-
中国已进入快速城市化阶段,其重要表现形式之一就是城市空间的快速扩张,定量刻画与理解城市空间形态及其演化对研究城市化问题具有重要意义[1]。对于城市发展,国外学者多注重城市扩展的几何特征,从景观指数角度识别和分析城市扩展的特征。国内学者对城市扩展的研究主要集中于不同尺度下城市扩展的空间特征[2-3]、城市扩展的驱动机制[4]和模型模拟预测[5],以期科学地引导建设用地扩展、维护城市生态安全。在人居环境质量指数建立方面,国内相关研究也比较全面[6-7],但对于城市化和人居环境质量关系方面研究较为有限。
上海作为一线大都市,一方面城市化发展速度快,变化特征显著;另一方面人口密度大,城市问题(空气质量恶化、城市交通问题)显著而典型。因此,本研究选取上海市为研究区,借助ArcGIS平台,在对上海市城市化发展时空变化分析的基础上,构建人居环境质量指数,从而揭示城市扩张变化与人居环境质量的相关性。研究有助于科学认识城市动态演变过程与宜居地区特征,以期为未来制定城市发展规划、建设“绿色友好型”的新型城市和调控城市用地形态提供科学依据。
-
上海市地处东经120°52′~122°12′E、北纬30°40′~31°53′N之间,总面积6 340 km2,划分为中心、半中心、郊区及崇明县郊县4个区域,共辖15个区(不包括崇明县),是长三角城市群格局的核心,见图1。上海市陆地地势呈现东部高、西部低、全区地势平坦的特点,境内湖泊众多,属亚热带季风性气候区,具有明显的城市热岛效应。2018年,上海市平均气温约为15.8 ℃,年均降水量1 119.1 mm,全市常住人口总数为2 423.78×104人,GDP为3.27×1012元。
-
2000和2018年上海市土地利用现状数据、2018年上海市DEM高程数据、建筑数据、全国植被覆盖率数据、平均降水量数据、平均气温数据和行政边界数据源自中国科学院资源与环境科学数据中心;上海市道路数据源自地理国情监测云平台;AQI环境监测数据源自中国环境监测总站;2010年第六次人口普查空间数据、2016年上海市POI数据源自数据研习社。
-
圈层分析是指以城市中心为圆心,将城市划分成一定半径圆环,每个同心圆环作为城市扩张空间分异的基本单元,以此计算有关维度指标[8]。本研究根据上海市POI数据,以上海市政府作为城市中心,5 km作为半径进行圈层分析,之后的结果均基于此圈层进行。
利用上海市2000年和2018年的土地利用现状数据,借助ArcGIS软件的Intersect模块,将数据进行叠加,再以上述圈层对数据进行分析,根据结果计算城市扩张指标。扩张速度计算,见式(1)[9]:
式中:K为研究时段内区域建设用地的扩张速度;Ua、Ub分别为研究时段开始与结束时建设用地的面积,km2;T为研究时段,a。
扩张强度指数计算,见式(2)[10]:
式中:UEI为研究时段内区域建设用地的扩张强度,km2/a;Ua、Ub分别为研究时段开始与结束时建设用地的面积,km2;A为土地总面积,km2;T为研究时段,a。
-
城市扩张速度通常以30%和50%为界限,≤30%为缓慢扩张阶段、30%~50%为较快扩张阶段,≥50%为快速扩张阶段[11]。本文根据上海市情况,通过自然断点法,将上海市各圈层扩张速度分为5类,对应区域分别为:缓慢扩散、低速扩散、中速扩散、快速扩散和高速扩散,见图2。
研究发现,上海市城市扩张速度在空间上分异特征明显,呈现明显的“圈层式”扩张模式。总体来看,建设用地扩张速度随着距中心城区距离增加而逐渐加快,这主要是因为上海市中心城区与紧邻的近郊城区发展较早,新增建设用地面积较少;而离中心城区相对较远的圈层,在城乡发展一体化政策的扶持下,发展潜力依次增大。
-
扩张强度变化显示在25 km以内时,随着距城市中心的距离增加,城市扩张强度逐渐升高,这是由于近城区发展较早,可利用土地有限,导致扩张重心逐步外移;而距离城市中心25~70 km范围内,由于城市中心辐射范围有限,随着距离增加,扩张强度也逐步降低,见图3。
-
以上海市部分区域建筑数据为基础数据,见图4,再借助ArcGIS平台,对上述各圈层进行深入分析,见图5。根据自然断点法将研究区范围内建筑分为7类:1~3层、4~6层、7~12层、13~20层、21~33层、34~66层和67~118层,并求得不同层数的建筑在各圈层所占比重,见表1。
以到达市中心的距离为x轴,以各类建筑在各圈层内的占比为y轴,绘折线图,见图6。
图6可知,曲线变化波动较大,原因如下:1)中心集聚。在靠近市中心的圈层内,土地集约利用,高层建筑较多,在城市边缘地区高层建筑较少;2)圈层本身特性。研究区范围内包括部分行政区,由于各个行政区拥有各自的商业中心,各个中心也发挥着集聚作用,导致某些圈层内4~20层建筑占比有反弹上升趋势;与此相对,一些圈层包含大量公园绿地和工业园区,导致1~3层建筑占比也较高;3)建筑本身特性。1~3层建筑多为工厂、村镇及公共用地,4层以上多为住宅用地和商服用地。各类用地拥有各自的分布区域,并且相对不集中。
-
以圈层分析结果为基础计算各圈层建筑平均层数和建筑密度,本文中建筑密度为城市建筑密度,见式(3):
鉴于数据可得性,本文以土地利用现状面积中的建设用地面积代替规划建设用地面积。由于基底面积缺少部分露天建设用地数据,如道路、工矿和水利等,求得的建筑密度较小。虽然数值偏小,但整个城市的各类建设用地分布均匀,各圈层均包含上述露天建设用地,所以此结果对于城市化程度的分析同样具有意义,可以代替建筑密度分析城市的空地率和建筑密集程度。此外,由于50~60 km圈层建筑数据可得性限制,此范围地区未作深入分析。
