多水源供水管网中消毒副产物风险分析

于影, 陈儒雅, 潘霖霖, 何溢恬, 石宝友. 多水源供水管网中消毒副产物风险分析[J]. 环境工程学报, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
引用本文: 于影, 陈儒雅, 潘霖霖, 何溢恬, 石宝友. 多水源供水管网中消毒副产物风险分析[J]. 环境工程学报, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
YU Ying, CHEN Ruya, PAN Linlin, HE Yitian, SHI Baoyou. Risk analysis of disinfection by-products in multi-source drinking water distribution system[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
Citation: YU Ying, CHEN Ruya, PAN Linlin, HE Yitian, SHI Baoyou. Risk analysis of disinfection by-products in multi-source drinking water distribution system[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141

多水源供水管网中消毒副产物风险分析

    作者简介: 于影(1992—),女,博士研究生。研究方向:饮用水输配过程水质变化。E-mail:yingyu_st@rcees.ac.cn
    通讯作者: 石宝友(1971—),男,博士,研究员。研究方向:饮用水安全输配原理与技术。E-mail:byshi@rcees.ac.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07108-002);国家自然科学基金资助项目(51978652,51678558)
  • 中图分类号: X832

Risk analysis of disinfection by-products in multi-source drinking water distribution system

    Corresponding author: SHI Baoyou, byshi@rcees.ac.cn
  • 摘要: 通过调研北方某大型城市多水源供水格局下管网水中三卤甲烷(THMs)和卤乙酸 (HAAs)这2类消毒副产物(DBPs)的质量浓度水平,对管网中各类DBPs的超标风险、风险点的时空分布及影响因素进行了分析,从确定管网指示性DBPs、检测频率及管网采样点布设3个方面提出了关于管网DBPs风险分析方法的建议。研究结果表明,该市DBPs的超标风险整体较低,而管网中HAAs超标风险明显高于THMs,故可作为管网监测的指示性DBPs。多水源供水管网DBPs的风险相对较高的区域包括:以地下水和地表水为水源的管网混水区域以及管网末端;水温低于20 ℃时,溶解性有机碳(DOC)高于1.7 mg·L−1、且自由性余氯质量浓度高于0.5 mg·L−1的区域;存在因水力条件不稳定和存在管网沉积物而导致浊度波动较大的区域。建议在DBPs相对较高的风险区和风险时间段增加采样频率和采样点的布设。
  • 石油开采、运输、炼制及含油污水处理过程中会产生大量的含油固废。根据国务院发布的《全国土壤污染状况调查公报》[1],在已调查的13个采油区的494个土壤点位中,超标点位占23.6%,主要污染物为石油烃和多环芳烃。据统计,我国每年新增含油污泥约5×106 t,但含油污泥的实际处置率却不到20%;同时,存量含油污泥规模已超1.59×108 t [2]。大量的含油固体废物未能及时处理而随意堆放或掩埋,不仅会占用大量土地资源,而且会对周围的土壤、水体和空气都造成污染。因此,对含油固废进行无害化处置十分必要和迫切。

    传统的含油固废处理技术主要包括溶剂萃取法、调质分离法、热洗涤法、焚烧法、热脱附法以及生物处理法等[3-7]。其中,溶剂萃取法萃取剂用量大,处理成本高,存在溶剂损耗问题;调质分离法占地面积大、处理效果受含油固废来源影响大;热洗涤法主要适用于砂石为主的含油固废处理,且污水、污泥量大;焚烧法、热脱附法能耗高、设备投资高;而生物处理法处理周期长、菌种难以培养,对石油烃重度污染土壤/油泥适用性差,实际应用较少。以上技术中,处理后油泥只能用于油田井场内铺路等用途,普遍无法将污染介质处置到第一类建设用地标准。因此,迫切需要一种绿色节能、处理效果彻底的石油烃重度污染土壤/油泥处置技术。

    阴燃是自然界中广泛存在的缓慢无焰自持燃烧现象。爱丁堡大学的学者于2005年最先提出将其工程化应用于有机污染介质的治理[8];其技术原理是,利用热值较高的有机污染物为能源,通过向污染物料中注入空气,在低能状态下点燃引起污染物的自持燃烧,然后利用污染物自身的燃烧热能引发周边污染区域的持续燃烧,从而实现污染物的去除。与传统的含油固废处理技术相比,工程化阴燃技术具有处理能耗低、应用范围广、安全高效、处理灵活、可模块化设计等优点。

    根据处置场所的不同,工程化阴燃技术可分为原位和异位应用。目前,国外在实验室研究[9-14]的基础上已就原位和异位[15-17]阴燃分别开展了中试甚至大规模污染场地修复实验;而国内对工程化阴燃技术的研究大多还处于对技术可行性、影响因素及燃烧过程探究的实验室研究阶段[18-22],鲜有中试规模的实验研究报道。本研究采用异位阴燃设备分别对石油烃重度污染土壤和含油污泥进行了中试实验,以研究该技术应用于含油固废处理领域的适用性;同时,探索该技术用于大规模修复工程的运行效果和运行参数。

    中试实验1在代号为T1的基础油和润滑油调配厂进行,该厂自2015年起已停止运营。实验对象为场地内3处不同区域的石油烃污染土壤,具体特性见表1

    表 1  中试实验1石油烃污染土壤特性
    Table 1.  Characteristics of petroleum hydrocarbon-contaminated soil of pilot study 1
    污染土壤来源土壤质地污染土壤与地下水位埋深情况石油烃质量分数/( mg·kg−1)污染的石油类型
    基础油厂区粉砂污染土壤位于地表以下5.5~6.0 m(地下水位以下)6 880~12 844Ⅰ类基础油
    油罐区砾砂地面堆土2 759成品润滑油
    润滑油调配厂区粉土污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)4 146基础油及成品润滑油
     | Show Table
    DownLoad: CSV

    中试实验2在代号为T2的油田油泥处置场进行。实验对象为场地内4处不同区域的油泥,油泥特性如表2所示。实验中加入介质对油泥进行掺混预处理,介质特性见表3

    表 2  中试实验2油泥特性
    Table 2.  Characteristics of oil sludge of pilot study 2
    供试物料含水率/%石油烃质量分数/(mg·kg−1)
    #1罐底泥20.9159 660
    #2罐底泥21.0123 583
    #1池底泥35.0138 500
    #2池底泥32.880 340
     | Show Table
    DownLoad: CSV
    表 3  中试实验2掺混介质特性
    Table 3.  Characteristics of blending medium of pilot study 2
    供试介质性状含水率/%石油烃质量分数/(mg·kg−1)
    石英砂 0.8~2 mm颗粒 0 0
    粉土 粉状 20~50 0
    修复土 粉状 0~0.2 7~99
     | Show Table
    DownLoad: CSV

