-
饮用水安全与人类健康密切相关[1],随着经济的发展与生活水平的不断提高,饮用水安全问题受到人们的广泛关注[2-3]。有研究表明,部分地区饮用水中含有多种微污染物,包括消毒副产物(disinfection by-products, DBPs)[4-5]、药品及个人护理品(pharmaceutical and personal care products, PPCPs)[6-9]、内分泌干扰物(endocrine disrupting chemicals, EDCs)[10-12]等。如WANG等研究发现饮用水源中抗生素质量浓度能够达到364~580 ng·L−1 [6]。此外,多地自来水厂出水中卤代甲烷、卤乙酸等DBPs的含量超标[13-14]。这些微污染物即使在低浓度下也会对人体健康和生态环境造成危害,长期饮用含有这些微污染物的饮用水有致癌、致畸、致突变等潜在危害[12, 15-18]。因此对饮用水进行深度处理具有重要意义。
吸附是一种常用的饮用水深度处理技术[8, 17-18]。活性炭是一种常用吸附剂,被广泛应用于饮用水处理中[15-16]。但活性炭对有些污染物吸附能力较差,有研究表明,多种市售活性炭对DBPs的吸附容量仅有7.4~98.8 µg·g−1 [19],这使得活性炭的使用寿命较低。市售活性炭滤芯的建议寿命一般为3~9个月,但有调查显示66.7%的家用净水器中的活性炭滤芯未能及时更换[20]。这些滤芯在长时间使用情况下无法有效去除饮用水中的微污染物,危害人体健康。因此,设法延长活性炭滤芯的使用寿命受到人们的关注。
电吸附技术是通过施加电场使水中带电物质在电场作用下向带相反电荷的电极(吸附剂)表面移动,形成双电层[6, 21],实现吸附质在吸附剂上的富集,从而去除水中污染物。通过施加外电场,可以增强吸附过程中吸附剂与吸附质之间的静电吸引力,使吸附过程的吸附速率与吸附容量大幅提升,进而延长吸附剂的使用寿命[22-23]。如LI等[21]制备了碳纳米管电极,在0.6 V电压下全氟烷酸化合物的初始吸附速率相比不加电的条件下提高了41~60倍,最大吸附容量相比不加电下提高了50~94倍。WANG等[6]发现在外加电压辅助下活性炭纤维对3种抗生素的吸附容量能达到不加电下的约5倍。HAN等[24]考察了0.6 V外加电压对活性炭纤维(ACF)吸附苯胺性能的影响,结果表明,ACF对苯胺的最大吸附容量比不加电时提升了约3倍。YU等[22]制备了氧化石墨烯/聚吡咯修饰的多孔铜镍泡沫电极并发现电辅助下该电极对罗丹明B的吸附能力对比不加电时提高了1.8倍。由此可见,在活性炭滤芯上施加电压,通过电增强的方法有望提高活性炭滤芯的吸附速率与吸附容量,延长滤芯的使用寿命。
本研究从10种市售活性炭滤芯中筛选出比表面积大、导电性良好的电吸附滤芯,考察了电增强对这些活性炭滤芯吸附饮用水中3种典型微污染物二氯乙酸(dichloroacetic acid, DCAA)、左氧氟沙星(levofloxacin, LVFX)和环丙沙星(ciprofloxacin, CIP)效果的影响。其中,DCAA是一种饮用水中常见的含氯消毒副产物,过量摄入对人体具有致癌作用[25-26],在《生活饮用水卫生标准》(GB 5749-2022)中的限值为50 µg·L−1;LVFX和CIP是饮用水源中常被检出的氟喹诺酮类抗生素[6, 8],在2023年施行的《重点管控新污染物清单(2023年版)》中被列入了重点管控范围。通过测试活性炭滤芯在不同电压下对3种微污染物的吸附动力学与吸附等温线,研究外加电压对活性炭滤芯吸附3种微污染物的影响,并进一步考察活性炭滤芯在流动态下对水中DCAA的电增强吸附效果,测定出水水质与处理水量,评估其在饮用水处理中的应用前景。
电增强活性炭滤芯吸附去除水中微污染物
Electrochemically assisted adsorption and removal of micropollutants in water on activated carbon filter
-
摘要: 选取了10种市售活性炭滤芯并测试其相关理化性质,筛选出比表面积高、导电性好的滤芯用于电增强吸附二氯乙酸(DCAA)、左氧氟沙星(LVFX)和环丙沙星(CIP) 3种典型饮用水中的微污染物。3种污染物的电增强吸附符合二级动力学模型,电增强活性炭滤芯吸附DCAA、LVFX和CIP的最佳初始吸附速率v0分别达到12.4 mg·(g·h)−1 (2 V)、45.3 mg·(g·h)−1 (−2 V)和93.1 mg·(g·h)−1 (−2 V),相比不加电情况下提高了1.2~1.7倍;3种污染物的电增强吸附等温线符合Langmuir模型,电辅助下DCAA、LVFX和CIP的最大吸附容量qm可达到26.3 mg·g−1 (2 V)、207.9 mg·g−1 (−2 V)和106.1 mg·g−1 (−2 V),相比于不加电时提升了1.2~3.2倍。在流动态吸附实验中,活性炭滤芯在电增强吸附下的出水的DCAA质量浓度比不加电时更低,出水水质更佳。电增强吸附下的处理水量达到1 300床体积,比不加电条件下提升了2.2倍。以上研究结果表明活性炭滤芯的电增强吸附在饮用水深度处理中有着较好的应用前景。Abstract: In this study, 10 kinds of commercial activated carbon filters were selected and their relevant physicochemical properties were tested. The filters with high specific surface area and good electrical conductivity were selected for the electrochemically assisted adsorption of three types of typical micropollutants in drinking water of dichloroacetic acid (DCAA), levofloxacin (LVFX) and ciprofloxacin (CIP). The adsorption kinetic curves of 3 types of pollutants under