-
地下水循环井 (groundwater circulation well,GCW) 是一种地下水原位修复技术,其原理是通过井内曝气或者抽注水在循环井周围形成循环流场,将一定范围内的污染物捕获进循环井并去除,主要用于挥发性和半挥发性有机污染的修复工作,是在原位空气扰动 (air sparging,AS) 技术和抽出处理 (pump & treat,P&T) 技术上的改进[1-2]。循环井技术有效避免了传统抽出处理技术能耗高、扰动大的缺陷,同时不局限于复杂多样、难以控制的含水层性质,为传统地下水原位修复开辟了新思路[3-4]。
循环井在1974年首次由Raymond博士提出并应用于场地研究[5]。自20世纪90年代起美国等发达国家将地下水循环井技术应用于污染场地的原位修复,包括三氯乙烯等挥发性污染物污染场地[6-7]。LAKHWALA等[8]在纽约州北部的一个超级基金场址运行了GCW系统,对同时受到氯化和非氯化有机化合物混合物影响的土壤和地下水进行原位修复,污染物浓度平均分别减少了52%和88%。BLANFORD等[9]使用羟丙基-β-环糊精作为表面活性剂来增强GCW对低溶解度有机污染物的去除,运行后将三氯乙烯的去除效率提升至94%。随着循环井技术的不断发展进步,研究人员发现抽注水驱动的循环井比曝气驱动的循环井的影响半径更大,更适合大范围的污染修复与水流控制,但抽注水循环井技术同样存在修复后期污染物拖尾的问题。白静等[10]通过二维砂箱实验模拟循环井对硝基苯的去除,结果表明循环井对硝基苯的去除经历了快速去除-波动去除-浓度拖尾这3个阶段,在14 h内污染物平均浓度从247.0 mg·L−1降低到了157.1 mg·L−1,去除率为63.6%。WANG等[11]通过纳米CaO2联合O3强化循环井修复土霉素污染的地下水研究中发现,由于被土壤吸附的污染物发生解吸,处理过程出现了污染物浓度升高和拖尾现象。
有机污染物的挥发性、溶解性等对其生物降解及富集行为是一个重要的理化参数[12]。同时污染物的密度、粘度和饱和蒸汽压对其迁移转化和气液相平衡也是很关键的参数[13]。研究表明循环井技术对溶解度高、挥发性强的污染物有很好的修复效果,而对难挥发、低溶解性的有机污染物修复效果较差[14]。目前循环井的研究主要关注循环井的影响半径、抽注水流量、循环井结构等对修复过程的影响[15-16],尚缺乏循环井运行过程中多相污染物在地下环境中迁移转化规律的研究。因此针对地下水中有机污染溶解相、挥发相以及吸附相共存的现状,研究循环井运行过程中污染物的相态转化与迁移规律至关重要[17]。
基于此,本研究以地下水中常见的苯胺、苯酚、氯苯和苯四种苯系污染物为研究对象,其中苯酚与苯胺挥发性较弱,苯与氯苯挥发性较强,并且几种污染物在水中的溶解性也有很大差异[18-19]。通过室内砂箱实验研究几种污染物在循环井运行过程中挥发相、溶解相和吸附相的含量变化,并通过不同相态之间的含量变化分析在运行过程中污染物相态之间的转化规律,为实际修复场地提供参考。
循环井水力激发下多相污染物的迁移转化规律
Migration and transformation of multiphase contaminant under hydraulic excitation by circulation well
-
摘要: 利用二维砂箱模拟实验,以苯、氯苯、苯胺和苯酚4种溶解性和挥发性不同的有机污染物为研究对象,分析循环井运行过程中溶解相、吸附相、挥发相的浓度变化,探究循环井水力激发下多相污染物的迁移转化规律。结果表明,循环井的水力激发直接作用于溶解相且污染物浓度呈指数衰减的规律,运行96 h后溶解相苯、氯苯、苯胺和苯酚的去除率为93.8%、89.9%、99.8%和95.0%。而吸附相和挥发相的污染物在浓度梯度的作用下迁移转化进入溶解相,再通过循环井的水力激发作用被去除。其中吸附相的迁移转化与污染物的溶解性有关,修复后苯、氯苯、苯胺、苯酚吸附相占比相对初始含量分别降低了56.1%、71.2%、21.1%、76.4%。而挥发相的迁移转化与污染物的挥发性有关,修复后氯苯和苯去除率为16.1%和15.7%。对比可知循环井的水力激发作用对溶解相的污染物具有最好的去除效果,其次是吸附相,挥发相最差。本研究成果可为循环井的场地修复设计提供参考。Abstract: Benzene, chlorobenzene, aniline and phenol with different soluble and volatile properties were taken as the target contaminant in a two-dimensional sandbox simulation experiment to analyze the concentration variations of dissolved phase, adsorbed phase and volatile phase during the operation of circulation well, and explore the migration and transformation rule of multiphase contaminants under the hydraulic excitation of circulation well. The results showed that the hydraulic excitation of the circulation well acted directly on the dissolved phase and the contaminant concentration decreased exponentially. After 96 h operation, the removal rates of dissolved benzene, chlorobenzene, aniline and phenol were 93.8%, 89.9%, 99.8% and 95.0%, respectively. The adsorbed phase and volatile phase contaminants are transferred and transformed into dissolved phase under