带来的环境污染问题日益严重,成为国内外研究的热点之一。有研究学者指出,陆地土壤中微塑料的含量是海洋体系中的4~23倍[7],PAEs通过大气沉降、灌溉和工业废水排放等过程的迁移和转化进入到土壤中,土壤是受PAEs污染主要的汇[8]。PAEs对人体健康和生态环境均构成了潜在的危害,目前已经成为全球最主要的污染物之一[9]。因此,US EPA将邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二正辛酯(DNOP)列为优先控制污染物[10],我国也将DEP、DBP、DNOP列为优先控制污染物[11]。
兰州城区化工业发展迅速,区域人口密集,交通拥堵,以及频繁的人群活动带给土壤环境强烈的干扰[12]。近几年,越来越多的学者开始关注甘肃地区土壤环境污染问题,不过大多关注农田土壤的研究[13-14],对兰州城区土壤环境问题的研究较少且主要以重金属为主[15-16],几乎没有关于兰州城区土壤 PAEs 污染的相关研究。考虑到城市快速发展对土壤的累积影响效应,及土壤环境污染物对人群健康风险,对兰州主城区不同区域土壤中PAEs的含量和污染特征进行分析,对土壤中PAEs的来源进行分析讨论,利用US EPA推荐的健康风险评价模型[17]评估6种优先控制PAEs对人群的致癌/非致癌风险评价,筛选出兰州城区土壤中主要PAEs污染物,以期待结果可以为兰州城区土壤环境决策和相关的标准制定提供一定的理论依据和数据参考。
土壤邻苯二甲酸酯污染特征分析和人体健康风险评价
——以兰州城区为例Analysis of soil phthalate pollution characteristics and human health risk assessment
-
摘要: 利用气相色谱-质谱联用法对兰州市城区24个采样点表层土壤中6种邻苯二甲酸酯(PAEs)的浓度进行测定,并应用美国国家环境保护局(US Environmental Protection Agency, EPA)推荐的人体健康风险评价模型评估了兰州城区土壤中PAEs对人体健康的非致癌、致癌风险指数。结果表明:兰州城区土壤PAEs浓度为0.044~1.034 mg/kg,平均浓度为0.217 mg/kg;各区按照PAEs浓度排序为西固区>七里河区>城关区>安宁区;兰州城区土壤检出PAEs以邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二正辛酯(DNOP)污染物为主,其贡献率分别为51%、45%和56%,依据测定并结合各区域背景,推测出PAEs潜在来源主要为工业污染源、人为污染源和交通运输污染源。人体健康风险评估结果表明:兰州市PAEs的非致癌风险(HQ)、致癌风险(CR)均低于US EPA推荐的安全阈值,对人体健康不构成危害。Abstract: The concentrations of six kinds phthalates (PAEs) in the surface soil of 24 sampling sites in Lanzhou were tested by gas chromatography coupled with mass spectrometry. The human health risk of phthalates in Lanzhou urban soil was evaluated using the human risk assessment model recommended by US Environmental Protection Agency (US EPA), assessing both non-carcinogenic and carcinogenic risk indices. The results showed that the concentration of phthalates esters in Lanzhou urban soil range from 0.044 to 1.034 mg/kg, with an average concentration of 0.217 mg/kg. According to the overall pollution content, the concentrations in different districts ranked as Xigu, Qilihe, Chengguan, and Anning. The predominant PAEs detected in Lanzhou urban soil were DBP, DEHP and DNOP, contributing to 51%, 45% and 56% of the total PAEs concentration respectively. Based on the determination and regional background, potential sources of PAEs were mainly from industrial pollution sources, anthropogenic pollution sources, and transportation pollution sources. The results of human health risk assessment showed that the non-carcinogenic risk (HQ) and carcinogenic risk (CR) of phthalates in Lanzhou were below the safety thresholds recommended by the US EPA, posing to no harm to human health. However, preventive measures and controls should still be taken into consideration.