研究发现各圈层建筑密度从市中心到边缘地区逐渐降低,此结果符合城市致密化与集聚发展原则。建筑平均层数变化趋势为先上升再下降最后趋于平缓,10 km圈层平均建筑层数高于5 km圈层的原因是中心城区包含建筑层数普遍较低的旧城区,之后的曲线符合城市致密化发展原则,见图7。
-
地形起伏度是描述一个区域地形特征的一个宏观性的指标[13],在土地利用评价、生态环境评价和人居环境适宜性评价等领域有广泛应用。地形起伏度的计算,见式(4):
式中,Ri表示第i个栅格的地形起伏度,Hmaxi和Hmini表示第i个栅格内DEM最大值和最小值。本研究数据源为SRTM DEM 90 m数据,以4.72 km2作为地形起伏度适宜计算尺度[14]。根据上海市DEM数据,利用ArcGIS得到14个圈层的地形起伏度数值,见图9(a)。根据所得结果结合地形起伏度分级方法确定分值,由于地形起伏度不超过30 m为平原地区,故以地形起伏度为30 m的赋90分,地形起伏度为0 m赋100分,期间起伏度每增加3 m减1分,得到地形起伏度分值。
-
对于人类来说,居住环境的温度和相对湿度都会对人类居住感受产生较大的影响。温湿指数(THI)由俄国学者的有效温度演变而来,它的物理意义是湿度订正以后的温度,综合考虑了温度和湿度对人体舒适度的影响[15]。温湿指数的计算,见式(5~6):
式中,T为华氏温度,℉;t为月平均摄氏温度,℃;f为月空气相对湿度,%。
根据上海市平均温度和平均湿度数据,利用ArcGIS得到14个圈层的温湿指数,见图9(b)和(c)。依据温湿指数分级表[16],利用极差标准化法为气候指数赋分。分值越大越接近1表明温湿情况越适宜居住,分值越小越接近0表明越不适宜居住,从而得到温湿指数分值。
-
植被变化直接影响生态环境的变迁, 进而影响居住区植被、水文和大气循环变化, 是研究人居环境的主要因子之一[17]。
利用ArcGIS对植被覆盖率进行圈层分析,得到14个圈层的植被覆盖率,将植被覆盖率(0~1)数据进行重分类,(0~0.2)赋60分,以此类推,得到植被覆盖率分值,图9(d)。
-
交通作为表征区域发展状况的重要指标之一,支撑着城市与城市之间人员、物质和信息等的交换和流动[18],是人居环境质量评价不可或缺的因子。本研究运用面积占比法[19],以市区一级道路为研究对象,55 m作为道路的影响距离,对道路数据赋分,对其进行缓冲区分析,以缓冲区面积与圈层面积比作为圈层的道路通达度,见式(7):
式中,L为一级道路长度,m;S为圈层面积,m2。
由于道路通达度属于正向指标,比较14个圈层道路通达度,数值最小的圈层赋分60,数值最大的圈层赋分100,其余圈层依托已确定的一次函数依次赋分,便将道路通达度转变成介于60~100的分值,得到交通通达度分值,见图9(e)。
-
人口密度是单位土地面积上的人口数量,它是衡量一个国家或地区人口分布状况的重要指标。根据上海市第六次全国人口普查数据,计算14个圈层的人口密度,采用基于二次函数的标准化方法[20],将所有人口密度进行z-score标准化,见式(8):
式中,Zij标准化数值,Xij是具体数值,
−Xi 是平均值,Si是标准差。选取Zij最大值和最小值为50分,倒数第二小值为60分,进行二次函数拟合,得函数参数值后进行分值计算,见式(9):
式中,Fi为分值;计算得到人口密度分值,见图9(f)。
-
空气质量指数(AQI)是定量描述空气质量状况的非线性无量纲指数。利用上海市11个监测站空气数据,通过ArcGIS的Interpolation模块得到上海市AQI分布数据,进行圈层分析后得到各圈层AQI平均值,再根据空气质量指数级别对AQI进行标准化,AQI值为0时赋100分,之后AQI值每增加1分值增加0.2分,得到空气质量指数分值,见图9(g)。
-
根据层次分析法和专家打分法确定各因素权重,见表2。
与所求的各要素权重分值相乘得到14个圈层的上海市人居环境质量指数。各因素分值计算时均根据与人居环境质量的关系进行,各类正向指标、反向指标和人口密度均已按照与人居环境质量的关系进行了处理,因此人居环境质量指数越高,人居环境质量越好。上海市各圈层的人居质量指数,见表3。
分析发现自然要素指数从中心地区到城市外围呈递增变化;人文要素指数从中心地区到城市外围呈递减变化;人居环境质量指数由中心到外围地区呈现波动性变化,最适宜居住地区为0~15 km、35~45 km和65~70 km范围,见图10。
-
总体来看,当扩张强度超过0.000 5,扩张速度超过0.02时,人居环境质量指数与扩张强度和扩张速度呈反向变化,与建筑平均层数呈正向变化,超过一定限值后受建筑密度制约,即建筑密度越大,人居环境质量指数越低,见图11。扩张强度和扩张速度越大,一方面说明该地区之前城市化情况较差,有大量可用于建设的面积,因此该地区的基础设施情况一般,且人口数量随着扩张强度和速度的变化增大,逐渐使得人口密度过高;另一方面城市扩张过程中会占用原本的绿地,减少地区植被覆盖率,造成相应的污染,使得地区空气质量较差。因此扩张强度和扩张速度越大,人居环境质量越差。扩张强度和扩张速度越小,说明该地区属于城市化高度发达地区或城市郊区,前者基础设施建设很好,交通方便,空气治理情况较好;后者绿化率高,空气质量好,人口密度适宜。因此扩张强度和扩张速度越小,人居环境质量越高。平均层数较高的地区,包含大量适宜居住的区域,基础设施和交通环境等条件都十分优越,人居环境质量也比较高;平均层数较低的地区,包含许多工矿用地和未开发地区,基础设施和空气质量较差,人居环境质量相应也较差。建筑密度过大的地区,城市绿地率不能得到保障,人口密度过大,属于过饱和地区,人居环境质量较低,此处求得的最大限值为22.3%,实际值应该大于本文研究数值。
