Processing math: 100%

基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷

常安刚, 朱振东, 张祯. 基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷[J]. 环境工程学报, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
引用本文: 常安刚, 朱振东, 张祯. 基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷[J]. 环境工程学报, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
CHANG Angang, ZHU Zhendong, ZHANG Zhen. Determination of mercury and arsenic in soils and sediments using aqua regia graphite sealed digestion system based atomic fluorescence spectrometry[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
Citation: CHANG Angang, ZHU Zhendong, ZHANG Zhen. Determination of mercury and arsenic in soils and sediments using aqua regia graphite sealed digestion system based atomic fluorescence spectrometry[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084

基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷

    作者简介: 常安刚 (1985—) ,男,硕士,中级工程师,changangang@aftts.com
    通讯作者: 张祯(1976—),男,博士,教授,zhzhenok@163.com
  • 中图分类号: X830.2

Determination of mercury and arsenic in soils and sediments using aqua regia graphite sealed digestion system based atomic fluorescence spectrometry

    Corresponding author: ZHANG Zhen, zhzhenok@163.com
  • 摘要: 为解决土壤和沉积物样品中的汞、砷前处理中的一些问题,如耗时长、清洗流程复杂及汞污染等,建立了一种基于王水石墨密封消解体系的前处理新方法,结合原子荧光可用于土壤和沉积物中Hg和As的测定。在最优条件下,2种重金属元素测定结果表明,本方法具有较低的相对误差 (Hg, -9.3%~9.3%; As,-7.0%~5.1%) ,较高的加标回收率 (Hg, 93.2%~104.5%; As, 95.9%~103.5%) 。此外,本方法相关性能指标均优于现行标准方法,具有稳定性好、精密度好、准确度高等优点。更重要的是,本方法因采用成本低廉的一次性塑料管,无需消解管清洗,避免了汞的污染。而且,消解过程无需其它操作,消解液用量少,具有操作简单、成本低、无汞污染等优点,可用于大通量土壤和沉积物Hg、As含量的测定。
  • 近几年,臭氧(O3)已成为影响我国环境空气质量的重要因素,其中京津冀及周边地区、长三角地区以O3为首要污染物的超标天数占比已经超过PM2.5[1-3]。研究表明,挥发性有机物(VOCs)可在紫外线照射下与氮氧化物(NOx)发生光化学反应,产生光化学烟雾,光化学烟雾的主要成分为O3[4-5]。因此,作为O3重要前体物的VOCs到研究学者的广泛关注。

    VOCs种类繁多,不同种类的VOCs化学反应活性也不相同,研究VOCs的组成和来源特征对控制O3污染和揭示复合型大气污染的形成都具有重要意义[6]。目前国内关于VOCs的监测和研究主要集中在长江三角洲[7-8]、珠江三角洲[9-10]和京津冀[11-12]等地区。山东半岛相关的研究较少,刘泽常等[13]研究表明,济南市区VOCs的优势组分为C3—C5的烷烃、丙烯、顺-2-丁烯、间/对二甲苯和甲苯等,主要来源为汽车尾气、工业源和燃烧源。薛莲等[14]发现青岛市大气VOCs中烯烃对臭氧的生成贡献远高于烷烃和芳香烃。张桢超[15]发现威海市大气中,C2—C4烯烃类、烷烃类和苯系物对臭氧的生成贡献率较高,VOCs主要来源于机动车排放、工艺过程和溶剂使用。

    泰安市地处山东省中部的泰山南麓,三面环山,属于内陆中小型城市。2016—2017年,泰安市O3最大8 h平均浓度分别为197 μg·m−3和210 μg·m−3,在全省分别排名第二位和第一位。臭氧已成为泰安市夏、秋季节环境空气的首要污染物[16]。了解臭氧前体物VOCs的污染现状及来源对泰安市采取适当措施改善空气质量具有重要意义。

    本研究在泰安市城区建立一个观测站点,采用在线观测法,连续对站点大气中的VOCs进行监测,分析其浓度特征,并利用特征比值和模型分析对VOCs进行来源解析,同时评估其臭氧生成潜势,以期为泰安市大气环境VOCs和O3污染管控提供科学支撑。

    本次观测时间为2018年6月1日—7月11日,可以反应泰安市夏季大气中VOCs的污染特点。监测地点位于泰安市泰山区的山东电力高等专科学校校院内(36.18°N,117.11°E),该观测点是泰安市的国控监测点,周边紧邻交通干线,同时分布着农贸市场、工业区、商业区和居民区,是典型的城市中心站点,观测点位置如图1所示。