    阴燃中试装置由预处理系统、阴燃反应器、空气注入系统、尾气处理系统以及电气控制系统5部分组成(图1图2)。阴燃反应在阴燃反应器中进行,反应器共2台,每台长1.6 m、宽1.6 m、高1.4 m。反应器主要由底部的气室、气室与堆料室之间的支撑格栅、中部的堆料室和顶部的集气罩构成。气室中部设有DN50空气注入管,其两侧分别均布3支U型电加热管。鼓风机连接空气注入管同时给2台反应器供气,同时,2台反应器的集气罩都与气液分离器、活性炭(GAC)罐、引风机、排气筒组成的尾气处理系统相连,以便当其中1套设备装卸料时,另1套设备仍能运行。

    图 1  阴燃中试工艺流程图
    Figure 1.  Process diagram of smoldering pilot study
    图 2  阴燃中试设备图
    Figure 2.  Pilot smoldering equipment

    鼓风机和集气罩出气管路上均设置在线流量计、压力表,用于监测每个反应器的进、出气风量和压力。活性炭罐前后设取样口,用于尾气中CO、VOCs、H2S体积分数和尾气成分的检测。阴燃反应前后分别对实验物料采样,送第三方实验室检测石油烃质量分数。

    阴燃实验前,先对原料进行预处理,将原料与掺混介质按设计比例在搅拌机中搅拌至目测均匀后,从反应器上部投加到堆料室中,至物料堆高达40 cm,再在上面覆盖20 cm干净土壤用于抑制表面明火。加料完成后,在距离反应器四角30 cm×30 cm的4点及反应器正中点位(编号A、B、C、D、E)各安装1支集束热电偶(每支对自下而上0、5、15、30、50 cm料层处点位进行测温),将信号接入温场采集器。盖上集气罩,启动鼓、引风机并调节风量,开启电加热器;当数据显示阴燃启动后,关闭电加热器,保持空气持续输入以维持阴燃继续进行,反应过程产生的尾气经尾气处理系统处理后排放;反应结束并冷却后打开集气罩进行卸料。

    中试实验1以T1场地内石油烃污染土壤为对象,研究不同来源石油烃污染土壤、达西空气通量对阴燃启动、燃烧锋面推进,以及污染土壤中石油烃去除率的的影响。针对部分未能实现自持阴燃的污染土壤添加辅助燃料-芥花油(化学成分主要为不饱和脂肪酸),以研究添加植物油对于此类物料维持阴燃反应的可行性。具体实验方案见表4

    表 4  中试实验1实验方案
    Table 4.  Experimental plan of pilot study 1
    编号污染土来源土壤质地污染土添加量/m3芥花油添加量/L预热阶段达西空气通量*/(cm·s−1)阴燃阶段达西空气通量/(cm·s−1)
    T1-1基础油厂区粉砂1.0200.87~1.090.98~1.09
    T1-2基础油厂区粉砂1.0200.18~0.220.43~1.09
    T1-3基础油厂区粉砂1.02200.18~0.220.33~0.65
    T1-4油罐区砾砂1.0200.18~0.220.38~0.43
    T1-5润滑油调配厂区粉土1.0200.18~0.370.18~0.65
      注:*达西空气通量是指垂直于气流方向的单位横截面积上的空气量,cm·s−1
     | Show Table
    DownLoad: CSV

    中试实验2以T2场地内不同来源油泥为对象,研究不同掺混介质(石英砂、粉土、修复土)、掺混比,以及达西空气通量对阴燃启动、燃烧锋面推进速度,以及油泥中石油烃去除率的影响。具体实验方案见表5

    表 5  中试实验2实验方案
    Table 5.  Experimental plan of pilot study 2
    编号油泥来源掺混介质油泥∶掺混介质(体积比)预热阶段达西空气通量/(cm·s−1)阴燃阶段达西空气通量*/(cm·s−1)
    T2−1#1池底泥石英砂1∶130.18~0.540.54~0.98
    T2−2#1池底泥粉土1∶130.18~0.330.65
    T2−3#1池底泥修复土**1∶60.18~0.270.22~0.43
    T2−4#1罐底泥修复土1∶80.180.49~0.81
    T2−5#2池底泥修复土1∶40.180.22~1.09
    T2−6#2罐底泥修复土3∶40.18~0.330.43~1.30
    T2−7#2池底泥修复土1∶20.18~0.380.45~1.30
      注∶*达西空气通量是指垂直于气流方向的单位横截面积上的空气量(单位∶cm·s−1);**修复土是指阴燃治理后的实验物料(掺混石英砂批次的除外),用于后一批次阴燃反应掺料。
     | Show Table
    DownLoad: CSV

    1)尾气分析。CO体积分数监测采用便携式CO检测仪(DX80,南京百世安安全设备有限公司);VOCs体积分数监测采用Mini RAE3000 VOC检测仪(PGM-7320,南京凯辉荣电子科技有限公司);H2S体积分数监测采用便携式四合一气体检测仪(PGM-2400,南京硕控自动化科技有限公司)。

    2)含油固废中石油烃质量分数分析。中试实验1依据《土壤中总石油烃碳氢化合物检测方法-气相层析仪/火焰离子化侦测器法》(NIEA S703.62B)[23];中试实验2依据《城市污水处理厂污泥检验方法》(CJ/T 221-2005)[24]

    3)阴燃推进速度表征。阴燃推进速度的快慢采用燃烧锋面自持蔓延速率表征,计算方法见式(1);含油固废中石油烃去除率计算方法见式(2)。

    燃烧锋面自持蔓延速率(md1)=相邻热电偶间距相邻热电偶到达燃烧封面所用时间差 (1)
    石油烃去除率(%)=(阴燃处理前物料石油烃质量分数-阴燃处理后物料石油烃质量分数)阴燃处理前石油烃质量分数×100% (2)