electrochemical assistance were consistent with the pseudo second-order model. The optimal initial adsorption rates v0 for DCAA, LVFX and CIP reached 12.4 mg·g−1·h−1 (2.0 V), 45.3 mg·g−1·h−1 (−2.0 V) and 93.1 mg·g−1·h−1 (−2.0 V), respectively, which were 1.2~1.7 times higher than those without electrochemical assistance. The electrochemically assisted adsorption isotherms of three types of pollutants were well fitted by the Langmuir model. The maximum adsorption capacities qm of DCAA, LVFX and CIP under electrochemical assistance could reach 26.3 mg·g−1 (2.0 V), 207.9 mg·g−1 (−2.0 V), and 106.1 mg·g−1 (−2.0 V), respectively, which were enhanced by 1.2~3.2 times compared with those without electrochemical assistance. In the flow-mode of adsorption experiment, the DCAA concentration of the effluent under electrochemical assistance was lower than that without electricity, presenting a better effluent quality. The treated water quantity under electrically enhanced adsorption reached 1 300 bed volumes, which was a 2.2-fold improvement over that without electrochemical assistance. The study demonstrates that the electrochemically assisted adsorption of activated carbon filter is promising in the advanced treatment of drinking water.
-
Key words:
- activated carbon filters /
- electrochemical assistance /
- adsorption /
- micropollutants
-
表 1 活性炭滤芯的基本性质
Table 1. Basic properties of activated carbon filter element
编号 种类 比表面积/(m2·g−1) BET平均孔径/nm 电导率/(S·m−1) 密度/(g·cm−3) 压缩强度/MPa 过滤精度/µm 1 椰壳炭 31.0 7.6 1.6 0.8 3.2 47.6 2 椰壳炭 441.0 2.8 14.7 0.6 5.1 6.1 3 椰壳炭 179.0 4.4 3.2 0.7 3.2 89.8 4 椰壳炭 720.0 1.4 0.4 0.6 6.3 20.3 5 椰壳炭 341.9 1.6 3.7 0.7 9.2 10.0 6 果木炭 144.7 2.3 32.2 0.7 6.7 7.3 7 椰壳炭 36.3 3.9 1.4 0.7 2.1 62.1 8 椰壳炭 495.3 1.4 2.0 0.6 1.8 80.6 9 椰壳炭 603.6 1.5 4.1 0.6 2.2 27.3 10 椰壳炭 22.3 4.5 1.4 0.8 2.8 67.8 表 2 3种污染物基本理化性质
Table 2. Physical and chemical properties of three types of pollutants
污染物 结构式 相对分子质量/Da 溶解度/(mg·L−1) pKa 二氯乙酸(DCAA) 128.9 1 000 000 1.26 左氧氟沙星(LVFX) 361.4 1 120 pKa1=6.25
pKa2=8.20环丙沙星(CIP) 331.3 <1 000 pKa1=3.01
pKa2=6.14
pKa3=8.70
pKa4=10.58表 3 DCAA、LVFX和CIP的吸附动力学参数
Table 3. Adsorption kinetic parameters of DCAA, LVFX and CIP
污染物 电压/V 准一级动力学参数 准二级动力学参数 qe/(mg·g−1) k1/h−1 R2 qe/(mg·g−1) k2/(g·(mg·h)−1) v0/(mg·(g·h)−1) R2 DCAA 2.0 11.4 1.5 0.921 12.1 0.09 12.4 0.975 1.5 10.1 1.3 0.933 10.9 0.07 8.7 0.978 1.0 9.4 1.2 0.942 10.1 0.07 7.6 0.986 0 6.9 1.5 0.918 7.3 0.14 7.5 0.974 −1.0 6.9 1.5 0.939 6.9 0.15 7.0 0.982 LVFX 1.0 54.7 0.9 0.870 58.2 0.009 30.6 0.949 0 54.8 1.2 0.855 60.3 0.011 39.3 0.937 −1.0 57.7 1.3 0.826 63.6 0.011 42.0 0.916 −2.0 91.0 0.7 0.900 100.0 0.004 45.3 0.965 CIP 1.0 73.8 1.3 0.951 78.5 0.010 62.9 0.992 0 73.2 1.3 0.934 77.5 0.011 73.8 0.984 −1.0 77.3 1.5 0.919 81.7 0.011 78.6 0.973 −2.0 84.9 1.5 0.926 89.6 0.013 93.1 0.977 表 4 DCAA、LVFX和CIP吸附等温线模型参数