    图 1  监测点位图
    Figure 1.  Location of the monitoring site

    NMHCs的观测采用由中国科学院生态环境研究中心自主研发的GC-FID-VOCs在线监测仪24 h连续监测,采样时间分辨率为1 h,毛细管色谱柱型号为OV-1(30 m 柱长× 0.32 mm直径 × 1.0 μm厚度);采样时,通过采样泵以50 mL·min−1的流速将环境气体浓缩至温度为−80 ℃的吸附管中,然后升温加热至100 ℃进行热脱附,保持6 min;同时以5 mL·min−1的N2流速将解吸的样品吹入GC毛细管色谱柱中进行分离,此时将吸附管的温度升高至220 ℃,以60 mL·min−1反吹10 min以清除残留;色谱柱的程序升温如下:初始温度为−60 ℃,保持3 min;以12 ℃·min−1升温至−20 ℃;以6 ℃·min−1升温至30 ℃;以10 ℃·min−1升温至170 ℃,保持2 min;FID检测器的温度为250 ℃,仪器共检测到51种物质,其中包含27种烷烃、9种烯烃和15种芳香烃[16]。醛酮类化合物(OVOCs)的观测采用涂有2,4-二硝基苯肼(DNPH)衍生化试剂的硅胶小柱采集,每2 h采集1个样品,并采用高效液相色谱(HPLC)方法检测,共检测出15种OVOCs。

    为了保证观测数据的有效性和可靠性,GC-FID-VOCs在线监测仪每2 d采用美国环保署认可的Linde SPECTRA Environmental Gases标准气体进行5点校准,校准时相关系数均在0.992—0.995;同时,为了避免一些高反应性的VOCs物种的氧化损失,在采样吸附管的前端连接填充亚硫酸钠的捕集器,用于去除空气中的氧化剂,每2 d更换1次亚硫酸钠捕集器;高效液相色谱每2 d进行曲线校准,每20个样品分析一次校准曲线中间浓度点,每个目标化合物的测定结果与初始浓度值相对偏差≤30%[16-17]。除VOCs的观测外,同时观测环境空气中的CO、SO2和NOx等参数,监测仪器均采用赛默飞世尔科技公司i系列的自动连续检测仪。

    不同城市中大气VOCs的来源各异,VOCs中各组分的浓度水平和化学活性也不同,对大气O3生成的贡献也有差异。臭氧生成潜势(OFP)是用最大增量反应活性方法评估挥发性有机化合物的光化学反应性,并估算臭氧形成过程中单个有机化合物的贡献率[18],计算公式为:

    OFPi=[VOCSi]×MIRi (1)

    式中,OFPi为第i个VOCs物种的臭氧生成潜势,μg·m−3;[VOCsi]表示物种i的环境质量浓度,μg·m−3;MIRi为VOCs第i个物种最大增量反应中臭氧生成系数,可在文献[19]中查出。

    正交矩阵因子分析模型(positive matrix factorization,PMF)作为受体模型,根据长时间序列的受体化学组分数据集进行VOCs来源解析[20]。PMF计算过程中的基本公式为:

    Xij=pk=1gikfkj+eij (2)

    式中,Xij为样本i中污染物j的浓度,×10−9p表示污染源的数量;gik为第k个来源对第i个因子的贡献量,%;fkj为第k个源中第j个组分的分布占比,%;eij为样本残差。PMF模型主要是将目标函数Q最小化[21-22],目标函数Q定义为:

    Q=ni=1mj=1(eijuij)2 (3)

    式中,n为样本个数,m为物种个数;uij表示样本中物种的不确定性。根据PMF5.0指导方法要求,不确定度的计算公式为:

    unc.={(C×RSD)2+(0.5×MDL)2(C>MDL)56MDL(CMDL) (4)

    式中,unc. 表示样本中物种的不确定度;C表示样本中物种的浓度;RSD表示相对标准偏差;MDL表示检出限。

    观测期间采样频率为1 h,VOCs浓度平均值为(16.57±7.99)×10−9(体积分数)。由表1可知,观测期间VOCs浓度水平最高的物种是甲醛(3.18±2.09)×10−9和丙酮(2.02±1.27)×10−9,其次为丙烷(1.71±1.41)×10−9、乙醛(1.39±0.61)×10−9和丁烷(0.92±0.88)×10−9。由图2可以看出,整个监测期间VOCs四大组分浓度顺序依次为:OVOCs(41.9%)> 烷烃(30.8%)> 芳香烃(19.5%) > 烯烃(7.8%)。

    表 1  观测期间主要VOCs物种的浓度和OFP值
    Table 1.  Concentrations and OFP of main VOCs species during the observation period
    序号Serial number平均浓度Average concentration臭氧生成潜势OFP
    组分Species数值(×10−9)Value组分Species数值/(μg·m−3)Value
    1 甲醛 3.18±2.09 甲醛 40.34±26.52
    2 丙酮 2.02±1.27 间/对-二甲苯 20.51±14.96
    3 丙烷 1.71±1.41 乙醛 17.87±7.90
    4 乙醛 1.39±0.61 异戊二烯 15.44±14.10
    5 丁烷 0.92±0.88 间二乙基苯 14.59±11.71
    6 甲苯 0.88±0.67 甲苯 14.52±10.96
    7 异戊烷 0.81±0.43 戊醛 12.10±8.01
    8 苯乙烯 0.72±1.13 正戊烯 11.90±7.36
    9 戊醛 0.62±0.41 丁醛 10.74±2.46
    10 0.60±0.39 间-甲基苯甲醛 10.01±7.20
    11 丁醛 0.56±0.13 邻-二甲苯 8.54±8.36
    12 正戊烯 0.53±0.33 1,2,4-三甲基苯 7.86±4.77
    13 异丁烷 0.50±0.44 1,3,5-三甲基苯 7.77±6.62
    14 异戊二烯 0.48±0.44 对二乙基苯 7.76±5.27
    15 丁烯醛 0.47±0.33 反-2-戊烯 6.15±3.47
    16 乙苯 0.33±0.30 丙烯 5.83±5.59
    17 十二烷 0.32±0.13 苯乙烯 5.77±9.12
    18 戊烷 0.31±0.27 顺-2-丁烯 5.62±3.80
    19 间/对-二甲苯 0.28±0.20 苯甲醛 5.28±2.75
    20 丙醛 0.27±0.14 丙醛 5.02±2.57
     | Show Table
    DownLoad: CSV
    图 2  VOCs各组分浓度占比
    Figure 2.  Concentration ratio of VOCs components

