固定污染源废气中醛酮类化合物测定方法研究

卢迎红, 任甜. 固定污染源废气中醛酮类化合物测定方法研究[J]. 环境保护科学, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
引用本文: 卢迎红, 任甜. 固定污染源废气中醛酮类化合物测定方法研究[J]. 环境保护科学, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
LU Yinghong, REN Tian. Determination of aldehyde and ketone compounds from an emission of stationary source[J]. Environmental Protection Science, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
Citation: LU Yinghong, REN Tian. Determination of aldehyde and ketone compounds from an emission of stationary source[J]. Environmental Protection Science, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033

固定污染源废气中醛酮类化合物测定方法研究

    作者简介: 卢迎红(1971-),女,高级工程师。研究方向:环境分析技术。E-mail:Lu_yhong@126.com
  • 中图分类号: X831

Determination of aldehyde and ketone compounds from an emission of stationary source

  • 摘要: 建立了固定污染源排放废气中的醛、酮类化合物的测定方法。用酸性2,4-二硝基苯肼(DNPH)吸收液采集废气样品,并发生衍生化反应,生成2,4-二硝基苯腙类化合物,用溶剂萃取后,经高效液相色谱分离检测。加标回收率在64.6%~109%之间,当采样体积20 L时,方法的检出限为0.005~0.010 mg/m3。可用于固定污染源废气中12种醛、酮类污染物的检测。
  • 20世纪50年代后,工业的发展和人类生活条件的改善得到不断推进,同时也制造了很多化学污染物,加剧了水资源的污染。开采业、农业、畜牧业、食品加工业、印染业 、医疗产业和城市生活垃圾渗透液等都产生了大量、复杂、有毒、持久性的和难去除的污染物,这些污染物通过废水、污水进入了地表水源或者地下水,破坏了生态环境[1-4]。治理水污染,使废水、污水能够再利用,提高水资源利用效率是解决水资源匮乏、保护生态环境的重要途径。电化学技术是通过在特定的电化学反应器中外加电场调控电子定向转移,使水中污染物在反应器中发生特定的物理、化学反应,从而被去除的过程。包括电氧化、电还原、电渗析、电絮凝、电吸附、电气浮、内电解和电芬顿等常用技术。相对传统处理方法,用电化学处理水污染有着可避免二次污染、可深度并有选择性的去除污染物、处理条件温和易实现自动化和规模化、且可与其他处理方法相结合,形成降解能力强的复合处理工艺等优点。还可以有效地回收污水、废水中的金属离子、营养物质、硫、氢和化合物,使废水资源化。电化学技术已经成为目前处理污水、废水的优选技术[5-6]

    本研究对电化学水处理相关的SCI期刊论文进行检索和分析,总结电化学水处理领域的国际论文的发文特点和趋势,揭示该领域的研究前沿发展方向,以期为科研人员的研究规划和国际合作提供科学支撑。

    数据来源于科睿唯安(Clarivate Analytics)的Web of Science核心合集的SCI数据库(SCI-Expanded,http://apps.webofknowledge.com)。检索时间为2021年5月,检索年限为2011~2020年。经查重后获得4 177条数据,检索结果见表1。 以主题做为检索字段,以电化学技术和污水、废水处理为检索式进行检索,得到结果最多、最为全面,为3 767条。通过进一步限制检索范围,分别检索电化学处理技术在工业废水、农业废水、城市废水和医疗废水中的应用频率[7] ,结果显示,用电化学技术处理工业废水的应用更为频繁和广泛,检索出1 479条。电化学水处理技术在农业、畜牧业污水的处理中应用面不大,只检索到90条数据。该技术在处理城市生活污水和医疗废水中也有一定的应用,分别检索到349和196条数据。

    表 1  SCI收录电化学水处理文献检索结果
    检索内容和检索式检索结果
    电化学技术在水处理中的应用TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro*......) and TS=(“*water* *treatment*” or “*water* purif*” or “*water* cleans*”......)2 034
    电化学技术处理污水、废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or .......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “contaminat* water*” or.......) and TS=(*treatment or purif* or cleans* or remov* or disinfect* or steriliz* or remediat*......)3 767
    电化学技术处理工业废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* flocculat*" or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or ......) and TS=(Industr* or metallurg* or produc* petrochemical or petroleum or “natural gas” or desalinat* or ......)1 479
    电化学技术处理农业、畜牧业废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro* coagulat*"or ......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or......)and TS= (agricultur* or farmland or rural or pesticide* slaughterhouse*or ......)90
    电化学技术处理医疗废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* coagulat*"or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(municipal* or domestic* or sanitary)196
    电化学技术处理生活污水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* coagulat*" ...... and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(hospital or medic* or pharmac*or......)349
    合计8 232
    查重4 177
     | Show Table
    DownLoad: CSV

    根据Web of Science的检索结果,2011~2020这10年间,在电化学处理水污染的方面,全球共发文4 177篇,见图1。总发文量由2011年的204篇增长到2020年768篇,呈逐年递增的趋势。

    图 1  电化学水处理领域全球发文量及趋势

    发文量最多的前10的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其,共3 111篇,占总发文量的74.45%。其中,中国1 626篇,明显领先于其他国家,占全球总发文量的38.93%,尤其2019和2020年发文量占到全球的近1/2。其他9国发文量也呈逐年上升的趋势,特别是近5年发文量逐年增加,见表2

    表 2  10年内电化学处理水污染相关文章全球及Top10国发文量分析
    t/a中国印度西班牙美国巴西伊朗墨西哥韩国加拿大土耳其合计中国所占比例/%
    2011621211171072123121519030
    2012671221151091115121018229
    20138316179118192113920633
    2014923314231351311131122831
    20151302329162111191112627834
    201616625212420121277329740
    2017189282325201511119934038
    20182172938312416887538340
    201926935332830216511544346
    20203516538323423456656446
    合计1 626278245220193127124117102793 111
     | Show Table
    DownLoad: CSV