the action of concentration gradient, and then removed by the hydraulic excitation of circulation well. The migration and transformation of adsorbed phase was related to the solubility of contaminants, and the adsorbed phase proportion of benzene, chlorobenzene, aniline and phenol decreased by 56.1%, 71.2%, 21.1% and 76.4% compared with the initial content, respectively. The migration and transformation of volatile phase was related to the volatility of contaminants and the removal rates of volatile chlorobenzene and benzene were only 16.1% and 15.7%. The comparison results showed that the hydraulic excitation of circulation well has the best removal effect on dissolved phase, followed by adsorbed phase, and the worst removal effect on volatile phase. This study can provide reference for site remediation design of circulation well .
-
-
[1] FENG S, CHENG D, ZHAN H, et al. Evolution characteristics of remediation process of secondary contaminant sources of low-permeability lens driven by circulating well[J]. Journal of Hydrology, 2022, 613(Part A): 128408. [2] WANG P, LI J, AN P, et al. Enhanced delivery of remedial reagents in low-permeability aquifers through coupling with groundwater circulation well[J]. Journal of Hydrology, 2023, 618: 129260. doi: 10.1016/j.jhydrol.2023.129260 [3] ZHAO Y, QU D, ZHOU R, et al. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells[J]. Enviromental Science and Pollution Research, 2016, 23(12): 11568-11573. doi: 10.1007/s11356-016-6737-7 [4] ELMORE A C, GRAFF T. Best available treatment technologies applied to groundwater circulation wells[J]. Remediation Journal, 2002, 12(3): 63-80. doi: 10.1002/rem.10034 [5] 蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86. [6] GOLTZ M N, GANDHI R K, GORELICK S M, et al. Field evaluation of in situ source reduction of trichloroethylene in groundwater using bioenhanced in-well vapor stripping[J]. Environmental Science & Technology, 2005, 39(22): 8963-8970. [7] MCCARTY P L, GOLTZ M N, HOPKINS G D, et al. Full scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection[J]. Environmental Science & Technology, 1998, 32(1): 88-100. [8] FAYAZ S. LAKHWALA J G M, AND RICHARD J. DESROSIERS. Demonstration of a microbiologically enhanced vertical groundwater circulation well technology at a superfund site[J]. Ground Water Monitoring and Remedaition, 1998, 18(2): 97-106. doi: 10.1111/j.1745-6592.1998.tb00620.x [9] BLANFORD W J, BARACKRNAN M L, BOING T B, et al. Cyclodextrin-enhanced vertical flushing of a trichloroethene contaminated aquifer[J]. Ground Water Monitoring and Remedaition, 2001, 21(1): 58-66. doi: 10.1111/j.1745-6592.2001.tb00631.x [10] 白静, 赵勇胜, 孙超, 等. 