    由于VOCs来源的不同和化学活性的差异,导致VOCs组分浓度的日变化特征也不同,分析VOCs浓度日变化特征是探讨其来源的重要手段之一。图3给出了观测站点大气中烷烃、烯烃、芳香烃和OVOCs的日变化趋势。烷烃、芳香烃和OVOCs日变化趋势较为一致,整体呈现夜间高白天低的变化特征;因为早晚存在较强的人类活动,如城市地区机动车尾气排放等,同时早晚大气较稳定,不利于VOCs的扩散;中午及下午对流强,边界层抬升,有利于污染物的扩散,同时中午和下午太阳辐射强,大气光化学反应活性剧烈,也会消耗一定量的VOCs,造成大气中VOCs的浓度下降。然而,烯烃在白天出现了显著抬升的变化特征,这主要是来自于植物活动排放异戊二烯的重要贡献[23-24],在白天随着太阳辐射的增强,异戊二烯排放量明显增加,在午后达到峰值,16:00以后由于植物活性等影响,其浓度快速下降。

    图 3  VOCs各组分日变化特征
    Figure 3.  Daily variation characteristics of VOCs components

    对于烷烃,由于观测站点靠近蔬菜批发市场,运输车辆工作较早,受交通早高峰影响,在06:00出现峰值,随后太阳辐射增强,光化学反应消耗增加,浓度逐渐降低,在17:00以后,光化学反应消耗停止并随着市内交通晚高峰到来,污染物的浓度逐渐积累。芳香烃和OVOCs相对于烷烃和烯烃峰型规律没那么明显,芳香烃在中午出现了浓度升高的趋势,说明芳香烃类除来源于机动车排放外,还受溶剂挥发和化工企业排放的影响;OVOCs夜晚浓度较高,日出后出现微弱下降,随后缓慢抬升,在正午12:00左右发生快速下降达到最低,而后又快速抬升一直维持到深夜,说明除来自一次排放外,二次贡献生成和区域气象因素对其也有重要影响。

    环境空气中VOCs组分的化学反应活性不同,对O3的形成影响也不同,识别对大气O3贡献较大VOCs物种,对于制定有效的减排控制措施意义重大[25]。由表1可知,观测点观测期间甲醛(40.34±26.52) μg·m−3、间/对-二甲苯(20.51±14.96) μg·m−3、乙醛(17.87±7.90) μg·m−3、异戊二烯(15.44±14.10) μg·m−3和间二乙基苯(14.59±11.71) μg·m−3是OFP值最高的5种VOCs物种。由图4可知,观测期间大气VOCs四大类别对OFP贡献率顺序为:芳香烃(35.6%) > OVOCs(35.5%) > 烯烃(18.5%) > 烷烃(10.5%)。烷烃化合物VOCs浓度占比最高,但化学反应活性低,故对OFP的贡献较小[26-27];烯烃中异戊二烯的浓度水平较高,且所含的碳碳双键化学反应活性强,对OFP的贡献较大,异戊二烯主要来源于植物活动排放,说明植物源对大气中O3的生成有重要贡献[20];芳香烃和OVOCs浓度水平和臭氧生成潜势都较高,因此,控制芳香烃和OVOCs的排放是未来控制泰安市臭氧污染的关键。

    图 4  VOCs各组分对OFP的贡献
    Figure 4.  Contribution of VOCs components to OFP

    VOCs组分中,与·OH具有相似反应速率的的特征污染物之间的比值,可以反映其来源特征。戊烷在环境中主要来源于机动车尾气、天然气排放、燃料和液体汽油挥发,正戊烷(n-pentane)和异戊烷(i-pentane)具有相似的物理和化学性质,异戊烷/正戊烷的值可以初步判断其来源,当比值范围为0.82—0.89时,来源为天然气排放,比值范围为2.20—3.80时,来源为机动车尾气,比值范围在1.50—3.00时为液态汽油排放,比值范围在1.80—4.60时为燃料挥发,比值范围大于4.60时为其他源[28]图5(a)分别给出了异戊烷/正戊烷不同的比值线,可知观测点异戊烷和正戊烷的比值大部分分布在1.80—4.60之间,表明机动车尾气、液态汽油排放和燃料挥发都对其有贡献作用,而天然气排放对戊烷的来源贡献较少,其它源对其来源也有贡献。利用特征比值法分析可以看出异戊烷和正戊烷的比值较为分散,异戊烷和正戊烷的来源复杂,并不是单一来源,特征比值法无法很好的解析其来源。