-
(1)上海市城市扩张速度在空间上分异特征明显,呈现明显的“圈层式”扩张模式。总体来看,建设用地扩张速度随着距中心城区距离增加而逐渐加快,扩张强度峰值为距离城市中心20~25 km范围内,并向两侧递减。各圈层建筑密度从市中心到边缘地区逐渐降低,建筑平均层数变化趋势为先上升再下降最后趋于平缓。
(2)人居环境质量自然指数从中心地区到城市外围呈递增变化;人文要素指数从中心地区到城市外围呈递减变化;人居环境质量综合指数由中心到外围地区呈现波动性变化,最适宜居住地区为0~15 km、35~45 km和65~70 km范围。
(3)城市空间扩张与人居环境质量关系:当扩张强度超过0.000 5,扩张速度超过0.02时,人居环境质量指数与扩张强度和扩张速度呈反向变化,与建筑平均层数呈正向变化,超过一定限值(22.3%)后受建筑密度制约,即建筑密度越大,人居环境质量指数越低。
上海市城市空间扩张与人居环境质量关系研究
Study on relationship between urban spatial expansion and living environment quality in Shanghai
-
摘要: 上海市作为中国进入快速城市化发展阶段的典型代表,其城市化发展速度快,变化特征明显的同时,由于人口密度大,城市化带来的问题也显著而典型。文章借助遥感影像资料、自然及人文数据资料,基于ArcGIS平台,分析上海市城市化发展时空变化,构建人居环境质量指数,并对城市空间扩张与人居环境质量进行相了关性研究。研究表明,2010~2018年上海市城市用地扩张速度呈“圈层式”扩张,扩张强度先增后减,在距城市中心20~25 km达到峰值;各圈层建筑密度从市中心到边缘地区逐渐降低,建筑平均层数变化趋势为先上升再下降最后趋于平缓;人居环境质量指数在扩张强度超过0.000 5、扩张速度超过0.02时与其呈反向变化,与建筑平均层数呈正向变化,超过一定限值(22.3%)后受建筑密度制约。Abstract: As a typical representative city of China entering the stage of rapid urbanization, Shanghai has a rapid urbanization development with obvious changes. At the same time, due to the high population density, the problems casued by the urbanization are also obvious and typical. Based on ArcGIS platform, this paper analyzed the spatio-temporal change of Shanghai's urbanization, established the living environment quality index, and studied the correlation between the urban spatial expansion and the living environment quality by the remote sensing image data, natural and human data. The results showed that urban land expansion in Shanghai from 2010 to 2018 with a "circular" expansion. The expansion intensity increased first and then decreased, and reached the peak value at 20~25km from the city center. The building density of each circle layer decreased gradually from the center to the edge area. And the average number of building floors increased first, then decreased and finally flattened. When the expansion intensity exceeded 0.000 5 and the expansion speed exceeded 0.02, the living environment quality index showed a reverse change, which was positively changing with the average number of floors of the building. When the index exceeded a certain limit(22.3%), it was restricted by the building density.