    以处理含油污泥的中试2第1批次实验T2−1为例,对阴燃启动的界定及燃烧锋面自持推进过程进行了分析。阴燃启动与否可结合料层温升及尾气浓度两方面综合判断,而判断燃烧锋面是否自持推进,则应观察外部供能停止后,沿阴燃推进方向的后续料层的温度是否相继出现相近的峰值。由实验T2−1阴燃温度曲线(图3)可看出,当电加热300 min时,热电偶数据显示,0 cm 料层越过峰值温度,5 cm料层温度快速上升至400 ℃[25]。结合尾气中CO、CO2浓度增加,判断阴燃已启动,此时关闭电加热器。在继续通入空气情况下,观察到3、4层阴燃峰值温度相继出现,反应最高温度达520 ℃,证明此时阴燃反应已实现自持推进。经计算,T2−1的燃烧锋面自持蔓延速率为2.67 m·d−1

    图 3  T2−1实验阴燃温度曲线图
    Figure 3.  Temperature profile of T2−1

    为直观体现燃烧锋面的推进过程,对实验T2−1阴燃过程中集束热电偶A、B、C、D、E的温度场分别进行了表征。由图4可看出,各热电偶自0 cm推进至最高料层的过程中均经历了预热升温、阴燃反应和降温3个阶段,但各点位的阴燃时长和燃烧锋面自持蔓延速率不一。这主要应与各热电偶处的污染物种类、浓度、空气流量和压力以及渗透性等因素有关[10,12]。此外,可观察到,阴燃反应主要发生在0~40 cm料层,50 cm料层并未发生阴燃(<400 ℃)。这是因为,50 cm料层为覆盖净土,无有机污染物,当燃烧锋面从40 cm扩散至50 cm时,阴燃反应逐渐终止。50 cm料层温升主要是由下部料层阴燃放热通过热传导、热辐射和热对流作用导致的。

    图 4  T2-1实验各热电偶温场分布图
    Figure 4.  Temperature distribution of thermometers of T2−1

    表6为中试实验2的阴燃结果。7次实验均成功启动及自持推进。其中,阴燃启动用时最短为3 h,峰值温度最高达990 ℃,石英砂预处理组阴燃自持蔓延速率最高,为2.67 m·d−1,掺料为土的其余各批次阴燃平均自持蔓延速率为0.60 m·d−1

    表 6  中试实验2阴燃结果
    Table 6.  Smoldering results of pilot study 2
    编号油泥掺混介质油泥∶掺混介质(体积比)阴燃前(混合后)石油烃质量分数/(mg·kg−1)阴燃残渣中石油烃质量分数/(mg·kg−1)启动/自持时长/h峰值温度/℃燃烧锋面自持蔓延速率/(m·d−1)
    T2−1 #1池底泥 石英砂 1∶13 3 360 7 5/21 520 2.67
    T2−2 #1池底泥 粉土 1∶13 7 830 7 7/26 549 0.99
    T2−3 #1池底泥 修复土 1∶6 13 000 32 7/72 814 0.51
    T2−4 #1罐底泥 修复土 1∶8 5 510 22 11/43 520 0.68
    T2−5 #2池底泥 修复土 1∶4 16 800 11 3/61 726 0.24
    T2−6 #2罐底泥 修复土 3∶4 30 600 93 4/86 858 0.6
    T2−7 #2池底泥 修复土 1∶2 25 300 99 6/60 900 0.64
      注∶为排除电加热及上部干净土层传热影响,燃烧锋面自持蔓延速率按5~30 cm料层温度数据计算。
     | Show Table
    DownLoad: CSV

    在中试1中,T1−1实验比对了不同达西空气通量对石油烃污染土壤阴燃反应的影响。如图5(a)所示,当初始达西空气通量维持在0.87~1.09 cm·s−1时,阴燃一直未启动;而将达西空气通量降低至0.25 cm·s−1后,反应温度短时快速上升达到峰值温度,阴燃迅速启动。由此可见,在阴燃启动阶段,空气通量不宜过高,否则会导致污染物燃烧所产生的热量被迅速带走,阴燃反应所释放的热量与热损失传热之间难以实现能量平衡[26-27]。在T1−1实验基础上,中试实验1后续批次及中试实验2各批次实验将初始达西空气通量维持在0.18 cm·s−1,适用的石油烃土壤及油泥均成功启动阴燃。与文献[16, 26]中提出的阴燃所需最低达西空气通量0.5 cm·s−1相比,本实验验证在更低的初始达西空气通量(0.18 cm·s−1)条件下也可成功启动阴燃。

    图 5  达西空气流量与阴燃反应温度曲线图
    Figure 5.  Temperature profile under different Darcy air flux

    T2−1实验中,当阴燃成功启动后,提高达西空气通量至0.97 cm·s−1,15、30 cm料层温升速率陡增,快速达到阴燃峰值温度(图5(b))。这说明,在一定污染物浓度下,阴燃启动后的燃烧锋面自持蔓延速率随达西空气通量的增大而增大。在该阶段,氧气的传输速率成为反应的决速步骤,增大达西空气通量将使氧含量增加,继而加快氧化反应,提升阴燃锋面的推进速率[26]。因此,通过调节空气通量可对反应进程进行有效控制。

    1)掺混介质物性对阴燃处理油泥的影响。中试2的T2−1、T2−2实验以#1池底泥为原料,在油泥与介质的体积比为1∶13、初始达西空气通量0.18 cm·s−1的条件下,分别对比了石英砂、粉土为掺混介质的阴燃处理效果。根据表6中所列T2−1、T2−2实验结果,采用石英砂作为掺混介质比采用粉土作为掺混介质阴燃启动用时更短(5 h<7 h),燃烧锋面自持蔓延速率更快(2.67 m·d−1>0.99 m·d−1)。这可能与石英砂2个方面的性质有关∶1)石英砂的导热性能更好(石英砂导热率10 W·m−1K−1>粉土导热率 1.67 W·m−1K−1),有利于在阴燃自持蔓延方向混合物料的传热;2)石英砂的加入有利于分散油泥,改善混合物料的渗透性,有利于阴燃反应所需氧气与油泥的更好接触。此外,添加的粉土具有一定含水率,预热阶段粉土中的水分蒸发,可带走阴燃反应部分能量,导致掺混粉土的T2−2实验温升较慢,达到阴燃启动所需温度用时更长,阴燃速率更慢[28]