Table 4. Adsorption isotherm model parameters of DCAA, LVFX and CIP
污染物 电压/V Langmuir 参数 Freundlich 参数 qm/(mg·g−1) b/(L·mg−1) R2 KF/(mg1-n·Ln·g−1) n R2 DCAA 2.0 26.3 0.2 0.979 7.6 0.3 0.939 1.0 16.2 0.6 0.934 7.6 0.2 0.857 0 8.2 0.5 0.917 5.3 0.1 0.866 −1.0 6.3 0.6 0.967 4.7 0.1 0.766 LVFX 1.0 122.3 0.009 0.998 9.4 0.4 0.974 0 137.6 0.007 0.997 8.2 0.4 0.970 −1.0 195.4 0.006 0.947 6.3 0.5 0.896 −2.0 207.9 0.006 0.924 6.7 0.5 0.880 CIP 1.0 87.4 1.1 0.959 44.9 0.3 0.936 0 88.0 1.2 0.982 46.7 0.3 0.947 −1.0 91.2 1.4 0.986 58.3 0.4 0.985 −2.0 106.1 1.5 0.974 49.9 0.3 0.975 -
[1] SALEHI M. Global water shortage and potable water safety: Today’s concern and tomorrow’s crisis[J]. Environment International, 2022, 106936: 158-165. [2] JIANG J, HAN J, ZHANG X. Nonhalogenated aromatic DBPs in drinking water chlorination: A gap between nom and halogenated aromatic DBPs[J]. Environmental Science & Technology, 2020, 54(3): 1646-1656. [3] HAN J, ZHANG X, JIANG J, et al. How much of the total organic halogen and developmental toxicity of chlorinated drinking water might be attributed to aromatic halogenated DBPs?[J]. Environmental Science & Technology, 2021, 55(9): 5906-5916. [4] 郭亚萍, 全燮, 陈硕, 等. 水中氯仿的活性炭电增强吸附特性[J]. 环境科学学报, 2003, 23(1): 84-87. doi: 10.3321/j.issn:0253-2468.2003.01.017 [5] LIU D Y, WANG X M, XIE Y F, et al. Effect of capacitive deionization on disinfection by-product precursors[J]. Science of the Total Environment, 2016, 568: 19-25. doi: 10.1016/j.scitotenv.2016.05.219 [6] WANG S T, LI X N, ZHAO N M, et al. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes[J]. Water Research, 2018, 134: 162-169. doi: 10.1016/j.watres.2018.01.068 [7] ZHAO W, JIA B, ZHANG Y, et al. Study on electro-sorption of heavy metals and sulfamethoxazole on activated carbon fibers[J]. Journal of Electrochemistry, 2019, 25(6): 669-681. [8] XIANG Y X, Z. WEI, Y. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138. [9] HUANG Q, DENG S B, SHAN D N, et al. Enhanced adsorption of diclofenac sodium on the carbon nanotubes-polytetrafluorethylene electrode and subsequent degradation by electro-peroxone treatment[J]. Journal of Colloid and Interface Science, 2017, 488: 142-148. doi: 10.1016/j.jcis.2016.11.001 [10] DAVOUD B, FERFOS K M, SEUNG M L , et al. Adsorption of bisphenol A using dried rice husk: Equilibrium, kinetic and thermodynamic studies[J]. Applied Chemistry for Engineering, 2019, 30(3): 316-323. [11] DONG Y, WU D, CHEN X, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite[J]. Journal of Colloid and Interface Science, 2010, 348(2): 585-590. doi: 10.1016/j.jcis.2010.04.074 [12] LIU G F, MA J, LI X C, et al. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1275-1280. doi: 10.1016/j.jhazmat.2008.09.038 [13] 蔡婧. 石河子市饮用水中消毒副产物的污染水平研究及风险评估[D]. 石河子: 石河子大学, 2018. [14] 栗旸, 李建云, 张旭辉, 等. 云南省k市水厂出厂水中卤乙酸的健康风险评估[J]. 实用预防医学, 2021, 28(5): 577-580. doi: 10.3969/j.issn.1006-3110.2021.05.010 [15] ANIA C O, BEGUIN F. Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions[J]. Water Research, 2007, 41(15): 3372-3380. doi: 10.1016/j.watres.2007.03.031 [16] CHOI K J, KIM S G, KIM C W, et al. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: Amitrol, nonylphenol, and bisphenol-A[J]. Chemosphere, 2005, 58(11): 1535-1545. doi: 10.1016/j.chemosphere.2004.11.080 [17] HU X, JIA L, CHENG J, et al. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: Preparation, characterization and adsorption mechanism[J]. Journal of Hazardous Materials, 2019, 362: 1-8. doi: 10.1016/j.jhazmat.2018.09.003 [18] GUILLOSSOU R, LE R J, MAILLER R, et al. Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption[J]. Water Research, 2020, 172: 115487. doi: 10.1016/j.watres.2020.115487 [19] 贺斯佳, 张硕, 孙昊, 等. 活性炭吸附饮用水中三卤甲烷的实验研究[J]. 浙江大学学报(理学版), 2022, 49: 489-497. [20] 王科霖, 刘洋洋, 姜仔璇, 等. 2020年烟台高新区城乡居民生活饮用水卫生监测结果分析[J]. 分析检测, 2021, 54(7): 197-199. [21] LI X N, CHEN S, QUAN X, et al. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance[J]. Environmental Science & Technology, 2011, 45(19): 8498-8505. [22] YU H B, CHE M, ZHAO B, et al. Enhanced electrosorption of rhodamine b over porous copper-nickel foam electrodes modified with graphene oxide/polypyrrole[J]. Synthetic Metals, 2020: 262-270. [23] LI N, YANG S, CHEN J, et al. Electro-adsorption of tetracycline from aqueous solution by carbonized pomelo peel and composite with aniline[J]. Applied Surface Science, 2016, 386: 460-466. doi: 10.1016/j.apsusc.2016.05.173 [24] HAN Y H, QUAN X, CHEN S, et al. Electro-chemically enhanced adsorption of aniline on activated carbon fibers[J]. Separation and Purification Technology, 2006, 50: 365-372. doi: 10.1016/j.seppur.2005.12.011 [25] JIANG J, ZHANG X, ZHU X, et al. Removal of intermediate aromatic halogenated DBPs by activated carbon adsorption: A new approach to controlling halogenated DBPs in chlorinated drinking water[J]. Environmental Science & Technology, 2017, 51(6): 3435-3444. [26] LIU J, ZHANG X. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones[J]. Water Research, 2014, 65: 64-72. doi: 10.1016/j.watres.2014.07.024 [27] QU J, WANG Y, TIAN X, et al. Koh-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration[J]. Journal of Hazardous Materials, 2021, 401: 123292. doi: 10.1016/j.jhazmat.2020.123292