-
Key words:
- urbanization /
- urban expansion /
- densification /
- living environment quality /
- Shanghai
-
热脱附修复技术对于多环芳烃、石油烃等有机污染物的去除具有良好的效果。异位热脱附技术更是具有修复周期短、普适性强的显著优势,在目前有机污染场地修复中应用较为广泛[1]。然而,由于异位热脱附修复工程涉及污染土壤的清挖和转运,施工过程中极易产生有机污染物挥发,造成二次污染,对施工区域及运输路线周边环境产生不良的影响。因此,为了保障修复效果、尽可能地避免二次污染,对污染场地异位热脱附修复工程的全过程环境监理尤为重要。
污染场地修复工程的处理处置对象多为可能危害人体健康的污染物,修复过程具有专业性强、技术复杂及风险高等特点,由此对相应的环境监理工作提出了更高的要求[2]。2014年2月19日,国家环境保护主管部门批准了《场地环境调查技术导则》,并于7月1日起正式实施,首次将环境监理纳入我国污染场地修复工作范畴,标志着污染场地修复工程环境监理开始规范化、系统化和法律化。一些开展污染场地修复相关工作较早的省市(如北京、上海和广东等)积累了若干项目经验,参考国际相关程序和方法,编制了污染场地修复工程环境监理地方性规范。但目前关于环境污染修复工程环境监理方面的研究和案例仍相对匮乏[3]。
本研究以北京某污染场地异位热脱附修复工程为例,结合实际情况对其环境监理工作要点进行了研究,并分析了本案例的典型意义,对环境监理过程中存在的问题进行梳理,提出了若干建议,为污染场地修复工程环境监理研究与实践、为相关管理制度制定都提供了案例参考。
1. 场地与修复工程概况
场地原为钢铁企业辅助设施(如运输、料仓、旧货场等)所在地,已有30年生产经营历史。根据场地环境调查与风险评估结果,场内零散分布29个多环芳烃污染地块,最大污染深度4.5 m,污染面积3.1万m2,污染土方量3.9万m3。土壤中16种多环芳烃均超标,超标率范围0.43%~34.89%,超标率最大的是苯并(a)芘。根据《北京城市总体规划(2004年−2020年)》[4],场地所在区域规划为生态友好型产业集聚地,该场地未来为居住用地、商业用地及公共设施用地。
根据项目实施方案及相关批复文件,该场地采用异位热脱附技术修复。对场地内污染土壤进行清挖后,用密闭式专用运输车运往热脱附设施,经筛分、破碎等预处理后,送入回转窑加热至500 ℃并停留20 min。污染土壤热脱附处理后达到《污染场地修复后土壤再利用环境评估导则:DB11/T 1281—2015》[5]的一级再利用筛选值,达标后的土壤可用于原址回填。污染地块清挖后基坑内各目标污染物的检测结果须满足场地管控值方为合格。总体修复技术路线见图1。
修复过程涉及污染土壤的清挖、运输及热脱附处理等阶段,极易产生废气、噪声、废水和固体废物,对场地及其周边环境造成不良影响。因此,需开展严格的环境监理工作,对可能产生二次污染的各环节进行监管,尽可能地降低施工对周边环境带来的负面影响。
2. 本工程环境监理工作要点
污染场地修复工程环境监理工作一般包括3个阶段:修复工程设计阶段环境监理、修复设施建设阶段环境监理和修复工程实施阶段环境监理[5]。本工程环境监理工作除了上述3个阶段外,还包括在修复工程验收阶段的协助工作。
2.1 工程设计阶段环境监理工作要点
工程设计阶段环境监理工作的目的在于“事前控制”和“主动控制”[6],需熟悉修复工程环评报告与设计文件,审查施工单位的施工方案并提出审查意见和修改要求,同时编写环境监理方案等用于指导本工程环境监理工作的技术文件。
2.1.1 文件审核
通过资料梳理、现场踏勘和人员访谈等方式,在熟悉本项目场地污染调查评估状况、场地及周边环境状况、环保主管部门相关批复情况、场地修复工程施工条件等的基础上,对修复技术方案和施工方案进行审核。
核查施工方案是否满足污染场地修复技术方案的要求,如污染场地清挖位置、运输路线、暂存场地、热脱附场所和回填去向等。核查修复方案、施工方案及其中的污染防治措施是否符合相关法律法规与技术规范、环保主管部门批复文件的要求,如产尘点抑尘、污染土遗撒处理和施工期雨废水收集等。经核查,本工程施工方案中缺少针对装载污染土车辆的清洁措施,向建设单位反馈后,要求施工方补充完善,并在后续施工阶段督促该措施的落实。
2.1.2 环境监理方案编制
编制环境监理方案的目的在于指导环境监理工作。根据场地污染情况、场地环境调查与评估报告、修复技术方案和施工方案及修复目标,结合现场踏勘情况编制环境监理方案。在环境监理方案中明确工作目标与范围、工作程序与方法以及各施工环节注意事项,并针对工程实际情况提出可能出现的问题,做好预防措施。
2.2 设施建设阶段环境监理工作要点