    值得注意的是,T2−1实验物料的石油烃质量分数和阴燃峰值温度均较T2−2实验低,但仍能实现阴燃更快启动和推进。在对阴燃启动和推进的影响上,掺混介质本身的导热性及对物料渗透性的改善作用似乎比石油烃质量分数更重要。

    2)介质掺混比例对阴燃处理油泥的影响。中试2的T2−5、T2−7实验分别以#2池底泥为实验对象,以修复土为掺混介质,考察了油泥与介质不同掺混比下的阴燃处理效果。根据表6,实验T2−7(油泥与介质的体积比为1∶2)比T2−5(油泥与介质的体积比为1∶4)阴燃自持蔓延速率更快(0.64 m·d−1 >0.24 m·d−1)。这是因为,对于修复土这类自身渗透性一般的掺混介质,随着掺混比例的提高,混合物料中石油烃质量分数下降,阴燃自持蔓延速率也随之降低。

    以石英砂为掺混介质的阴燃启动和燃烧锋面自持蔓延速率最快,但石英砂成本相对较高。综合上述各实验结果,从降低运行成本和提高阴燃处理效率的角度考虑,1∶2的油泥与修复土体积比更适于工程化应用。

    采用石油烃去除率对含油固废的阴燃处理效果进行了表征。由表7可看出,中试实验1中成功阴燃的各批次实验(含添加芥花油批次),阴燃前污染土壤石油烃质量分数在2 759~8 301 mg·kg−1,阴燃后残渣石油烃质量分数均未检出;以检出限32.7 mg·kg−1计算,阴燃处理后石油烃去除率大于99.6%。由图6 (石油烃质量分数以对数形式表示)可看出,中试实验2中,不同污染来源、反应前石油烃质量分数在3 360~30 600 mg·kg−1的油泥,阴燃后石油烃去除率均在99.5%以上。阴燃残渣的石油烃质量分数最低达7 mg·kg−1,远低于《含油污泥处理利用控制限值》(DB61/T 1025-2016)[29]中的利用控制限值(≤10 000 mg·kg−1)及《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[30]中第一类用地筛选值(826 mg·kg−1)。图7是T1−3实验阴燃处理前后物料图,可看出,阴燃处理后实验物料明显比实验前干燥和分散。

    表 7  中试实验1阴燃结果
    Table 7.  Smoldering results of pilot study 1
    编号污染土来源污染土壤与地下水位埋深情况芥花油添加量/L阴燃前石油烃质量分数(掺混后)/( mg·kg−1)阴燃残渣中石油烃质量分数/( mg·kg−1)启动/自持时长/h峰值温度/℃自持阴燃
    T1−1基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)012 84456.8/0
    T1−2基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)09 62125.2/0
    T1−3基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)208 301ND*22.5/10.7665
    T1−4油罐区地面堆土02 759ND7.9/23.5528
    T1−5润滑油调配厂区污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)04 146ND15.8/10.7551
      注:*ND表示未检出。
     | Show Table
    DownLoad: CSV
    图 6  中试2阴燃前后物料石油烃质量分数及去除率图
    Figure 6.  Petroleum hydrocarbon concentration and removal rate of pilot study 2 before and after smoldering
    图 7  T1−3实验阴燃反应前(左)、后(右)物料图
    Figure 7.  Material of T1−3 before and after smoldering

    尾气监测及分析结果显示,阴燃尾气中主要存在CO2、H2O等典型氧化反应气体,NOx、VOCs、SO2、H2S等有害气体组分以及CO、CH4等轻烃组分。尾气中CO、VOCs组分浓度随阴燃反应进程存在较大波动性,但总体表现出随阴燃反应温度升高而浓度增大的特性。由图8可看出,在前期料层接近阴燃峰值温度时,CO、VOCs组分浓度也达到最大值,CO组分甚至会短时超出《危险废物焚烧污染控制标准》(GB 18484-2020)[31]排放限值。这是因为,在阴燃启动初期,物料整体渗透性较低,且进风量较小,导致局部燃烧不完全[28],生成这类气体。尽管如此,峰值温度时CO/CO2比值普遍在0.10~0.35,这表明阴燃仍然以燃烧更为彻底的氧化反应为主。

    图 8  T2−3实验中CO、VOCs浓度与达西空气通量、反应温度对照图
    Figure 8.  CO &VOCs concentrations versus air flux & reaction temperature of T2−3

    对比活性炭(GAC)罐吸附前后的CO、VOCs体积分数可知,GAC对CO无明显处理效果,对VOCs的处理效果则不尽相同,中试实验1中VOCs经吸附处理后体积分数降低,但中试实验2中VOCs经吸附后体积分数降幅不明显。这应与尾气中的VOCs组分差异及GAC的吸附特性有关。一般来说,分子量较大的非极性或低极性分子能更容易被GAC吸附。因此,基于阴燃尾气特性,尾气处理措施还有待完善。

    中试1 研究了阴燃技术对于T1场地内3类不同来源(基础油厂区、油罐区、润滑油调配厂区)石油烃污染土壤的适用性。由表7可看出,T1−1、T1−2实验均以基础油厂区石油烃污染土壤实验对象,物料石油烃质量分数较高,分别为12 844、9 621 mg·kg−1,但阴燃均未自持进行;而T1−4和T1−5 实验分别以油罐区、润滑油调配厂区污染土壤为实验对象,物料石油烃质量分数较低,分别为2 759、4 146 mg·kg−1,却均成功自持阴燃,峰值温度分别达528、551 ℃,平均燃烧锋面自持蔓延速率分别为0.98、1.07 m·d−1。这是因为,基础油厂区污染土壤位于地下水位以下,含水率较高,因此,在阴燃最初的点火预热阶段水分蒸发用时较长,污染物I类基础油的蒸发损失大,在燃烧锋面到达之前挥发比例高[26],最终导致无法支持阴燃启动和/或自持蔓延。而油罐区污染土壤为地面堆土,润滑油调配厂区污染土壤大部分位于地下水位之上,两者含水率均不高,且污染组分主要为成品润滑油,挥发性较低,因此,阴燃能够启动及自持。