    用知识图谱可视化软件VOSviewer分析全球发文国家的合作关系,见图2。与People r China合作关系较为紧密的有Japan、Singapore、Danmark、SSweden等国家。与USA存在合作关系的国家较多,除了与Australia合作较多,还有很多亚洲国家,如India、South Korea、Vietnam、Thailand等国家及Taiwan Province of China。Sapain与Brazil、Mexcio、Colombia、Chile的合作更为紧密。另外,Canada、France、Mocrocco等也存在广泛的合作关系。而Iran、Turkey、Germany、Portugal、Greece等国家也组成了一个合作小组。

    图 2  电化学水处理领域全球发文国家合作关系

    基于Web of Science的学科分类,电化学水处理方面的研究主要涉及环境科学和生态学、工程和化学等领域,见表3。其中,环境科学和生态学领域以及工程领域的发文量超过总发文量的10%,分别为15.3%和13.3%。环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域的发文总和占有全部发文量的一半以上。另外,电化学水污染的研究在工程-水资源、工程-环境科学和生态-水资源、化学-工程、农业-生物技术和微生物应用-能源和燃料、化学-电化学这些领域的发文量也占有一定的份额,大约占总发文量的20.2%。

    表 3  电化学水处理在不同研究领域发文数量及所占比例
    研究领域发文数量所占比例/%
    环境科学和生态学 640 15.3
    工程学 555 13.3
    电化学 382 9.1
    化学 365 8.7
    工程;环境科学与生态学 307 7.3
    工程;水资源 246 5.9
    工程;环境科学与生态学;水资源 234 5.6
    化学;工程学 151 3.6
    农业;生物技术与应用微生物学;能源与燃料 114 2.7
    化学;电化学 99 2.4
    其他 1 084 26.0
     | Show Table
    DownLoad: CSV

    为了揭示研究现状和前沿,本文对2019和2020年的发文提取关键词,并用VOSviewer对关键词进行聚类分析,见图3。小球越大表示此关键词出现的次数越多,小球之间的连线表示两关键词间存在一定相关性。2019~2020年,根据发文关键词的数量多少及相关性,可将全球的研究区分为4个群组。研究热点分别为红色群组的“吸附”“氧化”“水溶液”等;绿色群组的“性能”“微生物电解槽”“除磷”等;蓝色群组的“降解”“电化学氧化”“掺硼金刚石(电极)”等;黄色群组的“去除”“电絮凝”“酸性”等。

    图 3  2019~2020年电化学水处理领域关键词聚类分析

    进一步对关键词群组进行分析,总结每个群组研究主要内容、使用的技术和去除的主要污染物,以及所关注的技术要点和参数,见表4

    表 4  2019~2020年电化学处理水污染相关文章研究方向及技术要点
    群组研究方向使用技术去除污染物技术要点和参数
    红色海水淡化,饮用水,地下水电氧化,吸附,电还原,电沉积重金属,六价铬,亚甲蓝,纳米颗粒,硝酸盐,亚硝酸盐,氮动力学,电极,活性炭,催化剂,石墨烯,碳纳米管,能量,电容去离子,传感器
    绿色污水污泥,活性污泥降解,电解,零价铁,微电解,生物降解氨,有机质,磷酸盐性能,微生物电解槽,反应器,酸碱度,温度,膜生物反应器,微生物群落,发电
    蓝色个人护理产品,药品,抗生素降解,电化学氧化,阳极氧化,光催化降解,臭氧氧化,电芬顿抗生素,偶氮染料,双酚A,有机污染物,磺胺甲恶唑,过硫酸盐掺硼金刚石,矿化作用,毒性,双氧水,羟基自由基,降解途径,BDD阳极
    黄色垃圾渗滤液电絮凝,电化学降解染料,苯酚,污染物,合成有机染料酸性,活性氯,阳极,表征,COD,能源消耗,二氧化铅电极,响应面法
     | Show Table
    DownLoad: CSV

    为了更近一步预测研究趋势和应用范围,对2019和2020年被引频次>20次的发文,剔除广泛性和普遍性使用的关键词后再次进行聚类分析,见图4。红色小球表示个人护理产品和药品,绿色小球表示污水污泥,黄色小球表示海水淡化和地下水,紫色小球表示垃圾渗滤液和饮用水,这几方面仍然是近年的主要研究方向。而主要污染物的去除将会集中在抗生素(包括四环素)、微生物污染物、苯酚、金属铬及六价铬、双酚A和残留农药等方面。在微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    图 4  2019~2020年电化学水处理领域被引频次﹥20次关键词聚类分析

    2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。超过半数的文章发表于Top20期刊,见表5。Top20期刊中发文量﹥100的有10个刊,发文量占全部发文量的35.8%。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2020年影响因子为13.273,5年影响因子为11.629。Top20影响因子最高的刊是Applied Catalysis B-Environmental,2020年影响因子为19.503,5年影响因子为17.995。

    表 5  电化学处理水污染相关文章全球Top20期刊发文量
    期刊发文量/篇2020 IF5年IF
    Chemical Engineering Journal22213.27311.629
    Chemosphere1907.0866.451
    Electrochimica Acta1746.9016.385
    Desalination And Water Treatment1571.2541.027
    Journal Of Hazardous Materials14810.5889.608
    Separation And Purification Technology1407.3126.437
    Water Research12711.23610.177
    Environmental Science And Pollution Research1164.2233.509
    Bioresource Technology1129.6427.820
    International Journal Of Electrochemical Science1091.7651.366
    Journal Of Electroanalytical Chemistry834.4644.105
    Water Science And Technology791.9151.796
    Science Of The Total Environment777.9636.938
    International Journal Of Hydrogen Energy735.8164.063
    Environmental Science & Technology729.0288.079
    Rsc Advances713.3613.206
    Environmental Technology643.2472.880
    Applied Catalysis B-Environmental5819.50317.995
    Journal Of Environmental Management516.7896.393
    Journal Of Environmental Chemical Engineering485.9095.361
     | Show Table
    DownLoad: CSV