    图 5  典型物种特征比值
    Figure 5.  Characteristic ratios of typical species

    芳香烃是泰安市大气VOCs中对O3生成贡献最大的物种,苯(benzene)与甲苯(toluene)的比值(B/T)常用来判断芳香烃在环境中的来源,当苯/甲苯值不大于0.20时,判断其来源为工业溶剂,机动车尾气源为0.50—0.60,燃煤源为1.50—2.20,生物质燃烧源比值约为2.50[29]。由图5(b)分别给出了苯/甲苯的不同比值线,可以看出苯和甲苯比值分布在0.20—2.20之间,表明机动车尾气和燃煤源对其有贡献作用,经线性拟合的比值为0.56,与机动车尾气排放比值相近,进一步表明机动车尾气排放对观测点大气VOCs和O3有重要贡献。B/T的值不只受到其来源的影响,还受到大气氧化性的影响,甲苯的光化学反应活性要大于苯,B/T的值相较于异戊烷/正戊烷也更为分散;另一方面B/T的值受风向影响较大,西南风向上有较高的甲苯浓度,表明污染物传输对其比值有影响。

    综上,观测点位于城市中心点,VOCs的来源更为复杂,特征污染物的比值范围较为分散,简单的特征比值法无法准确的解析出污染物的来源,需要与PMF模型解析的结果进行相互印证。

    针对观测点的VOCs数据,选取了来源指示性强和监测数据相对完整VOCs物种输入到PMF模型中,同时将观测的CO、NOx和SO2数据纳入计算,帮助识别排放源,最终共识别出6类因子,各类因子的源成分谱特征如图6所示。

    图 6  观测期间大气VOCs源成分谱图
    Figure 6.  Source composition spectrum of VOCs species during observation period

    第一类因子中甲醛、乙醛和丙酮等OVOCs所占的百分比较高,因此将此类因子归为OVOCs源。第二类因子中,C2—C4烯烃和烷烃为优势组分,C2—C4烯烃和烷烃是LPG和溶剂挥发的关键物种[12,30],因此,将此类因子归为LPG和溶剂挥发源。第三类因子具有高组分的CO和苯,工业燃烧过程中可排放大量的CO,苯也是工业燃烧过程中重要的特征指示物[31],故将此类因子归为工业排放。第四类因子具有高组分的SO2,电厂可排放大量的SO2,因此,将此类因子归为电厂排放。第五类因子的优势组分为苯系物和烷烃,根据之前特征比值分析出异戊烷、正戊烷、苯和甲苯的主要来源都有机动车尾气排放,且C8—C10烷烃是柴油发动机排放尾气的标志[32],因此,将此类因子归为包括汽油车与柴油车的机动车尾气排放。第六类因子的优势组分为异戊二烯,城市中的异戊二烯大部分来源于植物活动排放,另外机动车尾气也会排放一部分排放,但该因子中与机动车尾气相关的其它VOCs物种贡献率都不高,因此将此类因子定义为植物排放源。

    图7为PMF解析出6类VOCs排放源在观测期间对VOCs的相对贡献结果,可以看出,观测期间VOCs最大的排放源为LPG和溶剂挥发源(40.2%),其次分别为OVOCs源(17.8%)、机动车排放(17.4%)、工业排放(11.8%)、植物源(10.5%)和电厂排放(2.3%)。因此,控制燃烧源和工业溶剂排放是控制泰安市夏季VOCs污染的重要途径。

    图 7  观测期间不同源排放对VOCs的贡献率
    Figure 7.  Contribution rate of emissions from different sources to VOCs during the observation period

    (1)观测期间VOCs浓度平均值为(16.57±7.99)×10−9,其中OVOCs占比最高为41.9%,烷烃占比为30.8%,芳香烃为19.5%,烯烃为7.8%。烷烃、芳香烃和OVOCs日变化趋势较为一致,整体呈现夜间高白天低的变化特征,而烯烃受到植物源排放异戊二烯的影响,在白天出现了显著抬升的变化特征。VOCs物种中平均浓度水平最高的前5种是甲醛、丙酮、丙烷、乙醛和丁烷。观测期间大气VOCs四大类别对OFP贡献率顺序为:芳香烃 > OVOCs > 烯烃 > 烷烃,其中甲醛、间/对-二甲苯、乙醛、异戊二烯和间二乙基苯是OFP水平最高的5种VOCs物种。

    (2)观测点VOCs来源解析结果显示,观测期间泰安市VOCs最大的排放源为LPG和溶剂挥发(40.2%),其次分别为OVOCs源(17.8%)、机动车排放(17.4%)、工业排放(11.8%)、植物源(10.5%)和电厂排放(2.3%)。因此,控制LPG和溶剂挥发是控制泰安市夏季VOCs和O3污染的重要途径。

  • 图 1  消解温度对测定土壤中As和Hg浓度的影响

    Figure 1.  The Effect of Digestion Temperature on the Determination of As and Hg in Soil

    图 2  消解液用量对测定土壤中As和Hg浓度的影响

    Figure 2.  The Effect of Digestive Solution Dosage on the Determination of As and Hg in Soil

    图 3  消解时间对测定土壤中As和Hg浓度的影响

    Figure 3.  The Effect of Digestion Time on the Determination of As and Hg in Soil

    图 4  取样量对测定土壤中As和Hg浓度的影响

    Figure 4.  The Effect of Sampling Quantity on the Determination of As and Hg in Soil