地下水循环井技术修复硝基苯污染含水层效果模拟[J]. 环境科学, 2014, 35(10): 3775-3781. [11] WANG X, ZHANG L, HAN C, et al. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone[J]. Scientific Reports, 2023, 13(1): 9136. doi: 10.1038/s41598-023-36310-1 [12] LUN R, SHIU W-Y, MACKAY D. Aqueous solubilities and octanol-water partition coefficients of chloroveratroles and chloroanisoles[J]. Journal of Chemical & Engineering Data, 2002, 40(4): 959-962. [13] 杨金杯, 许秋菊, 俞舒月, 等. 2, 5-二氯氟苯密度、黏度以及饱和蒸汽压测定与关联[J]. 化学工程, 2020, 48(7): 53-58. [14] 屈智慧, 王洪涛, 杨勇, 等. 循环井技术修复地下水氯苯污染的效果研究[J]. 化学工程师, 2016, 30(11): 29-32+19. [15] CHEN J S, JANG C S, CHENG C T, et al. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field[J]. Journal of Hydrology, 2010, 390(3-4): 155-168. doi: 10.1016/j.jhydrol.2010.06.035 [16] ELMORE A C, HELLMAN J B. Model-predicted groundwater circulation well performance[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2001, 5(4): 203-210. doi: 10.1061/(ASCE)1090-025X(2001)5:4(203) [17] CHIOU C T, KILE D E. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter[J]. Environmental Science & Technology, 1994, 28(6): 1139-1144. [18] SCHMIDT T C, KLEINERT P, STENGEL C, et al. Polar Fuel Constituents: Compound Identification and Equilibrium Partitioning between Nonaqueous Phase Liquids and Water[J]. Environmental Science & Technology, 2002, 36(19): 4074-4080. [19] LI M, CHEN Q, YANG L, et al. Contaminant characterization at pesticide production sites in the Yangtze River Delta: Residue, distribution, and environmental risk[J]. Science of the Total Environment, 2023, 860: 160156. doi: 10.1016/j.scitotenv.2022.160156 [20] LI X, ZHANG J, YANG Z, et al. Simulation of migration law of organic pollutants in circulating wells[J]. Advances in Civil Engineering, 2022, 2022: 1-12. [21] 孟凡勇, 刘锐, 小林刚, 等. 挥发性氯代烃在湿润土壤中的平衡吸附研究[J]. 环境科学, 2012, 33(4): 1361-1368. [22] JORGENSEN W L, DUFFY E M. Prediction of drug solubility from Monte Carlo simulations[J]. Bioorganic & Medical Chemistry Letters, 2000, 10(11): 1155-1158. [23] MARINA M L, GARCíA M A, PASTOR M, et al. A statistical study of the correlation between k’ or log k’ and log Pow for a group of benzene and naphthalene derivatives in micellar liquid chromatography using a C-18 column[J]. Chromatographia, 1995, 40(3-4): 185-192. doi: 10.1007/BF02272169 [24] 唐自强, 堵锡华, 冯长君, 等. 价连接性指数与卤代苯、酯的溶解度及辛醇/水分配系数定量关系的研究[J]. 上海大学学报(自然科学版), 2003(3): 266-270. [25] GUO Y G, ZHANG J, LIU D N, et al. Determination of n-octanol-water partition coefficients by hollow-fiber membrane solvent microextraction coupled with HPLC[J]. Analytical and Bioanalytical Chemistry, 2006, 386(7-8): 2193-2198. doi: 10.1007/s00216-006-0868-5 [26] 宋斌. 酚类化合物水溶性及正辛醇/水分配系数的测定与研究[D]. 青岛科技大学, 2011.