-
Key words:
- phthalate ester /
- surface soil /
- health risk evaluation /
- Lanzhou
-
表 1 目标物的定量参数
Table 1. Quantitative parameters of the target
PAEs CAS编码 定量离子/m·z−1 定性离子/m·z−1 类型 定量内标 出峰时间/s DMP 131-11-3 163 77 目标物 内标物1 10.717 DEP 84-66-2 149 177、150 目标物 内标物1 11.997 BBZ 120-51-4 105 91、77 替代物 内标物1 13.590 DBP 84-74-2 149 150、223 目标物 内标物1 14.873 DPP-d4 358730-89-9 153 154、241 内标物1 − 16.177 BBP 85-68-7 149 91、206 目标物 内标物2 17.643 DEHP 117-81-7 149 167、57 目标物 内标物2 19.097 DNOP 117-84-0 149 150、279 目标物 内标物2 21.343 DEHP-d4 93951-87-2 153 171、71 内标物2 − 19.090 注:“-”代表本身为内标物,无需内标定量。 表 2 非致癌/致癌风险评估模型公式
Table 2. Non-carcinogenic / carcinogenic risk assessment model formula
项目 PAEs非致癌/致癌风险评价公式 非致癌风险 HQ=Σ(ADDi/RfDi) 致癌风险 CR=Σ(ADDi×CFS) 摄入途径 ADDi=ADDingest+ADDinhale+ADDdermal 经口直接摄入ADDingest ADDingest=(csoil×IRS×EF×ED/BW×AT) ×CF 呼吸吸入ADDinhale ADDinhale= (csoil×EF×ED×Ij/PEF×AT) ×103 皮肤接触ADDdermal ADDdermal=(csoil×SA×AF×ABS×EF×ED/ BW×AT) ×CF 注:csoil为土壤PAEs浓度,mg/kg。 表 3 健康风险暴露评估模型参数
Table 3. Health risk exposure assessment model parameters
参数 含义 单位 数值 参考文献 IRS 土壤摄入量 mg·d−1 100 [17] EF 接触频率 d·a−1 350 [17] ED 曝光时间 a 24 [17] BW 平均体重 kg 70 [17] CF 转换因子 − 10−6 [17] AT 平均寿命 d 非致癌:365×ED
致癌:25 550[20] Ij 呼吸率 m3·d−1 13.5 [21] PEF 颗粒排放因子 m3·kg−1 1.36×109 [17] SA 皮肤暴露面积 cm2·d−1 57 000 [17] AF 土壤粘附因子 mg·cm−1 0.07 [17] ABS 皮肤从土壤中吸
收的污染物分数− 0.1 [22] CFS 致癌率 mg·kg−1·d−1 DEHP=0.014 [17] RfD 非致癌物经某种
途径摄入的日均
推荐剂量mg·kg−1·d−1 DBP=0.1
DNOP=0.04[22] 注:“-”代表无单位。 表 4 兰州市城区土壤PAEs浓度水平
Table 4. Urban soil PAEs concentration in Lanzhou
mg·kg−1 PAEs 范围 平均值 中位数 最大值 最小值 标准差 变异系数 检出率/% DMP ND − − − − − − 0 DEP ND − − − − − − 0 BBP ND − − − − − − 0 DBP 0.012~0.211 0.065 0.066 0.246 0.012 0.043 0.062 100 DEHP 0.002~0.316 0.063 0.032 0.032 0.001 0.072 0.009 100 DNOP 0.01~0.643 0.089 0.029 0.040 0.007 0.110 0.010 100 注:ND代表未检出;“-”代表无数值。 表 5 各区土壤PAEs单体含量水平
Table 5. Soil PAEs monomer content level in each area
mg·kg−1 行政区 DBP DEHP DNOP ΣPAEs R M R M R M 城关区(9) 0.012~0.089 0.031 0.021~0.215 0.061 0.010~0.133 0.045 0.137 七里河区(6) 0.065~0.094 0.076 0.013~0.201 0.072 0.016~0.099 0.034 0.182 安宁区(4) 0.049~0.072 0.060 0.002~0.020 0.012 0.011~0.083 0.045 0.117 西固区(5) 0.067~0.211 0.118 0.022~0.316 0.095 0.028~0.643 0.269 0.482 注:()内代表采样点位数量;R代表含量范围;M代表平均值。 表 6 不同地区土壤PAEs浓度水平
Table 6. Soil PAEs concentration levels in different regions
mg·kg−1 地区 DMP DEP DBP BBP DNOP DEHP ΣPAEs 参考文献 西安城市土壤 0.188 0.187 4.174 0.091 0 0.188 0 6.122 10.950 [25] 重庆城市土壤 0.004 0.016 0.057 0.000 6 0.000 5 0.136 0.214 [31] 北京城市土壤 0.010 0.020 0.790 0.030 0 0.030 0 1.880 2.760 [32] 沈阳城市土壤 0.105 0.177 0.157 0.035 0 0.003 0 0.175 0.652 [33] 广州城市土壤 0.098 0.054 4.067 0.160 0 0.582 0 36.230 41.191 [34] 巴黎城市土壤 − 0.100 0.140 0.130 0 0.090 0 13.000 13.460 [35] 丹麦城市土壤 0.000 1 0.000 6 0.008 0.000 5 0.013 0 0.049 0.071 [36] 莫斯科城市土壤 0.470 0.420 31.740 − − 17.200 49.830 [37] 兰州城区土壤 ND ND 0.065 ND 0.089 0 0.063 0.217 本研究 注:表格中的数值均选自平均值;ND为未检出;“−”为无数值。 -