规范环境监理工作是设施建设阶段环境监理的主要目的。在本工程环境监理工作中,该阶段工作要点如下:一是建立环境监理体系和制度,督促建设单位针对修复工程产生的废水、废气、噪声、固废等污染物建立相应的污染防治措施和操作规程;督促建设单位落实各类环保协议、相关环保手续的办理工作;督促建设单位建立完善有效的环保责任体系,明确分工、责任到人。二是核查污染防治措施落实情况:核实配套环保设施是否与主体修复设施同时建设,其主要技术指标是否满足修复工程实施方案的要求;核查试运行期间的排放指标是否符合相关标准要求;未达到相关要求的,及时反馈建设单位并监督其整改。
2.3 工程实施阶段环境监理工作要点
工程实施阶段环境监理工作是对修复工程的“事中控制”,其重点工作是监督施工全过程、督促污染防治措施落实,并记录日常工作事项与编制环境监理报告。具体体现在检查施工情况是否符合修复方案要求、环境保护措施是否落实到位,对施工过程进行监督性环境监测,同时参与修复工程管理,对不符合环保要求及修复方案的环节提出整改要求[6]。
2.3.1 监督施工全过程
监督施工全过程是环境监理工作的重点之一。对于异位热脱附修复工程而言,主要包括挖掘、运输、暂存、处理、回填/外运等环节,需按照修复方案和施工方案核实工程位置、挖掘工程量、运输路线、运输量、暂存场地、修复设施以及修复后土壤去向等的达标性。本工程各施工环节环境监理工作要点见表1。
表 1 本工程各施工环节环境监理工作要点施工环节 环境监理工作要点 施工准备 参加环境监理工作交底会,向建设单位、施工单位明确环境监理要求,建立沟通机制。督促施工单位设置必要的施工安全措施及安全标志,如围挡和项目信息告知牌等 挖掘 根据修复方案确认清挖位置,监督测量放线工作。清挖时旁站,核查清挖范围与深度,监督二次污染防治措施落实情况,如洒水抑尘、裸土苫盖等。基坑清挖完成后协助验收取样,并跟踪检测结果,将超标点位告知建设单位和施工单位,督促开展扩挖工作。直至基坑取样检测合格 运输 向装载污染土壤的运输车辆签发运输五联单,沿途确保运输车辆将污染土壤运至修复方案指定的暂存与处理区域。核查运输车次和运输量。运输过程中检查是否有污染土壤遗撒或扬尘,如有则通知施工单位及时清理 暂存 检查污染土壤暂存区的密闭情况及地面防渗情况,防止污染物挥发至空气中或下渗至土壤中 热脱附处理 检查热脱附及尾气处理设备是否符合修复方案要求,监督处理过程,督促施工单位及时对处置后土壤进行取样检测,并对检测合格的土壤进行抽检,发现超标则通知施工单位对该样品代表的土壤批次进行再次处理,直至检测合格 原址回填 督促施工单位对验收合格的修复后土壤及时原址回填,检查回填过程的二次污染防治措施,如洒水抑尘和密闭运输等。检查回填土壤是否满足修复方案的相关要求 2.3.2 督促污染防治措施落实
与一般建设项目相比,污染场地修复工程的施工对象为污染土壤,施工过程中现场及周边环境易受到污染,因此施工期废气、废水、固废和噪声的二次污染防治是环境监理工作的重中之重[7]。本工程针对二次污染防治的环境监理工作要点见表2。
表 2 本工程二次污染防治工作要点施工环节 环境影响 污染源 环境监理工作要点 清挖 大气环境影响 开挖时产生扬尘、重金属及VOCs/SVOCs等污染物挥发,挖掘机、铲车和运输车辆等运行产生尾气,表土临时堆放产生扬尘 核查施工时是否尽可能减小开挖面,是否洒水抑尘,是否有刺鼻气味,裸土是否及时苫盖 水环境影响 污染土壤堆存期间的雨水淋滤,污染土壤清挖后遇雨天坑内积水,工作人员生活污水 核查是否尽量避免污染土壤堆存,基坑是否有排水沟,生活污水是否统一排放 土壤环境影响 污染土壤及废物堆存期间经雨水淋滤产生下渗 核查是否尽量避免污染土壤堆存,如有堆存,是否有防渗措施 固体废弃物 污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾 核查是否将固废统一收集处理 噪声 清挖过程中挖掘机、铲车、运输车辆等运行产生噪声 核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施 运输 大气环境影响 土方运输产生扬尘,车辆运输时排放尾气 车辆是否密闭运输,是否满载超载,运输道路是否及时洒水抑尘 水环境影响 污染土壤运输过程中发生遗撒经雨水冲刷,设施、设备、工具及器具清洗产生废水 核查运输过程是否有遗撒,如有是否立即采取清洁措施,机械设备清洗废水是否统一收集处理 土壤环境影响 污染土壤运输过程中遗撒 污染土壤装车后是否对车轮及车身进行清扫,运输车轮是否密闭,是否满载超载,是否减速慢行 噪声 车辆运输时产生噪声 运输时是否避开环境敏感区,是否尽可能减少鸣笛,是否减速慢行 热脱附处理 大气环境影响 热脱附尾气,污染土壤临时堆存产生扬尘 核查热脱附设备的尾气处理装置是否运行良好,活性炭是否及时更换,污染土壤临时堆存区域是否密闭 水环境影响 热脱附产生的冷却水、含酸废水 是否统一收集处理后达标排放 土壤环境影响 污染土壤临时堆存期间雨水淋滤,污染治理所用化学品渗漏遗洒 污染土壤临时堆存区域是否有防渗措施, 