    表 1  标准土壤/沉积物样品中Hg、As测定的相对误差,再现性 (n = 30)

    Table 1.  Relative error and reproducibility of Hg and As determination in standard soil/sediment samples

    元素 标准样品编号 标准值/ (mg∙kg−1) 测定值/ (mg∙kg−1) RSD/% 相对误差/% 再现性限/ (mg∙kg−1)
    GSS-24 0.075±0.007 0.075±0.005 6.5 −9.3~9.3 0.005
    GSS-39 0.075±0.004 0.075±0.003 3.4 −5.3~5.3 0.003
    GSS-40 0.081±0.007 0.081±0.004 5.0 −8.6~7.4 0.004
    GSS-24 15.8±0.9 15.7±0.5 2.9 −5.7~5.1 0.5
    GSS-39 12.9±0.9 12.5±0.4 3.6 −7.0~3.9 0.4
    GSS-40 13.1±1 12.9±0.4 3.3 −6.9~3.8 0.4
    元素 标准样品编号 标准值/ (mg∙kg−1) 测定值/ (mg∙kg−1) RSD/% 相对误差/% 再现性限/ (mg∙kg−1)
    GSS-24 0.075±0.007 0.075±0.005 6.5 −9.3~9.3 0.005
    GSS-39 0.075±0.004 0.075±0.003 3.4 −5.3~5.3 0.003
    GSS-40 0.081±0.007 0.081±0.004 5.0 −8.6~7.4 0.004
    GSS-24 15.8±0.9 15.7±0.5 2.9 −5.7~5.1 0.5
    GSS-39 12.9±0.9 12.5±0.4 3.6 −7.0~3.9 0.4
    GSS-40 13.1±1 12.9±0.4 3.3 −6.9~3.8 0.4
    下载: 导出CSV

    表 2  实际样品中Hg、As含量测定及加标回收实验结果 (n=6)

    Table 2.  Results of As and Hg determination in samples and the spiked assays (n=6)

    元素 样品类型 加标前测定结果/(mg∙kg−1) 加标量/(mg∙kg−1) 加标后测定结果/(mg∙kg−1) 平均加标回收率/% RSD/%
    Hg 土壤 0.044±0.003 0.1 0.137±0.007 93.2 5.0
    土壤 0.026±0.003 0.05 0.074±0.004 95.3 5.9
    沉积物 0.066±0.007 0.15 0.223±0.007 104.5 3.1
    As 土壤 10.5±0.5 7.5 17.8±0.3 96.8 1.7
    土壤 14.6±0.3 12.5 27.5±0.8 103.5 2.9
    沉积物 10.8±0.5 10 20.4±0.6 95.9 2.8
    元素 样品类型 加标前测定结果/(mg∙kg−1) 加标量/(mg∙kg−1) 加标后测定结果/(mg∙kg−1) 平均加标回收率/% RSD/%
    Hg 土壤 0.044±0.003 0.1 0.137±0.007 93.2 5.0
    土壤 0.026±0.003 0.05 0.074±0.004 95.3 5.9
    沉积物 0.066±0.007 0.15 0.223±0.007 104.5 3.1
    As 土壤 10.5±0.5 7.5 17.8±0.3 96.8 1.7
    土壤 14.6±0.3 12.5 27.5±0.8 103.5 2.9
    沉积物 10.8±0.5 10 20.4±0.6 95.9 2.8
    下载: 导出CSV

    表 3  本方法与其他测定Hg、As的方法参数比较

    Table 3.  Comparison of the parameters of this method with others for the determination of Hg and As