    对比了发文量Top10国家的发文期刊平均影响因子,见图5,发文期刊平均影响因子超过5.0的国家有5个。其中最高的是美国,平均IF为6.82。其次是西班牙,也达到了6.23。另外IF>5的国家分别为韩国5.71、中国5.36和加拿大5.21。说明这些国家的整体发文质量较高。通过对比发文量Top10国家文章被引次数H指数,H指数最高的国家为中国,为65,其次为美国49,西班牙45。另外,印度和巴西的H指数也超过了30,分别为38和30。总体来说,中国的发文量和H指数为全球第一,表明全球科研影响力最大。但美国和西班牙发文质量较高,对科研的贡献较大。

    图 5  电化学水处理领域Top10国家发文量和影响力分析

    (1)2011~2020年,电化学水处理领域的全球发文量明显呈逐年上升的趋势,说明全世界越来越多的国家和地区都在关注并应用这项目前处理水污染的优选技术。发文量最多的前十的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其。涵盖亚洲(尤其是东亚和南亚一代)、欧洲、北美洲、南美洲4个大洲,并且这些国家间也有很多直接、间接的合作。说明这项技术在这些地域应用领域更为广泛,技术也更为成熟。

    (2)2011~2020年,电化学水处理领域全球发文量最多的国家是中国,占全球发文量的近40%。这与我国多年来一直坚持以环境保护为基本国策,各级政府都重视环境保护、逐渐加大环境保护方面的技术研发和生产投入力度有关。特别是2018年《中共中央 国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》的提出,更是进一步促进了水污染领域研究成果的产出,2019和2020年,中国的发文量占全球发文量的1/2。

    (3)2011~2020年,电化学水处理领域的发文超过一半集中在环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域。主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面;技术手段较常用的有电氧化、电还原、电絮凝、电吸附和微电解等;去除的污染物有重金属、硝酸盐、磷酸盐、有机污染物、染料和抗生素等。今后的研究中,微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    (4)2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2019年影响因子为10.652,5年影响因子为9.42。对比了发文量Top10国家的发文期刊平均影响因子和H指数来评估各个国家的科研实力和影响力,结果显示中国的发文量和H指数为全球第一,全球科研影响力最大。但美国和西班牙发文期刊影响因子总体较高,说明这两国的科学技术更为先进,对学术的贡献较大。

  • 图 1  固定污染源废气采样系统组成

    图 2  12种醛、酮类-DNPH衍生物的标准色谱

    表 1  梯度洗脱程序

    t/min流动相流速/mL·min−1乙腈/%水/%甲醇/%
    01.0203545
    61.003070
    201.002080
    301.0352045
    331.0203545
    t/min流动相流速/mL·min−1乙腈/%水/%甲醇/%
    01.0203545
    61.003070
    201.002080
    301.0352045
    331.0203545
    下载: 导出CSV

    表 2  不同萃取溶剂萃取效率比较

    目标化合物加标量/μg加标回收率测定结果/%
    正己烷二氯甲烷正己烷/二氯甲烷(7+3,V/V正己烷/二氯甲烷(1+1,V/V
    甲醛2.094.9105.0110.0111.0
    乙醛2.0104.0106.0103.0105.0
    丙烯醛2.051.078.187.054.0
    丙酮2.077.877.586.677.0
    丙醛2.095.296.0102.095.0
    丁烯醛2.083.184.991.581.5
    2-丁酮2.055.769.555.651.9
    丁醛2.088.099.795.095.5
    苯甲醛2.093.696.098.0104.0
    异戊醛2.082.793.497.595.0
    正戊醛2.082.992.290.089.0
    正己醛2.098.989.896.096.0
    目标化合物加标量/μg加标回收率测定结果/%
    正己烷二氯甲烷正己烷/二氯甲烷(7+3,V/V正己烷/二氯甲烷(1+1,V/V
    甲醛2.094.9105.0110.0111.0
    乙醛2.0104.0106.0103.0105.0
    丙烯醛2.051.078.187.054.0
    丙酮2.077.877.586.677.0
    丙醛2.095.296.0102.095.0
    丁烯醛2.083.184.991.581.5
    2-丁酮2.055.769.555.651.9
    丁醛2.088.099.795.095.5
    苯甲醛2.093.696.098.0104.0
    异戊醛2.082.793.497.595.0
    正戊醛2.082.992.290.089.0
    正己醛2.098.989.896.096.0
    下载: 导出CSV

