-
目前,很多大型城市采用多水源同时供水的模式以应对城市快速发展带来不断增加的需水量。多水源供水在缓解水量供需矛盾的同时可能导致管网水质不稳定,如用户龙头水出现细菌、浊度、总铁等超标,甚至管网“黄水”现象[1]。
水厂处理后的水在进入管网前,通常采用自由氯或自由氯联合氯胺消毒的方式来保证管网输配过程和龙头水的生物安全性,而消毒过程产生的消毒副产物(disinfection byproducts, DBPs)健康风险是饮用水安全的一个重要方面。DBPs不仅在水厂消毒环节生成并发生转化,在管网输配过程中发生的水解、生物降解和氧化还原反应等复杂过程也可显著影响DBPs的生成和转化[2-3]。这主要表现在:一方面,管网中的物理、化学、生物反应过程高度依赖于水质条件,如溶解性有机碳(dissolved organic carbon, DOC)、温度、pH等[4-6];另一方面,管网中的无内衬铁管、铜管及其腐蚀产物也可为DBPs的进一步生成转化提供反应场所和催化介质[7-9]。管网中DBPs风险与管网的特殊环境有很大关系,其类型和时空分布较复杂。
目前,关于管网DBPs的监测指标选取、监测频率设定和监测点布设等方面尚缺乏足够的科学依据。本研究以我国北方某大城市多水源供水管网为研究对象,系统分析了管网中DBPs的浓度和相对风险,明确了指示性DBPs的种类,通过管网DBPs浓度的时空变化及其与常规水质指标的相关性分析,识别了影响管网DBPs的主要风险因素和管网风险区,并进一步提出了采样频率和采样点布设建议,以期为供水行业管网DBPs风险管控提供参考。
多水源供水管网中消毒副产物风险分析
Risk analysis of disinfection by-products in multi-source drinking water distribution system
-
摘要: 通过调研北方某大型城市多水源供水格局下管网水中三卤甲烷(THMs)和卤乙酸 (HAAs)这2类消毒副产物(DBPs)的质量浓度水平,对管网中各类DBPs的超标风险、风险点的时空分布及影响因素进行了分析,从确定管网指示性DBPs、检测频率及管网采样点布设3个方面提出了关于管网DBPs风险分析方法的建议。研究结果表明,该市DBPs的超标风险整体较低,而管网中HAAs超标风险明显高于THMs,故可作为管网监测的指示性DBPs。多水源供水管网DBPs的风险相对较高的区域包括:以地下水和地表水为水源的管网混水区域以及管网末端;水温低于20 ℃时,溶解性有机碳(DOC)高于1.7 mg·L−1、且自由性余氯质量浓度高于0.5 mg·L−1的区域;存在因水力条件不稳定和存在管网沉积物而导致浊度波动较大的区域。建议在DBPs相对较高的风险区和风险时间段增加采样频率和采样点的布设。Abstract: This study monitored the trihalomethanes (THMs) and halogen acids (HAAs) concentrations of tap water in a large city of northern China with multi-source water supply and analyzed the violation risk, time-space distribution and influencing factors of DBPs. A risk analysis methodology for DBPs in tap water is put forward, which included three aspects, namely, selection of indicative DBPs, monitoring frequency and the layout of sampling points. It was found that the overall risk of DBPs exceeding standard limits in the city is relatively low. However, the risk of HAAs in tap water is significantly higher than that of THMs, thus could serve as an indicator of DBPs in tap water. The areas with relatively high DBPs risks in multi-source DWDS are as follows: areas with mixed water supply from both groundwater and surface water and the far-ends of the pipe network; time periods with water temperature below 20 ℃, dissolved organic carbon (DOC) concentration higher than 1.7 mg·L−1 and free chlorine residual concentration is higher than 0.5 mg·L−1; areas with significant turbidity fluctuation due to unstable hydraulic conditions and the presence of pipe sediments. Sampling frequency and the sampling points should be increased accordingly during the periods/in the areas with relatively high DBPs risk.