    对于未能阴燃自持的基础油区厂区污染土壤,T1−3实验添加辅助燃料-芥花油对阴燃过程进行了重新考察。加入20 L芥花油后,石油烃质量分数为8 301 mg·kg−1,低于未添加芥花油的T1−1、T1−2实验,但阴燃却得以自持,自持蔓延速率为1.07 m·d−1。这是因为,加入芥花油后,芥花油燃烧产热成为主要热源,可支持阴燃反应的自持推进[26]。使用辅助燃料的目的就是使工程化阴燃技术也可以应用到自身无法自持阴燃的固废物料上,使物料中的目标污染物得到协同去除。有研究者指出,自持阴燃反应适用于如煤焦油、木馏油等低挥发性污染物的处理[32];对于汽油类有机物和氯代溶剂类挥发性污染物,也有加入植物油成功维持阴燃的报道[33]。这些与本实验观测到的现象都是一致的。

    1)含油固废的含水率及挥发性可影响阴燃启动及自持推进。高含水率、挥发性高的含油固废难以启动及维持自持阴燃修复,但通过添加辅助燃料可实现工程化阴燃技术的成功应用。阴燃启动阶段宜采用较低空气通量,启动后增大达西空气通量有助于提升燃烧锋面推进速度。

    2)工程化阴燃技术治理含油固废,石油烃去除率可达99.5%以上,含油量最低为7 mg·kg−1或未检出,远低于第一类建设用地标准。

    3)不同的掺混介质及掺混比例对阴燃反应的启动用时和阴燃自持蔓延速率有较大影响。以石英砂为掺料,阴燃启动用时最短,阴燃蔓延速率最快;1∶2的油泥/修复土掺比更利于工程化应用需求。

  • 图 1  管网采样点分布图

    Figure 1.  Layout of water sampling points

    图 2  管网水中HAAs和THMs的浓度水平

    Figure 2.  HAAs and THMs concentrations in tap water

    图 3  4月和11月管网中HAAs的质量浓度分布

    Figure 3.  HAAs concentrations in tap water in Apil and November

    图 4  11月份管网THMs分布

    Figure 4.  THMs distribution in tap water in November

    图 5  温度、DOC、总氯与HAAs质量浓度之间关系及11月管网自由性余氯、化合性余氯的质量浓度分布

    Figure 5.  Relationship between temperature, DOC, total chlorine concentration and HAAs concentration and concentration distribution of free residual chlorine and combined residual chlorine in tap water in November

    表 1  水厂出厂水常规水质参数

    Table 1.  Conventional water quality parameters of finished water from 5 WTPs

    水厂采样月份浊度/NTUpHDO/(mg·L−1)CODMn/(mg·L−1)NH+4-N/(mg·L−1)SO24/(mg·L−1)Cl/(mg·L−1)DOC/(mg·L−1)
    水厂1 4月 0.19 7.57 11.12 1.28 0.35 34.13 14.41 3.40
    8月 0.28 7.84 7.84 1.65 0.19 28.67 18.06 1.69
    11月 0.16 8.41 10.95 1.27 0.11 38.44 18.98 2.23
    水厂2 4月 0.12 7.62 8.76 0.16 0.05 27.11 18.66 0.33
    8月 0.28 8.03 8.17 0.71 0.09 30.03 20.64 1.17
    11月 0.23 8.09 8.98 0.51 0.03 32.07 21.17 0.63
    水厂3 4月 0.19 7.57 11.12 0.48 0.13 28.95 15.63 1.53
    8月 0.22 7.77 8.25 1.62 0.12 27.46 27.82 1.84
    11月 0.23 8.25 10.87 0.7 0.06 35.11 14.32 3.12
    水厂4 4月 0.19 7.43 8.52 0.56 0.05 94.19 68.62 2.13
    8月 0.29 7.82 7.15 0.77 0.11 85.09 61.92 0.96
    11月 0.14 7.9 8.22 0.27 0.09 81.61 57.70 2.21
    水厂5 4月 0.37 7.78 10.57 1.12 0.09 28.95 13.16 2.62
    8月 0.23 8.13 8.51 1.11 0.09 27.04 27.55 2.18
    11月 0.21 8.14 10.60 1.42 0.10 30.25 29.71 1.98
    水厂采样月份浊度/NTUpHDO/(mg·L−1)CODMn/(mg·L−1)NH+4-N/(mg·L−1)SO24/(mg·L−1)Cl/(mg·L−1)DOC/(mg·L−1)
    水厂1 4月 0.19 7.57 11.12 1.28 0.35 34.13 14.41 3.40
    8月 0.28 7.84 7.84 1.65 0.19 28.67 18.06 1.69
    11月 0.16 8.41 10.95 1.27 0.11 38.44 18.98 2.23
    水厂2 4月 0.12 7.62 8.76 0.16 0.05 27.11 18.66 0.33
    8月 0.28 8.03 8.17 0.71 0.09 30.03 20.64 1.17
    11月 0.23 8.09 8.98 0.51 0.03 32.07 21.17 0.63
    水厂3 4月 0.19 7.57 11.12 0.48 0.13 28.95 15.63 1.53
    8月 0.22 7.77 8.25 1.62 0.12 27.46 27.82 1.84
    11月 0.23 8.25 10.87 0.7 0.06 35.11 14.32 3.12
    水厂4 4月 0.19 7.43 8.52 0.56 0.05 94.19 68.62 2.13
    8月 0.29 7.82 7.15 0.77 0.11 85.09 61.92 0.96
    11月 0.14 7.9 8.22 0.27 0.09 81.61 57.70 2.21
    水厂5 4月 0.37 7.78 10.57 1.12 0.09 28.95 13.16 2.62
    8月 0.23 8.13 8.51 1.11 0.09 27.04 27.55 2.18
    11月 0.21 8.14 10.60 1.42 0.10 30.25 29.71 1.98
    下载: 导出CSV