    元素 方法 消解液用量/ (王水) 消解容器 消解过程 是否需要清洗 相对误差/% RSD/% 参考文献
    Hg 王水石墨密封消解体系 5 mL (1∶1) 塑料管 100 ℃,1.0 h −9.3~9.3 3.4~6.5 本方法
    水浴消解 10 mL (1∶1) 玻璃比色管 100 ℃,2.0 h [5-6]
    微波消解 8 mL 聚四氟乙烯消解罐 100 ℃ 2 min,150 ℃ 3 min,180 ℃ 25 min −12.5~12.5 1.4~11.7 [8]
    石墨消解微敞开体系 6 mL (1∶1) 聚四氟乙烯消化管 150 ℃ 20 min −5.0~8.3 3.2~7.5 [11]
    As 王水石墨密封消解体系 5 mL (1∶1) 塑料管 100 ℃,1.0 h −7.0~5.1 2.9~3.6 本方法
    水浴消解 10 mL (1∶1) 玻璃比色管 100 ℃,2.0 h [4,7]
    微波消解 8 mL 聚四氟乙烯消解罐 100 ℃ 2 min,150 ℃ 3 min,180 ℃ 25 min -7.5~4.7 0.7~8.9 [8]
    石墨消解微敞开体系 6 mL (1∶1) 聚四氟乙烯消化管 150 ℃ 20 min −4.7~2.3 2.9~4.0 [11]
    元素 方法 消解液用量/ (王水) 消解容器 消解过程 是否需要清洗 相对误差/% RSD/% 参考文献
    Hg 王水石墨密封消解体系 5 mL (1∶1) 塑料管 100 ℃,1.0 h −9.3~9.3 3.4~6.5 本方法
    水浴消解 10 mL (1∶1) 玻璃比色管 100 ℃,2.0 h [5-6]
    微波消解 8 mL 聚四氟乙烯消解罐 100 ℃ 2 min,150 ℃ 3 min,180 ℃ 25 min −12.5~12.5 1.4~11.7 [8]
    石墨消解微敞开体系 6 mL (1∶1) 聚四氟乙烯消化管 150 ℃ 20 min −5.0~8.3 3.2~7.5 [11]
    As 王水石墨密封消解体系 5 mL (1∶1) 塑料管 100 ℃,1.0 h −7.0~5.1 2.9~3.6 本方法
    水浴消解 10 mL (1∶1) 玻璃比色管 100 ℃,2.0 h [4,7]
    微波消解 8 mL 聚四氟乙烯消解罐 100 ℃ 2 min,150 ℃ 3 min,180 ℃ 25 min -7.5~4.7 0.7~8.9 [8]
    石墨消解微敞开体系 6 mL (1∶1) 聚四氟乙烯消化管 150 ℃ 20 min −4.7~2.3 2.9~4.0 [11]
    下载: 导出CSV
  • [1] 章海波, 骆永明, 李远, 等. 中国土壤环境质量标准中重金属指标的筛选研究[J]. 土壤学报, 2014, 51(3): 429-438.
    [2] 环境保护部, 国土资源部. 全国土壤污染调查公报[Z]. 中华人民共和国中央人民政府门户网站, 2014-04-17.
    [3] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京: 中国环境科学出版社, 2018.
    [4] 中华人民共和国农业部. 土壤检测 第11部分: 土壤总砷的测定: NY/T 1121.11-2006[S]. 北京: 中国农业出版社, 2006.
    [5] 中华人民共和国农业部. 土壤检测 第10部分: 土壤总汞的测定: NY/T 1121.10-2006[S]. 北京: 中国农业出版社, 2006.
    [6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定: GB/T 22105.1-2008[S]. 北京: 中国标准出版社, 2008.
    [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分: 土壤中总砷的测定: GB/T 22105.2-2008[S]. 北京: 中国标准出版社, 2008.
    [8] 环境保护部. 土壤和沉积物汞、砷、硒、铋、锑的测定 微波消解/原子荧光法: HJ 680-2013[S]. 北京: 中国环境科学出版社, 2014.
    [9] 林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528.
    [10] 文典, 严冬, 赵沛华, 等. 快速高通量全消解ICP-MS法测定《全国土壤污染状况详查》项目中14种元素[J]. 环境化学, 2018, 37(6): 1432.
    [11] 李蕾, 卢燕湘, 鄢韬. 基于石墨消解微敞开体系的快速王水提取-原子荧光法测定土壤中砷和汞[J]. 分析试验室, 2023, 7(42): 872-877.
  • 加载中
图( 4) 表( 3)
计量
  • 文章访问数:  1949
  • HTML全文浏览数:  1949
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-20
  • 录用日期:  2023-11-16
  • 刊出日期:  2023-11-26
常安刚, 朱振东, 张祯. 基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷[J]. 环境工程学报, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
引用本文: 常安刚, 朱振东, 张祯. 基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷[J]. 环境工程学报, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
CHANG Angang, ZHU Zhendong, ZHANG Zhen. Determination of mercury and arsenic in soils and sediments using aqua regia graphite sealed digestion system based atomic fluorescence spectrometry[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084
Citation: CHANG Angang, ZHU Zhendong, ZHANG Zhen. Determination of mercury and arsenic in soils and sediments using aqua regia graphite sealed digestion system based atomic fluorescence spectrometry[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3738-3743. doi: 10.12030/j.cjee.202309084

基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷

    通讯作者: 张祯(1976—),男,博士,教授,zhzhenok@163.com
    作者简介: 常安刚 (1985—) ,男,硕士,中级工程师,changangang@aftts.com
  • 1. 埃欧孚 (上海) 检测技术有限公司,上海 201108
  • 2. 江苏大学,镇江 212013

摘要: 为解决土壤和沉积物样品中的汞、砷前处理中的一些问题,如耗时长、清洗流程复杂及汞污染等,建立了一种基于王水石墨密封消解体系的前处理新方法,结合原子荧光可用于土壤和沉积物中Hg和As的测定。在最优条件下,2种重金属元素测定结果表明,本方法具有较低的相对误差 (Hg, -9.3%~9.3%; As,-7.0%~5.1%) ,较高的加标回收率 (Hg, 93.2%~104.5%; As, 95.9%~103.5%) 。此外,本方法相关性能指标均优于现行标准方法,具有稳定性好、精密度好、准确度高等优点。更重要的是,本方法因采用成本低廉的一次性塑料管,无需消解管清洗,避免了汞的污染。而且,消解过程无需其它操作,消解液用量少,具有操作简单、成本低、无汞污染等优点,可用于大通量土壤和沉积物Hg、As含量的测定。