    表 3  醛酮类化合物在采样体系中的分布 μg

    序号化合物名称加标量模拟实验1模拟实验2模拟实验3
    玻璃纤维滤筒吸收液吸收液和二氯甲烷清洗液玻璃纤维滤筒吸收液
    1甲醛20.0019.420.3016.6
    2乙醛20.0018.618.0015.3
    3丙烯醛20.0019.415.1016.5
    4丙酮20.0015.416.3015.8
    5丙醛20.0015.416.1016.1
    6丁烯醛20.0018.717.6017.9
    72-丁酮20.0011.412.8012.5
    8正丁醛20.0013.814.8014.2
    9苯甲醛20.007.112.9014.7
    10异戊醛20.0016.516.4015.9
    11正戊醛20.0015.716.9015.8
    12邻-甲基苯甲醛20.003.013.5012.3
    13间-甲基苯甲醛20.00011.4010.1
    14对-甲基苯甲醛20.0009.5010.6
    15正己醛20.0014.116.9015.7
    162,5-二甲基苯甲醛20.0008.706.7
    序号化合物名称加标量模拟实验1模拟实验2模拟实验3
    玻璃纤维滤筒吸收液吸收液和二氯甲烷清洗液玻璃纤维滤筒吸收液
    1甲醛20.0019.420.3016.6
    2乙醛20.0018.618.0015.3
    3丙烯醛20.0019.415.1016.5
    4丙酮20.0015.416.3015.8
    5丙醛20.0015.416.1016.1
    6丁烯醛20.0018.717.6017.9
    72-丁酮20.0011.412.8012.5
    8正丁醛20.0013.814.8014.2
    9苯甲醛20.007.112.9014.7
    10异戊醛20.0016.516.4015.9
    11正戊醛20.0015.716.9015.8
    12邻-甲基苯甲醛20.003.013.5012.3
    13间-甲基苯甲醛20.00011.4010.1
    14对-甲基苯甲醛20.0009.5010.6
    15正己醛20.0014.116.9015.7
    162,5-二甲基苯甲醛20.0008.706.7
    下载: 导出CSV

    表 4  采样流量0.2 L/min实验结果

    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛34.2785.70.140.40.020.186.1
    乙醛38.2795.71.032.60.100.398.5
    丙烯醛36.0590.10.250.60090.8
    丙酮28.4271.15.7714.40.350.986.4
    丙醛34.8987.21.654.10091.4
    丁烯醛37.3693.4000093.4
    2-丁酮19.6949.25.0312.60.421.162.9
    正丁醛27.2568.10.812.00070.2
    苯甲醛39.8199.5000099.5
    异戊醛34.7186.81.303.30090.0
    正戊醛33.1983.00.822.10085.0
    正己醛34.5986.50.952.40088.9
    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛34.2785.70.140.40.020.186.1
    乙醛38.2795.71.032.60.100.398.5
    丙烯醛36.0590.10.250.60090.8
    丙酮28.4271.15.7714.40.350.986.4
    丙醛34.8987.21.654.10091.4
    丁烯醛37.3693.4000093.4
    2-丁酮19.6949.25.0312.60.421.162.9
    正丁醛27.2568.10.812.00070.2
    苯甲醛39.8199.5000099.5
    异戊醛34.7186.81.303.30090.0
    正戊醛33.1983.00.822.10085.0
    正己醛34.5986.50.952.40088.9
    下载: 导出CSV

    表 5  采样流量0.5 L/min实验结果

    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛36.4791.21.974.90.020.196.2
    乙醛35.4288.63.849.60098.2
    丙烯醛35.2788.20.060.20088.3
    丙酮27.5768.96.4816.20.661.786.8
    丙醛34.6786.73.127.80.120.394.8
    丁烯醛36.9392.3000092.3
    2-丁酮18.2345.65.7814.50.741.961.9
    正丁醛27.8569.61.985.00.150.475.0
    苯甲醛38.0395.1000095.1
    异戊醛36.1190.34.7511.900102
    正戊醛33.0482.61.744.40087.0
    正己醛34.5986.51.674.20090.7
    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛36.4791.21.974.90.020.196.2
    乙醛35.4288.63.849.60098.2
    丙烯醛35.2788.20.060.20088.3
    丙酮27.5768.96.4816.20.661.786.8
    丙醛34.6786.73.127.80.120.394.8
    丁烯醛36.9392.3000092.3
    2-丁酮18.2345.65.7814.50.741.961.9
    正丁醛27.8569.61.985.00.150.475.0
    苯甲醛38.0395.1000095.1
    异戊醛36.1190.34.7511.900102
    正戊醛33.0482.61.744.40087.0
    正己醛34.5986.51.674.20090.7
    下载: 导出CSV

    表 6  采样流量0.8 L/min实验结果

    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶第4吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛35.7089.30.852.1000091.4
    乙醛32.7281.84.4811.20.471.20094.2
    丙烯醛33.2783.21.032.6000085.8
    丙酮20.1650.410.8727.23.599.01.112.889.3
    丙醛31.0277.65.2813.20.902.30093.0
    丁烯醛36.0490.10.190.5000090.6
    2-丁酮14.1835.57.7019.33.077.71.353.465.8
    正丁醛29.0272.62.486.20.230.60079.3
    苯甲醛38.9497.40.230.6000097.9
    异戊醛33.7484.45.7514.4000098.7
    正戊醛35.1988.01.944.90.240.60093.4
    正己醛34.3685.92.085.2000091.1
    化合物名称第1吸收瓶第2吸收瓶第3吸收瓶第4吸收瓶采样效率/%
    采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%采样量/µg效率/%
    甲醛35.7089.30.852.1000091.4
    乙醛32.7281.84.4811.20.471.20094.2
    丙烯醛33.2783.21.032.6000085.8
    丙酮20.1650.410.8727.23.599.01.112.889.3
    丙醛31.0277.65.2813.20.902.30093.0
    丁烯醛36.0490.10.190.5000090.6
    2-丁酮14.1835.57.7019.33.077.71.353.465.8
    正丁醛29.0272.62.486.20.230.60079.3
    苯甲醛38.9497.40.230.6000097.9
    异戊醛33.7484.45.7514.4000098.7
    正戊醛35.1988.01.944.90.240.60093.4
    正己醛34.3685.92.085.2000091.1
    下载: 导出CSV