    表 2  DBPs标准限值及风险分级值

    Table 2.  DBPs standard limits and risk grading values

    风险值THMs(浓度与标准的比值之和)DCAA/(μg·L−1)TCAA/(μg·L−1)
    标准限值150100
    一级风险值≥1≥50≥100
    二级风险值0.6~130~5060~100
    三级风险值0.3~0.615~3030~60
    风险值THMs(浓度与标准的比值之和)DCAA/(μg·L−1)TCAA/(μg·L−1)
    标准限值150100
    一级风险值≥1≥50≥100
    二级风险值0.6~130~5060~100
    三级风险值0.3~0.615~3030~60
    下载: 导出CSV
  • [1] 徐洪福, 李贵伟, 金俊伟, 等. 南方某市供水管网锰致“黄水”问题的成因与控制[J]. 中国给水排水, 2017, 33(5): 5-9.
    [2] ZHANG P, LAPARA T M, GOSLAN E H, et al. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems[J]. Environmental Science & Technology, 2009, 43(31): 69-75.
    [3] CHU W, GAO N, DENG Y. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 82-86.
    [4] 高金良, 王慧, 侯秀琴, 等. 供水管网中溶解性有机卤化物形成影响因素[J]. 哈尔滨工业大学学报, 2010, 42(8): 1264-1268. doi: 10.11918/j.issn.0367-6234.2010.08.018
    [5] 袁一星, 钟丹, 吴晨光, 等. 管材和水力条件对三卤甲烷形成的影响[J]. 哈尔滨工业大学学报, 2011, 43(10): 24-28. doi: 10.11918/j.issn.0367-6234.2011.10.005
    [6] YE B, WANG W, YANG L, et al. Factors influencing disinfection by-products formation in drinking water of six cities in China[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 147-152.
    [7] HE G, LI C, DONG F, et al. Chloramines in a pilot-scale water distribution system: Transformation of 17 β-estradiol and formation of disinfection byproducts[J]. Water Research, 2016, 106(1): 41-50.
    [8] ZHANG C, LI C, ZHENG X, et al. Effect of pipe materials on chlorine decay, trihalomethanes formation, and bacterial communities in pilot-scale water distribution systems[J]. International Journal of Environmental Science and Technology, 2017, 14(1): 85-94. doi: 10.1007/s13762-016-1104-2
    [9] LI C, LUO F, DUAN H, et al. Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system[J]. Separation and Purification Technology, 2019, 211(18): 564-570.
    [10] 潘露华, 梁庸, 黄惠燕, 等. 液氯与次氯酸钠生成消毒副产物超标风险评估分析[J]. 城镇供水, 2019(3): 41-47. doi: 10.3969/j.issn.1002-8420.2019.03.010
    [11] 蔡广强, 张金凤, 刘丽君, 等. 南方某市饮用水中氯化消毒副产物超标风险评估[J]. 中国给水排水, 2017, 33(3): 37-41.
    [12] 陈颂, 董文艺, 赵福祥, 等. 我国中小水厂三卤甲烷和卤乙酸的健康风险评价[J]. 中国给水排水, 2019, 35(13): 29-34.
    [13] WEI J, YE B, WANG W, et al. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China[J]. Science of the Total Environment, 2010, 408(20): 4600-4606. doi: 10.1016/j.scitotenv.2010.06.053
    [14] GUILHERME S, RODRIGUEZ M J. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems[J]. Science of the Total Environment, 2015, 518-519(15): 280-289.
    [15] 邱梦雨, 周玲玲, 张永吉. 给水管壁松散沉积物的形成与脱落规律研究[J]. 中国给水排水, 2015, 31(1): 27-31.
    [16] 周玲玲, 张永吉, 叶河秀, 等. 给水管壁松散沉积物的形成机制与控制[J]. 中国给水排水, 2012, 28(2): 31-34.
    [17] 周玲玲, 刘文君, 张永吉. 模拟给水管网中管壁生物膜生成特性[J]. 中国环境科学, 2008, 28(1): 83-86. doi: 10.3321/j.issn:1000-6923.2008.01.018
    [18] YU Y, MA X, CHEN R, et al. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China[J]. Chemosphere, 2019, 228: 101-109. doi: 10.1016/j.chemosphere.2019.04.095
  • 加载中
图( 5) 表( 2)
计量
  • 文章访问数:  4167
  • HTML全文浏览数:  4167
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-15
  • 录用日期:  2020-12-16
  • 刊出日期:  2021-05-10
于影, 陈儒雅, 潘霖霖, 何溢恬, 石宝友. 多水源供水管网中消毒副产物风险分析[J]. 环境工程学报, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
引用本文: 于影, 陈儒雅, 潘霖霖, 何溢恬, 石宝友. 多水源供水管网中消毒副产物风险分析[J]. 环境工程学报, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
YU Ying, CHEN Ruya, PAN Linlin, HE Yitian, SHI Baoyou. Risk analysis of disinfection by-products in multi-source drinking water distribution system[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141
Citation: YU Ying, CHEN Ruya, PAN Linlin, HE Yitian, SHI Baoyou. Risk analysis of disinfection by-products in multi-source drinking water distribution system[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1803-1809. doi: 10.12030/j.cjee202008141

多水源供水管网中消毒副产物风险分析

    通讯作者: 石宝友(1971—),男,博士,研究员。研究方向:饮用水安全输配原理与技术。E-mail:byshi@rcees.ac.cn
    作者简介: 于影(1992—),女,博士研究生。研究方向:饮用水输配过程水质变化。E-mail:yingyu_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07108-002);国家自然科学基金资助项目(51978652,51678558)

摘要: 通过调研北方某大型城市多水源供水格局下管网水中三卤甲烷(THMs)和卤乙酸 (HAAs)这2类消毒副产物(DBPs)的质量浓度水平,对管网中各类DBPs的超标风险、风险点的时空分布及影响因素进行了分析,从确定管网指示性DBPs、检测频率及管网采样点布设3个方面提出了关于管网DBPs风险分析方法的建议。研究结果表明,该市DBPs的超标风险整体较低,而管网中HAAs超标风险明显高于THMs,故可作为管网监测的指示性DBPs。多水源供水管网DBPs的风险相对较高的区域包括:以地下水和地表水为水源的管网混水区域以及管网末端;水温低于20 ℃时,溶解性有机碳(DOC)高于1.7 mg·L−1、且自由性余氯质量浓度高于0.5 mg·L−1的区域;存在因水力条件不稳定和存在管网沉积物而导致浊度波动较大的区域。建议在DBPs相对较高的风险区和风险时间段增加采样频率和采样点的布设。

English Abstract

  • 目前,很多大型城市采用多水源同时供水的模式以应对城市快速发展带来不断增加的需水量。多水源供水在缓解水量供需矛盾的同时可能导致管网水质不稳定,如用户龙头水出现细菌、浊度、总铁等超标,甚至管网“黄水”现象[1]