English Abstract

  • 重金属是我国土壤的主要污染物之一[1],因此,在我国土壤污染综合防治规划和土壤环境质量调查中被列为重点关注对象。根据《全国土壤污染状况调查公报》显示,我国土壤污染的前5大重金属污染因子为镉、镍、砷、铜与汞,土壤点位超标率均超过1.6%。其中,汞 (Hg) 与砷 (As) 在典型土壤中浓度较高,严重污染环境,危害人体健康[2]。基于此,这2种元素为场地调查中必检项目,同时也是第三次全国土壤普查中土壤环境质量的必检内容[3]。所以,构建简单、准确的方法用于测定土壤中的Hg与As,非常重要。

    在分析方法中,前处理是方法成败的关键因素之一。目前,生态环境部,农业部,国家标准化委员会等发布关于土壤中Hg与As测定的标准方法有:水浴消解法[4-7],微波消解法[8]。但这些方法大多存在汞污染、时间长、能耗高、成本高、样品处理量小、设备昂贵、消解罐清洗流程复杂等问题。

    为解决以上问题,本研究基于标准方法[4-7]的样品前处理方法,开发了一种利用一次性消解管的石墨消解-王水体系,用于土壤和沉积物中 Hg与As的简单、高效、快速前处理,并使用标准方法[8]的分析条件进行验证,方法优化了消解温度、消解时间、消解液用量、取样量等参数,确保前处理过程的简化与结果的准确性。研究结果可为土壤和沉积物中这2种重金属元素的测定提供一种成本低廉、样品通量大,简单准确的新方法,具有极好的应用推广前景。

    • 1) 耗材。50mL聚丙烯 (PP) 塑料离心管。

      2) 试剂。硝酸、盐酸均为优级纯;硫脲、抗坏血酸、硼氢化钾 (分析纯)

      3) 标准品。1 000 mg∙L−1 Hg单元素标准溶液GSB G 62069-90;1 000 mg∙L−1 As GSB 04-1714-2004。4种土壤或沉积物分析标准物质:GBW07385 (GSS-29) (As:9.3±0.8mg∙kg−1,Hg:0.15±0.02mg∙kg−1) 上海市崇明县新海镇土壤,GBW07453 (GSS-24) 阳江市南海滩涂沉积物,GBW07981 (GSS-39) 海南万宁富硒土壤,GBW07982 (GSS-40) 陕西渭南关中平原区土壤。

    • 原子荧光光度计 (AFS-8220,北京吉天仪器有限公司) ;石墨消解仪 (ED54,北京莱伯泰科仪器股份有限公司) ;离心机 (LC-LX-L40B,上海力辰仪器科技有限公司) ;电子天平 (SQP,赛多利斯(上海)贸易有限公司) 。

    • 取风干土壤或沉积物样品 0.1~0.5 g (精确至 0.000 1 g) 于 50 mL 一次性塑料离心管中,加入5~15 mL (1+1) 王水,加盖拧紧后回旋半圈,摇匀于消解仪上100~130 ℃加热 0.5~2 h,中间摇动几次,取下冷却,用水稀释至刻度,摇匀后静止过夜,或在4 000~6 000 r·min−1下离心 (5~10) min,取上清液按照标准方法[8]测定汞或砷的条件,进行元素测定。

    • As:阴极灯电流 60 mA,负高压270 V,载气流量300 mL∙min−1,屏蔽气流量800 mL∙min−1,灵敏度线波长253.7。

      Hg:阴极灯电流 12 mA,灵敏度线波长193.7,其他参数与 As一致。

    • 分取10.0 mL置于50 mL容量瓶中,加入浓盐酸2.5 mL混匀,室温放置30 min,用实验用水定容至标线,混匀用于Hg的测定;另分取10.0 mL置于50 mL容量瓶中,加入浓盐酸5 mL,硫脲和抗坏血酸混合溶液10 mL混匀,室温放置30 min,用实验用水定容至标线,混匀用于As的测定。

    • 现有标准方法前处理方法使用具塞玻璃比色管或聚四氟乙烯消解管或微波消解罐等,在重复使用过程中都需要使用较高浓度的硝酸溶液进行超过24 h浸泡,由于Hg元素容易产生记忆效应,因此极易被吸附残留。林海兰等[9]发现10 % (体积分数) HNO3 浸泡24 h仍不能有效去除比色管中残留的Hg。本研究在前期验证过程中发现,即使每次实验使用硝酸溶液浸泡24 h以上,随着使用次数的不断累加,Hg的残留不断增加,且无法根除。即便每次更换硝酸浸泡液,会延迟Hg污染的周期,但随着使用次数的增加,Hg污染的问题仍然存在。且频繁的更换硝酸浸泡液会导致大量硝酸浪费,且由此产生大量的危险废物,同时也增加了试剂的使用成本。

      为彻底解决Hg污染问题,同时又不能增加成本,本研究采用一次性塑料 (PP) 离心管进行改进,且经过长时间大量的试剂空白和全程序空白验证发现,空白测定值均低于方法检出限,且塑料 (PP) 材质离心管无需浸泡,不但解决了Hg污染残留问题,还节约了硝酸和盐酸的用量,节约了成本。

    • 消解温度是影响消解效果的重要因素,文典等[10]和李蕾等[11]研究显示提高温度可极大缩短消化时间,但高温意味着高能耗,在达到良好的消解效果的条件下,温度越低能耗越低。本研究对100、110、120、125 ℃,4组消化温度 (消解液 10 mL,消解时间2 h,取样量0.5 g) 的影响。图1是不同消解温度下GSS-29的 Hg、As,测定结果。可以看出,4种消解温度下的Hg、As测定值均落在了标准值范围内,准确度较高,且标准偏差均小于2.5%,结合能耗,选择100 ℃作为消解温度。