    表 7  醛酮类化合物加标样品的稳定性(以回收率表示) %

    化合物名称当天第二天第三天第七天
    二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷
    甲醛85.390.188.284.584.285.483.882.1
    乙醛86.780.289.184.290.182.685.080.7
    丙烯醛77.273.475.172.970.170.168.468.7
    丙酮79.078.675.571.173.985.569.878.9
    丙醛78.371.683.471.486.676.270.570.8
    丁烯醛84.996.590.193.693.790.889.675.1
    2-丁酮62.267.158.063.254.171.831.982.9
    正丁醛68.470.165.066.665.969.969.968.9
    苯甲醛89.383.588.387.292.390.588.693.0
    异戊醛86.777.689.283.686.083.281.884.4
    正戊醛71.977.874.876.973.576.676.175.7
    正己醛77.572.879.771.981.570.574.272.2
    化合物名称当天第二天第三天第七天
    二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷二氯甲烷二氯甲烷/正己烷
    甲醛85.390.188.284.584.285.483.882.1
    乙醛86.780.289.184.290.182.685.080.7
    丙烯醛77.273.475.172.970.170.168.468.7
    丙酮79.078.675.571.173.985.569.878.9
    丙醛78.371.683.471.486.676.270.570.8
    丁烯醛84.996.590.193.693.790.889.675.1
    2-丁酮62.267.158.063.254.171.831.982.9
    正丁醛68.470.165.066.665.969.969.968.9
    苯甲醛89.383.588.387.292.390.588.693.0
    异戊醛86.777.689.283.686.083.281.884.4
    正戊醛71.977.874.876.973.576.676.175.7
    正己醛77.572.879.771.981.570.574.272.2
    下载: 导出CSV

    表 8  有组织排放废气实际样品分析结果 mg·m-3

    化合物名称东北制药总厂中远船务大连机车厂大连船舶重工
    甲醛0.0710.1630.1640.059
    乙醛0.0240.08500
    丙酮0.1100.2180.9350.198
    正丁醛00.01400
      注:表中分别采集的丙烯醛、丙醛、丁烯醛、2-丁酮、苯甲醛、异戊醛、正戊醛、正己醛等8个化合物检测值均为0。
    化合物名称东北制药总厂中远船务大连机车厂大连船舶重工
    甲醛0.0710.1630.1640.059
    乙醛0.0240.08500
    丙酮0.1100.2180.9350.198
    正丁醛00.01400
      注:表中分别采集的丙烯醛、丙醛、丁烯醛、2-丁酮、苯甲醛、异戊醛、正戊醛、正己醛等8个化合物检测值均为0。
    下载: 导出CSV