固体废弃物 热脱附过程收集的除尘灰,尾气处理装置更换下来的活性炭,经过处理后的土壤或废物 是否统一收集后送有资质的单位处理 噪声 施工过程机械噪声 是否尽量选用低噪声设备,是否采取有效的降噪措施 原址回填 大气环境影响 扬尘,推土机、铲车、车辆等运行时排放尾气 是否洒水抑尘,裸土是否及时苫盖,回填后是否及时压实 水环境影响 设施、设备、工具及器具清洗排放废水,工作人员生活污水 废水是否统一收集处理后达标排放 固体废弃物 污油及废油,报废的一般设施、设备、工具及器具,一般生活及餐厨垃圾 核查是否将固废统一收集处理 噪声 推土机、运输车辆等运行产生噪声 核查机械车辆是否状况良好,是否严格控制作业范围,是否避免夜间施工,是否采取其他降噪措施 2.3.3 开展施工期环境监测
对修复工程污染物排放和环境影响进行监督性监测是修复工程环境监理工作的重要组成部分,主要包括大气环境监测、水污染排放监测以及场界环境噪声监测等。通过监测判断修复工程污染物排放是否满足修复方案及其他相关规定的要求,如有不达标情况,督促施工单位整改。
本工程环境监理在污染土壤清挖及热脱附处理环节针对大气环境与场界噪声均开展了监督性监测(无废水排放),及时掌握工程的污染物排放情况,尽可能确保对周边环境的不良影响最小化。具体监测情况见表3。
表 3 本工程环境监理监督性监测施工环节 监测对象 监测位置 监测方式 监测频次 清挖 现场VOCs/SVOCs 清挖作业现场 手持PID 每天2次 环境空气 根据修复方案在场地四周环境敏感点及场界布设监测点位 大气综合采样仪器 每2周1次,每次1天 场界噪声 根据修复方案在场地四周环境敏感点及场界布设监测点位 积分平均声级计 每天2次 热脱附处理 现场VOCs/SVOCs 清挖作业现场 手持PID 每天2次 热脱附尾气 / 烟气在线监测系统 每天检查汇总自动监测数据 环境空气 根据修复方案在场地四周环境敏感点布设监测点位 大气综合采样仪器 每2周1次,每次1天 场界噪声 根据修复方案在场地四周环境敏感点及场界布设监测点位 积分平均声级计 每天2次 2.3.4 记录日常工作事项与编制报告
在修复工程启动后,环境监理员对每天的工作情况进行记录,包括:环境监理日志、现场巡视和旁站记录、监理会议记录和监测记录等,记录方法采用文字、数据、图表和影像等多种方式。
当修复工程出现实施与设计不符、环保措施落实不到位或其他重大环保问题时,环境监理员根据问题的严重程度,及时下达一般联系单、整改通知单或停/复工指令单,将问题反馈至建设单位,督促施工单位及时处理。
当修复工程进行到一定阶段时,环境监理根据现场工作日常记录编写总结材料,包括环境监理定期报告(月报、季报、年报)、阶段报告和总结报告,作为修复工程竣工验收与效果评估的技术材料之一。
2.4 工程验收阶段环境监理要点
工程验收阶段环境监理工作主要集中在2个方面:一是在开展工程效果评估前,环境监理对施工单位提交的施工过程资料进行完整性和准确性检查,如工程量出错或资料中出现与实际施工不符的内容,及时查清原因,督促施工单位修改完善。二是在开展效果评估期间,协助效果评估单位进行基坑土壤样品采集和热脱附后土壤样品采集,跟踪样品检测结果,如有不合格情况,督促施工单位及时采取处理措施,直至样品检测结果满足修复方案中的相关要求。同时,要协助开展效果评估阶段的其他相关工作。
3. 本案例的典型意义
3.1 修复技术代表性
异位热脱附是一种较为成熟的土壤修复技术,目前已广泛应用于国内外有机污染场地修复实践中。我国自2009年首次引进异位热脱附设备[1],异位热脱附修复技术更是在国内得到快速发展,截至2017年已开展23例污染场地异位热脱附修复项目,同时以其修复工期短、修复效率高的显著优势在现阶段土壤修复中逐渐占据更大比例[8]。保障异位热脱附技术的修复效果对于有机污染土壤修复意义重大。本研究通过案例分析,明确了在异位热脱附修复工程环境监理实际工作中应重点关注的事项,对于开展类似工程的环境监理工作、加强异位热脱附修复工程的环境监管具有一定的指导意义。
3.2 参与过程全面性
环境监理工作的重点在于对修复工程过程的把控,只有对工程全过程进行有效监管,确保施工质量与二次污染防治措施落实到位,才能保障最终的修复效果。本案例的环境监理工作涵盖了污染土壤异位热脱附修复工程的全过程,即:自施工前的文件审核至污染土壤修复后的原址回填,在工作内容方面具有全面性,在工作流程上具有较好的衔接性,基本覆盖了此类工程环境监理工作的关键环节,可对类似工程提供良好的借鉴与参考。
3.3 存在问题普遍性
本工程环境监理工作中存在的主要问题如下:一是环境监理地位不明确,工作范围模糊,在实际工作中易与工程监理产生职责混淆或推诿等问题,造成工作不畅。二是缺乏专业的环境监理人员,环境监理人员应兼备工程管理与环境保护相关专业知识技能,任何一方面的缺失即有可能造成修复工程中的偏差,对修复效果产生负面影响。三是修复工程组织方式协调不足,修复工程一般由建设单位、施工单位、工程监理单位、验收单位等多家参与,在实际工作中由于缺乏有效的协调机制,导致施工受阻或沟通断层,从而降低了工作效率。