    水厂处理后的水在进入管网前,通常采用自由氯或自由氯联合氯胺消毒的方式来保证管网输配过程和龙头水的生物安全性,而消毒过程产生的消毒副产物(disinfection byproducts, DBPs)健康风险是饮用水安全的一个重要方面。DBPs不仅在水厂消毒环节生成并发生转化,在管网输配过程中发生的水解、生物降解和氧化还原反应等复杂过程也可显著影响DBPs的生成和转化[2-3]。这主要表现在:一方面,管网中的物理、化学、生物反应过程高度依赖于水质条件,如溶解性有机碳(dissolved organic carbon, DOC)、温度、pH等[4-6];另一方面,管网中的无内衬铁管、铜管及其腐蚀产物也可为DBPs的进一步生成转化提供反应场所和催化介质[7-9]。管网中DBPs风险与管网的特殊环境有很大关系,其类型和时空分布较复杂。

    目前,关于管网DBPs的监测指标选取、监测频率设定和监测点布设等方面尚缺乏足够的科学依据。本研究以我国北方某大城市多水源供水管网为研究对象,系统分析了管网中DBPs的浓度和相对风险,明确了指示性DBPs的种类,通过管网DBPs浓度的时空变化及其与常规水质指标的相关性分析,识别了影响管网DBPs的主要风险因素和管网风险区,并进一步提出了采样频率和采样点布设建议,以期为供水行业管网DBPs风险管控提供参考。

  • 开展调研的北方某大型城市主要有5个供水厂(分别命名为“水厂1”、“水厂2”、“水厂3”、“水厂4”和“水厂5”),水源包括地表水(本地地表水和远距离调水)和地下水。调研过程中分别对各个水厂的出厂水及其供水区域的管网水进行采集,3次采样时间分别在2019年4月、8月和11月,共计175个样品。考虑到尽可能覆盖各水厂供水区域及人口密集区域,采样点以及5个水厂供水范围分布如图1所示(水厂交界处的龙头水的来源会随用水量等因素变化)。其中,水厂1、水厂3、水厂5的水源以地表水为主,水厂2的水源以地下水为主,水厂4的水源以地下水和地表水的混合水源为主。除了水厂1采用次氯酸钠和氯胺消毒以外,其余水厂均采用次氯酸钠消毒。

  • 温度、pH、浊度、溶解氧(DO)、自由余氯浓度和总氯浓度均在采样现场检测。自由余氯浓度和总氯浓度采用N,N-二乙基对苯二胺分光光度法测定。耗氧量(CODMn)和氨氮根据《生活饮用水卫生标准检验方法》(GB/T 5750-2006)进行检测。SO24、Cl、DOC测定之前,水样先经过孔径为0.45 μm聚醚砜膜过滤,然后SO24和Cl采用阴离子色谱法进行检测,DOC采用总有机碳分析仪(TOC-VCPH,岛津,日本)测定。这3个月份中,5个水厂出水的常规指标如表1所示。

    采样时先让龙头水流水5 min,接满5 L水样并加盖密封,尽快运至实验室取2份30 mL水样加入0.15 g抗坏血酸,过0.45 μm聚醚砜膜。卤乙酸(haloacetic acids, HAAs)和三卤甲烷(trihalomethanes, THMs)的测定参考美国环境保护署标准方法(USEPA Standard Methods 551.1和552.3)。样品前处理采用甲基叔丁基醚萃取,HAAs测定还需甲醇酸化处理。采用带电子捕获检测器的气相色谱仪(GC/ECD,GC7890B,美国安捷伦)测定。其中THMs包括三氯甲烷(trichloromethane, TCM)、二氯一溴甲烷(bromodichloromethane, DCBM)、二溴一氯甲烷(chlorodibromomethane, DBCM)和三溴甲烷(tribromomethane, TBM);HAAs包括一氯乙酸(monochloroacetic acid, MCAA)、一溴乙酸(monobromoacetic acid, MBAA)、二氯乙酸(dichloroacetic acid, DCAA)、三氯乙酸(trichloroacetic acid, TCAA)和二溴乙酸(dibromoacetic acid, DBAA)。

    分析过程中进行空白样品、质量控制样品和平行样品的检测。其中,每批检测中空白样品、平行样品和质量控制样品各2个。空白样品未检出待测物质;质量控制样品与标准浓度的相对标准偏差小于10%,9种消毒副产物的平均回收率为104.3%~120.8%;平行样品的相对标准偏差在10%以下。

  • 本研究中,主要检测了出厂水和龙头水中的HAAs和THMs(国际上饮用水标准普遍采用的DBPs)。我国《生活饮用水卫生标准》(GB 5749-2006)(简称“国标”)对HAAs浓度的规定限值为:DCAA ≤50 μg·L−1,TCAA≤100 μg·L−1。国标对THMs的规定限值为:TCM≤60 μg·L−1,DCBM≤60 μg·L−1,DBCM≤100 μg·L−1,TBM≤100 μg·L−1;TCM、DCBM、DBCM和TBM检测值与相应的标准值比例之和不超过1。

    管网水中HAAs和THMs的浓度如图2所示。4月、8月和11月的总HAAs平均质量浓度分别是32.31、13.90和42.97 μg·L−1;4月、8月和11月的总THMs的平均质量浓度分别是23.38、19.77、和21.61 μg·L−1。对龙头水中各类DBPs进行达标分析发现,尽管各水厂供水范围内管网THMs和HAAs在时空分布上有明显差异,但达标率均为100%,表明该市DBPs的超标风险整体处于较低水平。

    本研究依据国标中规定的THMs和HAAs质量浓度限值提出风险分级分析方法。基于国标中DBPs限值并参考相关文献,可将DBPs的超标风险分为3个等级:大于或等于现行国标限值属于一级风险;小于现行国标限值但大于现行国标限值的60%属于二级风险;小于或等于现行国标限值的60%,但大于现行国标限值的30%属于三级风险;小于或等于现行国标限值的30%属于低风险[10-11]。各DBPs的风险控制值如表2所示。

    表2可看出,有3个月份管网中的THMs质量浓度都属于三级风险以下,4月和8月管网水中DCAA和TCAA浓度均属于三级风险以下,但11月有7.5%的管网水样DCAA浓度属于二级风险。虽然调研的出厂水中消毒副产物导致的经口致癌风险和非致癌健康风险均在美国环境保护署(USEPA)规定的可接受风险水平,但HAAs的致癌风险较THMs更高[12]

    综上所述,从质量浓度水平和健康风险来看,管网中的HAAs和THMs均处于较低风险水平,但HAAs的风险高于THMs,是DBPs的主要组成成分,因此,应将HAAs作为管网指示性DBPs重点关注。