    表 9  有组织排放废气实际样品加标回收率

    化合物名称样品含量/µg加标回收率/%平均回收量/µg平均回收率/%相对标准偏差RSD/%
    甲醛3.9079.891.680.297.687.893.64.4288.57.5
    乙醛3.1490.686.494.095.880.489.04.4789.45.7
    丙烯醛093.083.089.885.680.892.04.3787.45.7
    丙酮3.3180.878.284.476.882.290.64.1182.25.5
    丙醛1.1778.381.380.176.184.774.33.9679.24.3
    丁烯醛0101.0104.0102.098.3107.091.85.04101.05.3
    2-丁酮077.967.968.669.169.468.93.5270.35.3
    正丁醛1.3488.887.090.270.472.089.44.1583.010.1
    苯甲醛077.883.084.488.486.284.84.2184.13.9
    异戊醛3.4897.7101.093.5103.099.5109.05.03101.04.8
    正戊醛079.297.483.684.280.482.04.2284.57.1
    正己醛068.464.672.268.473.074.23.5170.14.7
    化合物名称样品含量/µg加标回收率/%平均回收量/µg平均回收率/%相对标准偏差RSD/%
    甲醛3.9079.891.680.297.687.893.64.4288.57.5
    乙醛3.1490.686.494.095.880.489.04.4789.45.7
    丙烯醛093.083.089.885.680.892.04.3787.45.7
    丙酮3.3180.878.284.476.882.290.64.1182.25.5
    丙醛1.1778.381.380.176.184.774.33.9679.24.3
    丁烯醛0101.0104.0102.098.3107.091.85.04101.05.3
    2-丁酮077.967.968.669.169.468.93.5270.35.3
    正丁醛1.3488.887.090.270.472.089.44.1583.010.1
    苯甲醛077.883.084.488.486.284.84.2184.13.9
    异戊醛3.4897.7101.093.5103.099.5109.05.03101.04.8
    正戊醛079.297.483.684.280.482.04.2284.57.1
    正己醛068.464.672.268.473.074.23.5170.14.7
    下载: 导出CSV
  • [1] 印楠. 废水中甲醛的测度[J]. 山东环境, 1999, 91(3): 10 − 11.
    [2] 徐晓力, 徐晓虹, 王宣. 气相色谱法测定废水中的 7 种低分子量醛、酮和醇[J]. 甘肃环境研究与监测, 2000, 13(4): 193 − 194.
    [3] 胡冠九. HPLC法测定水和废水中的醛酮类化合物[J]. 环境监测管理与技术, 2004, 16(2): 25 − 27. doi: 10.3969/j.issn.1006-2009.2004.02.009
    [4] KOBAYASHI K, TANAKA M, KAWAI S. Gas chromatographic determination of lowmolecular-weight carbonyl compounds in aqueous solution as their O-(2, 3, 4, 5, 6-pentafluorobenzyl) oximes[J]. Chromatogr, 1980, 187: 413 − 417. doi: 10.1016/S0021-9673(00)80474-4
    [5] LEHMPUHL D W, BIRKS J W. New GC/ECD method for the determination of atmospheric aldehydes and ketones based on cartridge sampling and derivatization with 2, 4, 6-Trichlorophenylhydrazine[J]. Chromatogr A, 1996, 740: 71 − 81. doi: 10.1016/0021-9673(96)00109-4
    [6] BÜLDT A, KARST U. N-Methyl-4-hydrazino-7-nitrobenzofurazan as a reagent for air monitoring of aldehydes and ketones[J]. Analytical Chemistry, 1999, 71: 1893 − 1898. doi: 10.1021/ac980946f
    [7] BINDING N, KLÄNING H, KARST U,et al. Analytical reliability of carbonyl compound determination using 1, 5- Dansylhydrazine derivatization[J]. Analytical Chemistry, 1998, 362: 270 − 273. doi: 10.1007/s002160051072
    [8] KÖLLIKER S, OEHME M. Structure elucidation of 2, 4-dinitrophenylhydrazone derivatives of carbonyl compounds in ambient air by HPLC-MS and multiple MS/MS using atmospheric chemical ionization in the negative ion mode[J]. Analytical Chemistry, l998, 70: 1979-1985.
    [9] 谭培功, 于彦彬, 蒋海威, 等. 大气中醛酮类羰基化合物的研究进展[J]. 环境科学进展, 1999, 7(4): 19 − 22.
    [10] 于彦彬, 谭培功, 刘赞, 等. 高效液相色谱三元梯度分离法测定大气中11种醛酮类化合物的研究[J]. 分析测试学报, 2000, 19(5): 43 − 46. doi: 10.3969/j.issn.1004-4957.2000.03.013
    [11] 祝惠英, 郭素荣, 石磊. 毛细管气相色谱法测定空气中低分子醛酮化合物[J]. 青岛大学学报, 2002, 17(1): 90 − 92.
    [12] 戴天有, 魏复盛, 彭清涛, 等. 空气和废气中10种醛酮污染物的高效液相色谱测定[J]. 环境科学研究, 1996, 9(6): 29 − 33. doi: 10.3321/j.issn:1001-6929.1996.06.010
    [13] 戴天有, 魏复盛, 谭培功, 等. 空气和废气中醛酮污染物的气相色谱测定[J]. 环境化学, 1998, 17(3): 293 − 298.
    [14] 陆豪等. 列车车厢内醛酮化合物的污染状况[J]. 环境科学, 2005, 26(2): 74 − 77. doi: 10.3321/j.issn:0250-3301.2005.02.015
    [15] 邹钱秀, 张卫东, 赵琦, 等. 不同类型新车内醛酮类化合物的污染研究[J]. 中国环境监测, 2012, 28(2): 97 − 100. doi: 10.3969/j.issn.1002-6002.2012.02.023
    [16] SWARIN S J, LIPARI F. Determination of formaldehyde and other aldehydes by high performance liquid chro-matography with fluorescence detection[J]. Journal of Liquid Chromatography, 1983, 6: 425 − 444. doi: 10.1080/01483918308076059
    [17] GENG A C, CHEN Z L, SIU G G. Determination of low-molecular-weight aldehydes in stack gas and automobile exhaust gas by liquid chromatography[J]. Analytica Chimica Acta, 1992, 257(1): 99 − 104. doi: 10.1016/0003-2670(92)80155-Z
    [18] U. S. Environmental Protection Agency. Sampling for selected aldehyde and ketone emissions from stationary sources. method 0011[S/OL]. (2018-08-01). https://www.epa.gov/sites/default/files/2020-04/documents/method_0011_0.pdf, 1996.
  • 加载中
图( 2) 表( 9)
计量
  • 文章访问数:  2969
  • HTML全文浏览数:  2969
  • PDF下载数:  4
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-18
  • 刊出日期:  2022-10-20
卢迎红, 任甜. 固定污染源废气中醛酮类化合物测定方法研究[J]. 环境保护科学, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
引用本文: 卢迎红, 任甜. 固定污染源废气中醛酮类化合物测定方法研究[J]. 环境保护科学, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
LU Yinghong, REN Tian. Determination of aldehyde and ketone compounds from an emission of stationary source[J]. Environmental Protection Science, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033
Citation: LU Yinghong, REN Tian. Determination of aldehyde and ketone compounds from an emission of stationary source[J]. Environmental Protection Science, 2022, 48(5): 127-133. doi: 10.16803/j.cnki.issn.1004-6216.2021100033

固定污染源废气中醛酮类化合物测定方法研究

    作者简介: 卢迎红(1971-),女,高级工程师。研究方向:环境分析技术。E-mail:Lu_yhong@126.com
  • 辽宁省沈阳生态环境监测中心,辽宁 沈阳 110069

摘要: 建立了固定污染源排放废气中的醛、酮类化合物的测定方法。用酸性2,4-二硝基苯肼(DNPH)吸收液采集废气样品,并发生衍生化反应,生成2,4-二硝基苯腙类化合物,用溶剂萃取后,经高效液相色谱分离检测。加标回收率在64.6%~109%之间,当采样体积20 L时,方法的检出限为0.005~0.010 mg/m3。可用于固定污染源废气中12种醛、酮类污染物的检测。

English Abstract

  • 醛酮类化合物被广泛应用于有机合成、化工、合成纤维、染料、农药、木材加工及制漆等行业。一些醛酮类化合物有毒或为致癌物,会刺激皮肤与粘膜及毒害中枢神经系统,具有遗传毒性等。国内外对醛酮类分析检测方法报道较多,但多数针对水中[1-4]、环境空气[5-11]、车间空气[12-13]、车内空气[14-15]和汽车尾气[16-17]等方面的研究,分别采用不同的衍生化试剂及检测手段,本文主要研究了固定源废气中醛酮类污染物的测定,用2,4-二硝基苯肼(DNPH)作为衍生化试剂,在酸性条件下,与醛酮反应生成2,4-二硝基苯腙类化合物,对采样、样品稳定性、腙类化合物的萃取等进行了系统研究。