[1] BENJAMIN S, MASAI E, KAMIMURA N, et al. Phthalates impact human health: epidemiological evidences and plausible mechanism of action[J]. Journal of Hazardous Materials, 2017, 340: 360 − 383. doi: 10.1016/j.jhazmat.2017.06.036 [2] LIANG D, ZHANG T, FANG H H, et al. Phthalates biodegradation in the environment[J]. Applied Microbiology and Biotechnology, 2008, 80(2): 183 − 198. doi: 10.1007/s00253-008-1548-5 [3] 高静, 李红玉, 马瑾玮, 等. 国内外增塑剂的研究与发展趋势[J]. 化工技术与开发, 2019, 48(12): 49 − 52. [4] RADKE E G, YOST E E, ROTH N, et al. Application of US EPA IRIS systematic review methods to the health effects of phthalates: lessons learned and path forward[J]. Environment International, 2020, 145. [5] CAMPANALE C, MASSARELLI C, SAVINO I, et al. A detailed review study on potential effects of microplastics and additives of concern on human health[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1212. doi: 10.3390/ijerph17041212 [6] HE Y, WANG X, WU K. Evaluating breast cancer risk under exposure to environmental estrogen-like chemicals[J]. Polish Journal of Environmental Studies, 2016, 25(6): 2239 − 2249. doi: 10.15244/pjoes/64282 [7] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [Z]. Environmental Science & Technology, 2016: 50, 10777-10779. [8] SUN H, ZHU L, ZHOU D. POLSOIL: Research on soil pollution in China[J]. Environmental Science & Pollution Researchr, 2018, 25: 1 − 3. [9] BERGÉ A, CLADIÈRE M, GASPERI J, et al. Meta-analysis of environmental contamination by phthalates[J]. Environmental Science and Pollution Research, 2013, 20(11): 8057 − 8076. doi: 10.1007/s11356-013-1982-5 [10] US Environmental Protection Agency. Toxic and Priority Pollutants Under the Clean Water Act[EB/OL]. [2021-07-10]. US EPA Available online:https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act. [11] 胡晓宇, 张克荣, 孙俊红, 等. 中国环境中邻苯二甲酸酯类化合物污染的研究[J]. 中国卫生检验杂志, 2003, 13(1): 9 − 14. doi: 10.3969/j.issn.1004-8685.2003.01.001 [12] 李春艳, 胡梦珺, 王佳, 等. 兰州市主城区校园地表灰尘重金属时空污染特征及健康风险评价[J]. 湖北农业科学, 2021, 60(5): 39 − 47. [13] 冯定邦, 任志伟, 张吉宁, 等. 庆阳市农业土壤污染现状及防治措施[J]. 农业科技与信息, 2021(13): 11 − 12. doi: 10.3969/j.issn.1003-6997.2021.13.004 [14] 潘存庆, 焦绍明, 孙花, 等. 金川区某镇农用田土壤重金属污染状况调查[J]. 农业技术与装备, 2020(8): 159 − 160. doi: 10.3969/j.issn.1673-887X.2020.08.076 [15] 李军, 李开明, 位静, 等. 兰州BRT沿线站台灰尘及其两侧绿化带土壤重金属污染及健康风险评价[J]. 地球与环境, 2022, 50(2): 228 − 240. [16] 陈任连, 蔡茜茜, 周丽华, 等. 甘肃某冶炼厂区土壤重金属铅、镉污染特征及其对微生物群落结构的影响[J]. 生态环境学报, 2021, 30(3): 596 − 603. [17] US Environmental Protection Agency. Mid Atlantic Risk Assessment, Regional Screening Level (RSL) Summary Table[Z]. Office of Research and Development Washington, DC, 2022. [18] 陈佳祎, 李成, 栾云霞, 等. 北京设施蔬菜基地蔬菜中邻苯二甲酸酯残留特征分析[J]. 食品安全质量检测学报, 2016, 7(11): 4432 − 4437. [19] 张文娟, 王利军, 王丽, 等. 西安城区地表灰尘中邻苯二甲酸酯分布、来源及人群暴露[J]. 