-
表 1 水厂出厂水常规水质参数
Table 1. Conventional water quality parameters of finished water from 5 WTPs
水厂 采样月份 浊度/NTU pH DO/(mg·L−1) CODMn/(mg·L−1) -N/(mg·L−1)${\rm{NH}}_4^ + $ /(mg·L−1)${\rm{SO}}_4^{2 - }$ Cl−/(mg·L−1) DOC/(mg·L−1) 水厂1 4月 0.19 7.57 11.12 1.28 0.35 34.13 14.41 3.40 8月 0.28 7.84 7.84 1.65 0.19 28.67 18.06 1.69 11月 0.16 8.41 10.95 1.27 0.11 38.44 18.98 2.23 水厂2 4月 0.12 7.62 8.76 0.16 0.05 27.11 18.66 0.33 8月 0.28 8.03 8.17 0.71 0.09 30.03 20.64 1.17 11月 0.23 8.09 8.98 0.51 0.03 32.07 21.17 0.63 水厂3 4月 0.19 7.57 11.12 0.48 0.13 28.95 15.63 1.53 8月 0.22 7.77 8.25 1.62 0.12 27.46 27.82 1.84 11月 0.23 8.25 10.87 0.7 0.06 35.11 14.32 3.12 水厂4 4月 0.19 7.43 8.52 0.56 0.05 94.19 68.62 2.13 8月 0.29 7.82 7.15 0.77 0.11 85.09 61.92 0.96 11月 0.14 7.9 8.22 0.27 0.09 81.61 57.70 2.21 水厂5 4月 0.37 7.78 10.57 1.12 0.09 28.95 13.16 2.62 8月 0.23 8.13 8.51 1.11 0.09 27.04 27.55 2.18 11月 0.21 8.14 10.60 1.42 0.10 30.25 29.71 1.98 表 2 DBPs标准限值及风险分级值
Table 2. DBPs standard limits and risk grading values
风险值 THMs(浓度与
标准的比值之和)DCAA/
(μg·L−1)TCAA/
(μg·L−1)标准限值 1 50 100 一级风险值 ≥1 ≥50 ≥100 二级风险值 0.6~1 30~50 60~100 三级风险值 0.3~0.6 15~30 30~60 -
[1] 徐洪福, 李贵伟, 金俊伟, 等. 南方某市供水管网锰致“黄水”问题的成因与控制[J]. 中国给水排水, 2017, 33(5): 5-9. [2] ZHANG P, LAPARA T M, GOSLAN E H, et al. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems[J]. Environmental Science & Technology, 2009, 43(31): 69-75. [3] CHU W, GAO N, DENG Y. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 82-86. [4] 高金良, 王慧, 侯秀琴, 等. 供水管网中溶解性有机卤化物形成影响因素[J]. 哈尔滨工业大学学报, 2010, 42(8): 1264-1268. doi: 10.11918/j.issn.0367-6234.2010.08.018 [5] 袁一星, 钟丹, 吴晨光, 等. 管材和水力条件对三卤甲烷形成的影响[J]. 哈尔滨工业大学学报, 2011, 43(10): 24-28. doi: 10.11918/j.issn.0367-6234.2011.10.005 [6] YE B, WANG W, YANG L, et al. Factors influencing disinfection by-products formation in drinking water of six cities in China[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 147-152. [7] HE G, LI C, DONG F, et al. Chloramines in a pilot-scale water distribution system: Transformation of 17 β-estradiol and formation of disinfection byproducts[J]. Water Research, 2016, 106(1): 41-50. [8] ZHANG C, LI C, ZHENG X, et al. Effect of pipe materials on chlorine decay, trihalomethanes formation, and bacterial communities in pilot-scale water distribution systems[J]. International Journal of Environmental Science and Technology, 2017, 14(1): 85-94. doi: 10.1007/s13762-016-1104-2 [9] LI C, LUO F, DUAN H, et al. Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system[J]. Separation and Purification Technology, 2019, 211(18): 564-570. [10] 潘露华, 梁庸, 黄惠燕, 等. 液氯与次氯酸钠生成消毒副产物超标风险评估分析[J]. 城镇供水, 2019(3): 41-47. doi: 10.3969/j.issn.1002-8420.2019.03.010 [11] 蔡广强, 张金凤, 刘丽君, 等. 南方某市饮用水中氯化消毒副产物超标风险评估[J]. 中国给水排水, 2017, 33(3): 37-41. [12] 陈颂, 董文艺, 赵福祥, 等. 我国中小水厂三卤甲烷和卤乙酸的健康风险评价[J]. 中国给水排水, 2019, 35(13): 29-34. [13] WEI J, YE B, WANG W, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China[J]. Science of the Total Environment, 2010, 408(20): 4600-4606. doi: 10.1016/j.scitotenv.2010.06.053 [14] GUILHERME S, RODRIGUEZ M J. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems[J]. Science of the Total Environment, 2015, 518-519(15): 280-289. [15] 邱梦雨, 周玲玲, 张永吉. 给水管壁松散沉积物的形成与脱落规律研究[J]. 中国给水排水, 2015, 31(1): 27-31. [16] 周玲玲, 张永吉, 叶河秀, 等. 给水管壁松散沉积物的形成机制与控制[J]. 中国给水排水, 2012, 28(2): 31-34. [17] 周玲玲, 刘文君, 张永吉. 模拟给水管网中管壁生物膜生成特性[J]. 中国环境科学, 2008, 28(1): 83-86. doi: 10.3321/j.issn:1000-6923.2008.01.018 [18] YU Y, MA X, CHEN R, et al. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China[J]. Chemosphere, 2019, 228: 101-109. doi: 10.1016/j.chemosphere.2019.04.095