    • Agilent 1100型液相色谱仪,二极管阵列检测器,配有自动进样器。Agilent ODS-C18色谱柱:250 mm×4.6 mm。重蒸蒸馏水;乙腈、二氯甲烷、正己烷:色谱纯。

      2,4-二硝基苯肼(国药沪试)吸收液:称取4.0 g 2,4-二硝基苯肼固体于棕色试剂瓶中,加入180 mL盐酸,再加入820 mL水,超声30 min。形成饱和溶液,先后用二氯甲烷和正己烷萃取纯化。吸收液应在采样前48 h内制备和纯化。

      醛、酮类-DNPH衍生物-乙腈标准溶液:浓度200 µg/mL(美国AccuStandard公司):包括甲醛-DNPH、乙醛-DNPH、丙烯醛-DNPH、丙酮-DNPH、丙醛-DNPH、丁烯醛-DNPH、丁醛-DNPH、苯甲醛-DNPH、异戊醛-DNPH、正戊醛-DNPH、邻甲基苯甲醛-DNPH、间甲基苯甲醛-DNPH、对甲基苯甲醛-DNPH、正己醛-DNPH、2,5-二甲基苯甲醛-DNPH,2-丁酮-DNPH。

      醛、酮类化合物-乙腈标准溶液:浓度1 000 µg/mL(美国AccuStandard公司)。

    • (1)等速采样研究

      美国EPA 0011方法[18]采用等速采样采集固定源废气中的醛酮类化合物。本实验参考该方法,进行模拟实验。

      模拟实验1:在玻璃纤维滤筒上加入醛酮混合标准溶液(加标量为20.0 µg),将3支装有100 mL DNPH饱和溶液的气泡吸收瓶和一支空吸收瓶串联到烟尘采样器,在采样管不加热的情况下,以10 L/min模拟采样60 min,分别测定玻璃纤维滤筒和吸收瓶中DNPH饱和吸收液中醛、酮类化合物的含量。

      模拟实验2:采样方式同模拟实验1,采样结束后,用二氯甲烷清洗采样时接触到的所有表面(包括探头喷嘴、探针配件、探针衬垫、第一吸收瓶、吸收瓶连接器),将清洗液与吸收瓶中DNPH饱和吸收液合并,用二氯甲烷萃取,按照废气样品的分析步骤分析测定。

      模拟实验3:在已采集颗粒物的玻璃纤维滤筒上加入醛酮混合标准溶液(加标量为20.0 µg),将3支装有100 mL DNPH饱和溶液的气泡吸收瓶和一支空吸收瓶串联到烟尘采样器,采样管温度大于120 ℃,以10 L/min模拟采样60 min,分别测定玻璃纤维滤筒和吸收瓶中DNPH饱和吸收液的采样效率(测定方法同模拟实验1)。

      (2) 恒流采样研究

      固定污染源废气的布点、采样及参数测定应符合GB/T 16157和HJ/T 397中的相关规定,采样装置,见图1

      串联3支各装有50 mL DNPH饱和吸收液的棕色气泡吸收瓶,与烟气采样器连接,按照气态污染物采集方法,以0.2 ~0.5 L/min的流量,连续采样1 h,或在1 h内以等时间间隔采集3~4个样品,采样期间流量波动应≤±10%。采样过程中,应保持采样管保温夹套温度不低于120 ℃,以避免采集气体中的水汽于吸收瓶之前凝结。

      采样结束后,切断采样泵和吸收瓶之间的气路,抽出采样管,取下吸收瓶,用密封帽密封避光保存。

    • 样品应于4 ℃以下密封避光冷藏保存,样品采集后3 d之内完成试样制备,制备好的试样在3 d内完成分析。

    • 将吸收瓶中的样品转移至250 mL分液漏斗中,用10 mL二氯甲烷-正己烷混合溶液或二氯甲烷萃取、萃取3次,收集有机相于150 mL三角瓶中,加入无水硫酸钠至硫酸钠颗粒可自由流动。浓缩至近干,更换溶剂为乙腈,并用乙腈定容至10.0 mL。

    • 色谱条件:柱温箱温度:35 ℃;进样体积:10 μL;紫外检测器波长:360 nm。流动相A:乙腈,流动相B:水,流动相C:甲醇。梯度洗脱程序,见表1

      定性定量方法:根据保留时间、样品的紫外光谱和标准溶液的紫外谱图比较进行定性,外标法定量。

    • 本实验室分别以二氯甲烷、正己烷、正己烷/二氯甲烷(7+3,V/V)和二氯甲烷/正己烷(1+1,V/V)为萃取剂,对加标量为2.0 μg醛酮衍生物的2,4-二硝基苯肼吸收液进行萃取,结果表明正己烷/二氯甲烷(7+3,V/V)和二氯甲烷对醛酮衍生物的萃取效率高于其他溶剂,但二氯甲烷在下层,方便萃取操作,见表2

    • 按照1.2.1.1连接采样系统,分别按模拟实验1~3操作步骤,以10 L/min流量采气60 min后,将吸收瓶中吸收液转移至1 000 mL分液漏斗中,用二氯甲烷萃取吸收液,按照废气样品的分析步骤分析;玻璃纤维滤筒放入棕色样品瓶中,加入2 mL DNPH乙腈溶液,10 μL盐酸,再加入适量乙腈,放置30 min,超声15 min,然后将提取液过滤后转移至浓缩瓶中,用乙腈第二次冲洗滤筒,冰水浴超声15 min,将2次洗脱液混合后浓缩分析,见表3