环境科学, 2016, 37(10): 3758 − 3765. [20] 王昱文, 柴淼, 曾甯, 等. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 2016, 35(2): 364 − 372. doi: 10.7524/j.issn.0254-6108.2016.02.2015072005 [21] WANG J, CHEN G, CHRISTIE P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015, 523: 129 − 137. doi: 10.1016/j.scitotenv.2015.02.101 [22] JUNE N. Technical Background Document for Development of Soil Screening Levels, Revision 4.0[J]. New Mexico Environment Department, Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, Santa Fe, New Mexico, 2006. [23] 魏雪芬, 蒋煜峰, 王蓓蕾, 等. 兰州西固区土壤中有机氯农药污染特征及风险评价[J]. 环境监测管理与技术, 2017, 29(3): 27 − 31. doi: 10.3969/j.issn.1006-2009.2017.03.007 [24] 吴在星. 北京高校宿舍降尘中邻苯二甲酸酯污染特征及暴露研究[D]. 北京: 北京建筑大学, 2020. [25] 张文娟, 王利军, 苏少林, 等. 西安市表层土壤中邻苯二甲酸酯(PAEs)含量与构成[J]. 环境监测管理与技术, 2020, 32(2): 37 − 41. doi: 10.3969/j.issn.1006-2009.2020.02.009 [26] WANG L, LIU M, TAO W, et al. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi'an, Northwest China[J]. Chemosphere, 2018, 191: 467 − 476. doi: 10.1016/j.chemosphere.2017.10.066 [27] NET S, SEMPERE R, DELMONT A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 2015, 49(7): 4019 − 4035. [28] LAN Q, CUI K, ZENG F, et al. Characteristics and assessment of phthalate esters in urban dusts in Guangzhou city, China[J]. Environmental Monitoring and Assessment, 2012, 184(8): 4921 − 4929. doi: 10.1007/s10661-011-2312-3 [29] 廖健, 邓超, 陈怡, 等. 西湖景区土壤中邻苯二甲酸酯污染水平、来源分析和空间分布特征[J]. 环境科学, 2019, 40(7): 3378 − 3387. [30] ŠKRBIĆ B D, JI Y, ĐURIŠIĆ-MLADENOVIĆ N, et al. Occurence of the phthalate esters in soil and street dust samples from the Novi Sad city area, Serbia, and the influence on the children’s and adults’ exposure[J]. Journal of Hazardous Materials, 2016, 312: 272 − 279. doi: 10.1016/j.jhazmat.2016.03.045 [31] 杨志豪, 何明靖, 杨婷, 等. 邻苯二甲酸酯在重庆市城市土壤中的污染分布特征及来源分析[J]. 环境科学, 2018, 39(7): 3358 − 3364. [32] LI X H, MA L L, LIU X F, et al. Phthalate ester pollution in urban soil of Beijing, People's Republic of China[J]. Bulletin of Environmental Contamination & Toxicology, 2006, 77(2): 252 − 259. [33] 刘剑. 沈阳市东北部土壤中邻苯二甲酸酯的污染特征及风险评估[D]. 沈阳: 沈阳大学, 2020. [34] ZENG F, CUI K, XIE Z, et al. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1171 − 1178. doi: 10.1016/j.jhazmat.2008.09.029 [35] TRAN B C, TEIL M, BLANCHARD M, et al. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France)[J]. Environmental Science and Pollution Research, 2015, 22(14): 11118 − 11126. doi: 10.1007/s11356-015-4178-3 [36] GIBSON R, WANG M, PADGETT E, et al. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids[J]. Chemosphere, 2005, 61(9): 1336 − 1344. doi: 10.1016/j.chemosphere.2005.03.072 [37] BRODSKIY E S, SHELEPCHIKOV A A, AGAPKINA G I, et al. Phthalate Esters’ Content in Soils of Moscow[J]. Moscow University Soil Science Bulletin, 2019, 74(2): 88 − 92. doi: 10.3103/S0147687419020029