上述问题也存在于多个案例中[9-11],通过案例分析,梳理问题、探索解决途径,对于改进污染场地异位热脱附修复环境监理工作具有一定的普适性。
4. 讨论与建议
4.1 讨论
目前,有关污染场地修复工程环境监理的研究日益增多。从研究对象上看,主要涉及焦化厂[3]、蓄电池厂[12]、尾矿库[13]、公路项目[14]和石化项目[11, 15-16]等。然而,鲜有针对钢铁企业污染场地修复工程的案例研究。钢铁企业多为重污染企业,随着全国各地有关钢铁企业退城搬迁政策的出台,城市建成区内遗留大量钢铁企业污染场地。在对其实施污染修复时,须密切关注修复工程中的环保措施落实和二次污染防治情况,尽可能地削弱修复工程对周边人居环境的不良影响。本研究可为钢铁企业污染场地修复工程环境监理提供案例参考。
从研究内容上看,主要集中在环境监理工作方式方法[17-18]和问题对策[10, 19]这2个方面。类似研究并未根据修复工程所采用的技术而进一步对环境监理内容加以区分。然而,目前污染场地修复常用技术种类较多,不同修复技术对应的环境监理工作要点存在一定差异。如“3.1修复技术代表性”中所述,异位热脱附修复技术在国内污染场地修复中应用普遍且发展迅速,但在目前能够检索到的中文文献中鲜有关于异位热脱附修复工程环境监理的研究。本研究则专门针对异位热脱附修复工程的各个环节,进行全过程的环境监理要点分析,对于实践工作有着较强的指导意义。
4.2 建议
根据本案例研究情况,针对目前环境监理工作存在的问题,提出以下建议:
1)出台权威的环境监理工作指南。目前污染场地环境监理工作缺乏较为统一的标准,导致实际工作中工作范围不清晰等问题。因此,亟需根据实际情况建立一套科学合理的标准以指导实践;同时还需与地方环境政策相结合,最大限度地做到因地制宜。
2)优化环境监理工作模式。在工程准备期做好组织体系构建工作,细化工作内容,明确各方职责,建立良好的沟通协调机制,保障污染场地修复工作的过程完整性和结果有效性。与工程监理充分合作,在施工期临时组建共同的领导部门,在统一领导下开展工作,权责分明,沟通顺畅,全方位保障修复工程质量[18, 20]。
3)组建环境监理人才队伍。环境监理人员需对相关环保的法律法规等相关规定要有较为全面的认知,掌握必要的环保知识,有针对性地将工程建设项目中的环境污染和生态保护的特点进行归类总结,准确分析施工环境影响、环保措施实施效果及环境监测结果。同时,需熟悉项目施工流程及其特点,尽可能全面地预防和控制可能造成的环境问题。
-
表 1 各类建筑在各圈层的占比统计
% 建筑层数 5 km 10 km 15 km 20 km 25 km 30 km 35 km 40 km 45 km 50 km 55 km 60 km 1~3层 45.19 26.31 39.65 60.73 67.72 66.36 55.82 50.66 79.78 35.54 25.00 27.61 4~6层 33.38 35.35 33.96 28.10 23.11 24.40 34.26 39.43 10.42 30.64 20.83 62.96 7~12层 11.47 30.85 22.82 8.41 5.23 6.05 5.45 7.18 8.06 24.26 54.17 1.01 13~20层 4.86 5.43 3.12 2.45 3.30 2.87 4.10 2.58 1.73 9.07 0.00 8.42 21~33层 4.64 2.01 0.43 0.31 0.64 0.32 0.35 0.11 0.00 0.49 0.00 0.00 34~66层 0.42 0.06 0.01 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.00 67~118层 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 表 2 人居环境质量指数各因子权重
评价要素 单因子指数 单要素权重 综合权重 自然要素 地形起伏度 0.343 0.152 气候指数 0.367 0.162 植被指数 0.290 0.128 人文要素 空气质量指数 0.244 0.186 人口密度指数 0.333 0.136 交通通达指数 0.423 0.236 表 3 人居环境质量指数
圈层 距市中心距离/km 人文要素指数 自然要素指数 人居环境质量指数 1 5 74.98 83.58 80.35 2 10 77.58 86.98 82.53 3 15 79.05 81.63 81.52 4 20 79.98 74.80 77.92 5 25 81.18 73.72 77.85 6 30 81.95 73.42 78.03 7 35 82.23 73.99 78.50 8 40 83.24 75.14 79.69 9 45 83.82 73.25 78.81 10 50 83.63 71.39 77.59 11 55 82.34 70.11 76.25 12 60 85.88 71.52 78.67 13 65 92.10 66.61 78.44 14 70 95.50 68.91 81.34 -