  • 第2.1节中的分析表明,3个月份的管网水中THMs质量浓度变化不大,但HAAs质量浓度有较大变化。8月的龙头水中THMs质量浓度高于HAAs,而11月时HAAs质量浓度明显高于THMs。对比管网中5种HAAs的质量浓度可知,HAAs质量浓度在温度较低的11月相对较高,其中主要组分是DCAA和TCAA。HAAs的变化趋势可从两方面解释:一方面是由于夏季降雨量高,占全年的85%,导致水源水中的有机物浓度降低,8月水厂1、水厂3和水厂4的DOC均比11月低;另一方面是因为,在不增加消毒剂用量时,输配过程的高温条件会加速自由性余氯的消耗,从而减缓DBPs形成,促进DBPs(特别是HAAs)的生物降解[13]。根据所建立的超标风险等级划分标准,11月7.5%的DCAA超标风险属于二级风险,因此,应在温度较低时(水温在20 ℃以下)增加采样监测频率,以便更准确地判断风险状况。

    管网中的DBPs质量浓度除了随时间变化外,也随空间发生变化。图3展示了4月和11月HAAs质量浓度在管网中的分布。水厂3和水厂4的供水交叉区域中HAAs质量浓度高于这2个水厂出水中HAAs的质量浓度;4月HAAs质量浓度最高点在水厂3与水厂4的交叉区域;11月水厂3和水厂4的供水交叉区域中HAAs的质量浓度也处于较高水平;水力学分析和经验表明,这些区域是以地下水与地表水为水源的管网水混水区域。经分析还发现,11月水厂4的出厂水中DOC为2.21 mg·L−1,自由余氯质量浓度为0.82 mg·L−1,水厂3出厂水DOC为3.12 mg·L−1,自由余氯质量浓度是0.66 mg·L−1,据此可推测,当2个水厂的出水在管网中混合以后,水厂4供水中较高的自由余氯与水厂3供水中未反应完全的有机物又继续反应生成了新的HAAs。而水厂1、水厂2和水厂5的出厂水中DOC分别是2.23、0.63和1.9 mg·L−1,自由性余氯质量浓度分别是0.49、0.65和0.51 mg·L−1。由此可见,以地下水为水源的水厂2出水中自由性余氯的质量浓度低于水厂4,且其余2个地表水为水源的水厂1和水厂5出厂水DOC也低于水厂3,所以,交叉区域HAAs质量浓度升高的并不明显。因此,在环状管网地下水源与地表水源交叉区域,应避免高自由余氯与高有机物的混合导致消毒副产物的二次生成。

    图4是11月管网中THMs的质量浓度分布。与HAAs质量浓度分布不同的是,管网THMs质量浓度较大的点多分布在离水厂较远的地方,说明这类DBPs风险区出现在管网末端,这与文献[14]报道结果一致。这可能是由于THMs在输配过程中不易转化和生物降解,随着输配距离的增加,三卤甲烷前体物与消毒剂持续反应,在管网末端其浓度不断升高。

  • 针对管网HAAs比THMs风险相对较高这一情况,对主要水质指标与HAAs质量浓度进行了相关性分析。DOC、总氯和浊度都与HAAs质量浓度之间存在正相关关系,皮尔森相关系数分别为0.186、0.244和0.344,温度与HAAs之间存在显著负相关关系,皮尔森相关系数为−0.578。

    HAAs浓度与DOC、温度、消毒剂之间的关系如图5所示。浓度较高的点集中在温度低于20 ℃、DOC大于1.7 mg·L−1、且总氯质量浓度高于0.6 mg·L−1的范围内。值得注意的是,该市水厂有使用自由氯和先自由氯后转氯胺2种消毒方式,而且组成总氯的化合性余氯和自由性余氯在饮用水消毒过程中产生常规DBPs的质量浓度有很大差别。相关分析结果表明,自由性余氯会比化合性余氯产生更多氯代消毒副产物,以11月温度低于20 ℃和DOC高于1.7 mg·L−1的龙头水为例,自由性余氯和化合性余氯的质量浓度与THMs和HAAs质量浓度之和相关性分别是0.513(p=0.000)和0.102(p=0.502)。图5(b)显示了11月管网水的自由性余氯和化合性余氯浓度占比情况。对比图3(b)可知,11月HAAs质量浓度较高的点与总氯质量浓度较高且以自由性余氯为主的采样点几乎重合。当HAAs质量浓度超过60 μg·L−1时,有82%的管网水中自由性余氯质量浓度超过0.5 mg·L−1。因此,风险点大部分集中在温度低于20 ℃、DOC大于1.7 mg·L−1、自由性余氯高于0.5 mg·L−1的范围内。

    相关性分析结果表明,管网水浊度对DBPs也有一定影响。11月和8月管网平均浊度分别是0.20 NTU和0.26 NTU,差别不大;但比较HAAs风险点的平均浊度发现,11月平均浊度(0.35 NTU)较8月平均浊度(0.16 NTU)明显增加。这表明11月管网HAAs质量浓度的增加可能是由于沉积物释放进入水体导致浊度升高,同时,吸附在沉积物上的HAAs再次释放进入管网水中。这一现象与文献[15-18]报道的管网冲洗过程中DBPs质量浓度增高的现象一致。

  • 1)该市管网水中THMs和HAAs均处于相对较低的风险,但是HAAs的风险较THMs高,可将HAAs作为管网指示性DBPs,重点进行关注。HAAs的质量浓度与水温显著相关,当水温低于20 ℃时,应该增加DBPs的监测频率。

    2)该市多水源供水管网区域的风险特征为:以地下水与地表水为水源的管网水混水区域和管网末端;水温低于20 ℃时,DOC高于1.7 mg·L−1、且自由性余氯的质量浓度高于0.5 mg·L−1的区域;存在因水力条件不稳定和存在管网沉积物而导致浊度波动较大的区域

    3)建议供水行业针对管网DBPs风险分析时,应先针对管网中各类DBPs的质量浓度水平确定指示性DBPs给予重点关注;然后根据管网DBPs全年浓度变化,对浓度较高时间段进行高频率检测;同时,根据空间分布特征识别出DBPs的风险区,增加采样点的布设。

参考文献 (18)

返回顶部

目录

/

返回文章
返回