      表3可知,模拟实验1实验结果表明,当采样管不加热时,玻璃纤维滤筒中未检出醛酮类化合物,但吸收液中苯甲醛、甲基苯甲醛和2,5-二甲基苯甲醛回收率较低;模拟实验2实验结果表明,当采样管不加热时,高沸点醛酮类化合物(苯甲醛、甲基苯甲醛和二甲基苯甲醛)会附着在采样时接触到的采样系统表面(尤其是排气筒是高湿的情况)。模拟实验3实验结果表明,当采样管加热时,玻璃纤维滤筒中也未检出醛、酮类化合物,吸收液中醛、酮类化合物的采样效率在50%以上(2,5-二甲基苯甲醛除外),因此,模拟固定污染源废气实验中醛、酮类化合物各组分主要分布在气相中。因为无法模拟真正的颗粒物,也无法找到合适的污染源,去验证高沸点醛酮类是否存在于颗粒物,完全采用等速采样采集固定源样品,操作十分复杂,不易推广。另外实验结果显示,高温高湿条件下,在加热的采样管壁和玻璃纤维滤膜中均未检出醛酮类化合物,即醛、酮类化合物各组分主要分布在气相中,因此本方法采样方式确定为恒流采样。

    • 用液体吸收法采集空气样品时,通常使用两个采样瓶串联采样,但本方法在样品采集的同时需要进行衍生化,因此,我们试验了以串联四支各装有50 mL吸收液的气泡式吸收瓶,在第一支吸收瓶口加入醛酮混合标准溶液(加标量为40.0 µg),按照气态污染物采集方法,采气流量分别为0.2、0.5、0.8 L/min,模拟采集有组织排放废气中醛、酮类化合物样品连续采样1 h,分别测定每一吸收瓶中醛酮类化合物的浓度,计算每一吸收瓶的吸收效率(每一吸收瓶的采样量与总采样量之比),见表46

      表46可知,在0.2~0.5 L/min采样流量条件下,除2-丁酮外,其他化合物采样效率都能稳定达到70%以上。对于大多数化合物第一和第二吸收瓶合并吸收效率都在90%以上,但丙酮和2-丁酮在0.8 L/min采气流速下,第三支吸收瓶中的吸收效率仍在10%以上,因此,在采集有组织排放废气样品时采样流量选择0.2~0.5 L/min,必须串联3支装有50 mL DNPH饱和吸收液的气泡吸收瓶。

    • 在ODS-C18和乙腈/水二元混合溶剂组成的色谱体系中,12种醛酮腙类化合物中有2组难分离物质对,分别是丙烯醛/丙酮,2-丁酮/正丁醛。在乙腈-水二元梯度体系中,当提高乙腈的比例时,有利于丙烯醛和丙酮的分离,但另外一组难分离物质对的分离度又会降低,在甲醇-水二元梯度体系中2组难分离物质对都能较好分离,但初始柱压较高,醛类-DNPH有同分异构体的峰出现,基线有漂移;在甲醇-乙腈-水-四氢呋喃四元梯度体系中丙烯醛/丙酮和2-丁酮/正丁醛都可以得到较好分离,但梯度洗脱程序复杂,另外,四氢呋喃的引入,使得醛类-DNPH都有同分异构体的峰出现。经过多次实验,根据谱图中醛酮腙类化合物各组分的分离情况和出峰时间的长短,综合比较分离效果、基线漂移,以及待测组分与样品基质中干扰物质的分离等情况,最后采用梯度洗脱和甲醇-乙腈-水作为流动相以达到最佳分离,见图2

    • 对样品稳定性进行了测试,将醛酮类化合物标准溶液加到DNPH饱和吸收液中,在4 ℃以下密闭、避光保存一定时间后,按照样品分析步骤进行测定,见表7

      表7可知,多数醛酮类化合物在实验条件下存放7 d都比较稳定,但2-丁酮样品的测定结果随存放时间变化较大,而且采用不同萃取溶剂的变化趋势相反,当采用二氯甲烷萃取样品时,样品测定结果随存放时间变长而逐渐降低;而当采用正己烷/二氯甲烷(7+3,V/V)萃取样品时,样品测定结果随存放时间变长而逐渐增大,因此,在样品采集后放置时间较长时,推荐采用二氯甲烷-正己烷混合溶液萃取样品。

    • 串联四支各装有50 mL吸收液的气泡式吸收管,按照气态污染物采集方法,以0.5 L/min的流量,连续采样20 L,测定后3支吸收管中各醛酮类化合物的空白值;其他组分是将1.0 µg标准溶液加于第二支装有50 mL吸收液的吸收管中,采用同样方法采样,进行7次平行测定。方法的检出限为0.005~0.010 mg/m3

    • 分别采集东北制药总厂、中远船务、大连船舶重工和大连机车厂等企业有组织排放样品,见表8

      将采集后的有组织排放样品混合均匀作为实际样品。其中一个为实样样品本底,另外6个再加入5.0 µg醛酮类化合物标准溶液,重复测定六次计算回收率和相对标准偏差,加标回收率在64.6%~109%之间,变异系数在3.9~10.1%之间,见表9

    • 本方法适用于固定污染源废气中12种醛、酮类污染物的检测。醛、酮类化合物各组分主要分布在气相中,在采集有组织排放废气样品时采样流量选择0.2~0.5 L/min,必须串联3支装有50 mL DNPH饱和吸收液的气泡吸收瓶。采集后的样品用二氯甲烷-正己烷混合溶液或二氯甲烷萃取,加标回收率在64.6%~109%之间,变异系数在3.9%~10.1%之间。当采集有组织排放废气20 L,定容体积10.0 mL时,方法的检出限为0.005~0.010 mg/m3

    参考文献 (18)

返回顶部

目录

/

返回文章
返回