    • 本研究对消解液的用量进行了优化:考察了5、10、15 mL (1∶1) 王水加入量 (消解温度100 ℃,消解时间2 h,取样量0.5 g) 的影响。结果显示 (见图2) ,Hg、As所有的测定结果均在标准值允许的范围内,且RSD均小于5%。由于采用的是密闭体系,不会产生消解液的损失,因此5 mL (1∶1) 王水足以充分提取样品中的Hg、As,而消解液的用量越大,消耗的盐酸和硝酸的量也就越大,成本增加,同时产生的危险废物的量也增加。因此,从环保及节约成本的角度,本方法最终选择加入5 mL (1∶1) 王水。

    • 本研究对消解时间进行了优化,考察了0.5、1、1.5、2 h (消解温度100 ℃,消解液5 mL,取样量0.5 g) 的影响。结果显示 (见图3) ,Hg、As在消解0.5 h时,测定结果均出现低于标准值允许的最小值的情况;消解1、1.5、2 h的情况下,Hg、As所有的测定结果均在标准值允许的范围内,且RSD均小于5%。实验结果表明,在消解时间低于1 h时,样品中的Hg、As不能充分的被提取至消解液中,在消解时间超过1 h时,样品中的Hg、As已经可以充分的被提取至消解液中,达到准确测定的要求。考虑到消解时间越长,对结果的准确测定已无明显的提升意义,且时间越长能耗越高,因此,本实验最终确定的消解时间为1 h。

    • 本研究对合适的取样量进行了优化,考察了0.1、0.2、0.3、0.4、0.5 g取样量在以上最优条件 (消解温度100 ℃,消解液5 mL,消解时间1 h) 下的测定结果。结果表明 (见图4) ,取样量为0.1 g时,Hg、As的测定结果均出现低于标准值允许的最小值的结果;取样量在0.2~0.5 g时,Hg、As的测定结果均在标准值允许的范围内。在对仪器的分析条件进行分析时发现,在相同的稀释条件下,当取样量不超过0.1 g时,样品进入仪器分析时的浓度接近或低于校准曲线的最低点,进而增加了仪器分析的误差,增加了结果准确测定的风险。因此,本实验选取0.2~0.5 g为最佳的取样量。

    • 为进一步评估本研究方法的性能,在上述得出的最佳条件下,选取GSS-24沉积物标准样品,GSS-39和GSS-40土壤标准样品,分别于2022年6月~12月期间,取一种标准样品每天测定,不同人进行测定,每种样品测定30 d,共计90个样品。由表1 可以看出,3种标准样品Hg、As测定的结果均在标准值允许范围内,Hg的相对标准偏差为3.4%~6.5%,相对误差为−9.3%~9.3%,再现性限为0.003~0.005 mg∙kg−1;As的标准偏差为2.9%~3.6%,相对误差为−7.0%~5.1%,再现性限为0.4~0.5 mg∙kg−1,说明该方法具有再现性好、精密度好、稳定性好等优点。

    • 本研究选取2种上海市松江区某地块土壤和1种上海市某河道河底沉积物样品,使用本方法测定Hg、As浓度。在样品中分别加入Hg、As标准溶液进行加标回收试验 (Hg、As加标量与样品含量分别约为2∶1,1∶1) ,结果显示 (见表2) ,3种样品中Hg的平均加标回收率为93.2%~104.5%,RSD为3.1%~5.9%, As的平均加标回收率为 95.9%~103.5%, RSD为1.7%~2.9% (n=6) 。结果表明,本方法的准确度较高,满足准确度要求。

    • 将本方法测定Hg、As所用的消解液用量、消解过程、是否需要清洗消解管,相对误差,相对标准偏差等与其他方法的进行了比较,结果见表3,可以看出本方法的相对误差和相对标准偏差与其他方法处于同一水平,但因本方法使用一次性消解管无需清洗;消解过程只需添加好消解液放置石墨消解仪上消解1 h,过程中无需其他操作,操作更加简单;采用一次性塑料管消除了因重复使用消解管产生汞的残留,解决了汞污染问题;一次性塑料管相比于聚四氟乙烯管/罐、玻璃比色管成本更加低廉,且消解液用量更少,更加节约成本。

    • 1) 建立了一种基于王水石墨密封消解体系的前处理新方法,结合原子荧光可用于土壤和沉积物中Hg与As的测定,其相对标准偏差、相对误差、再现性限均优于标准方法。

      2) 最佳实验条件为一次性塑料离心管,消解温度100 ℃,消解液 (1∶1王水) 用量5 mL,消解时间1 h,样品取样量0.2~0.5 g。

      3) 本方法因采用成本低廉的一次性塑料管,无需消解管清洗,并解决了汞污染问题,消解过程无需其它操作,消解液用量少,具有操作简单、成本低、无汞污染等优点,可用于大通量土壤和沉积物中Hg、As含量的测定。

    参考文献 (11)

返回顶部

目录

/

返回文章
返回