[1] 喻菁, 焦利民, 董婷. 结合宏观和微观视角的城市扩张方向异质性分析[J]. 地理与地理信息科学, 2019, 35(2): 90 − 96. doi: 10.3969/j.issn.1672-0504.2019.02.014 [2] 陈长瑶, 李君, 张磊, 等. 环滇池地区城镇用地扩展特征及推进模式研究[J]. 云南师范大学学报(哲学社会科学版), 2018, 50(3): 128 − 138. [3] 王海军, 王惠霞, 邓羽, 等. 武汉城市圈城镇用地扩展的时空格局与规模等级模式分异研究[J]. 长江流域资源与环境, 2018, 27(2): 272 − 285. [4] 林柳璇, 尤添革, 刘金福, 等. 1985—2015年厦门市土地利用变化及驱动力[J]. 福建农林大学学报(自然科学版), 2019, 48(1): 103 − 110. [5] 李航, 李雪铭, 田深圳, 等. 城市人居环境的时空分异特征及其机制研究——以辽宁省为例[J]. 地理研究, 2017, 36(7): 1323 − 1338. [6] 封志明, 唐焰, 杨艳昭, 等. 基于GIS的中国人居环境指数模型的建立与应用[J]. 地理学报, 2008, 63(12): 1327 − 1336. doi: 10.3321/j.issn:0375-5444.2008.12.010 [7] 周莉, 任志远. 基于GIS的关中地区人居环境自然适宜性研究[J]. 资源开发与市场, 2011, 27(2): 160 − 163. doi: 10.3969/j.issn.1005-8141.2011.02.018 [8] 熊瑶, 潘润秋, 许刚, 等. 1990—2014年印度城市扩张时空特征对比分析[J]. 地理科学进展, 2019, 38(2): 271 − 282. [9] 苗东利, 杨肖月. 城市化进程中河南城市扩张的特征研究[J]. 广西城镇建设, 2019(11): 125 − 127. doi: 10.3969/j.issn.1672-7045.2019.11.022 [10] 李晓文, 方精云, 朴世龙. 上海城市用地扩展强度、模式及其空间分异特征[J]. 自然资源学报, 2003(4): 412 − 422. doi: 10.3321/j.issn:1000-3037.2003.04.004 [11] 申兵. 对我国城市化阶段特征的重新认识[J]. 宏观经济管理, 2012(6): 25 − 26. doi: 10.19709/j.cnki.11-3199/f.2012.06.008 [12] 杨雪, 张文忠. 基于栅格的区域人居自然和人文环境质量综合评价——以京津冀地区为例[J]. 地理学报, 2016, 71(12): 2141 − 2154. doi: 10.11821/dlxb201612006 [13] 张磊. 基于地形起伏度的地貌形态划分研究 [D]. 石家庄: 河北师范大学, 2009. [14] 张伟, 李爱农. 基于DEM的中国地形起伏度适宜计算尺度研究[J]. 地理与地理信息科学, 2012, 28(4): 8 − 12. [15] 唐焰, 封志明, 杨艳昭. 基于栅格尺度的中国人居环境气候适宜性评价[J]. 资源科学, 2008(5): 648 − 653. doi: 10.3321/j.issn:1007-7588.2008.05.002 [16] 刘清春, 王铮, 许世远. 中国城市旅游气候舒适性分析[J]. 资源科学, 2007, 29(1): 133 − 141. doi: 10.3321/j.issn:1007-7588.2007.01.020 [17] 魏伟, 石培基, 冯海春, 等. 干旱内陆河流域人居环境适宜性评价——以石羊河流域为例[J]. 自然资源学报, 2012, 27(11): 1940 − 1950. doi: 10.11849/zrzyxb.2012.11.013 [18] 王华, 张杏梅. 中原城市群交通可达性与区域经济发展水平空间格局分析[J]. 公路, 2020, 65(5): 173 − 179. [19] 张祎, 车自力. 基于GIS的咸阳市城区道路通达度研究[J]. 西北大学学报(自然科学版), 2013, 43(6): 969 − 972. [20] 郭欢欢, 张孝成, 李仕川. 土地集约利用评价中适度指标标准化方法改进研究——以人口密度指标为例[J]. 地理科学, 2016, 36(3): 367 − 374. -