-
在畜禽养殖业中,抗生素在治疗动物疾病方面起到了至关重要的作用[1]。2020年,我国兽用抗生素使用量达到3.28×104 t,其中磺胺类及增效剂抗生素由于价格低和广谱抗菌性,使用量达4 287.87 t[2-3]。且相关研究表明,磺胺类抗生素在动物肠道中吸附性和降解性较差,约90%的磺胺类抗生素以本身的化学结构或初级代谢后的异构体的形式通过粪便排出体外[4-5]。另外磺胺类抗生素在环境中稳定,不易分解[6-7]。因此,磺胺类抗生素经常在畜禽粪便中被检测到[8]。如果含有抗生素残留的畜禽粪便不经过有效处理而直接利用,易导致环境中的抗生素污染问题,对生态系统和人类健康造成威胁[9]。
厌氧消化技术凭借其显著的能源、环保和经济效益,成为目前应用较广的畜禽粪便处理方法之一。同时,厌氧消化可以去除一定范围内的磺胺类抗生素[10],TURCIOS等[11]研究发现,经厌氧消化处理后磺胺二甲嘧啶(sulfadimidine, SD)的质量分数从2.32 mg·kg−1TS降至0.97 mg·kg−1TS。但是,畜禽粪便中残留的抗生素由于其本身的抗菌特性,也可能会抑制或者杀灭厌氧消化微生物,减少甲烷气体产生量[12]。ZHANG等[13]研究发现,20 mg·kg−1TS初始质量分数的磺胺二甲嘧啶可使牛粪厌氧消化过程中甲烷的产生量减少16.0%。ZHI等[14]研究发现,当污泥中磺胺二甲氧嘧啶为500 mg·L−1时,显著减少了90%的甲烷的产生。目前,国内外对畜禽粪便厌氧消化过程中去除磺胺类抗生素的研究多集中在单一因素对抗生素去除效果和厌氧消化产气量的影响,主要影响因素有残留抗生素初始质量分数、粪便含固率(total solids content, TS)、厌氧消化时间等[15-17]。因此有必要通过响应面法,同时考虑3种因素的影响,探究各个因素的相互作用,在保证畜禽厌氧消化的产气量的同时,有效控制和减少抗生素污染,这对于厌氧消化运行稳定性和减少抗生素对生态环境的污染至关重要。
综上,现有研究证实厌氧消化可以一定程度的去除畜禽粪便中残留的磺胺类抗生素,且厌氧消化时间、猪粪含固率、抗生素质量分数等因素都可能对厌氧消化过程中抗生素的去除效率产生影响,但是现有的单因素实验不能够很好地反映各个影响因素之间的相互作用和主要影响因素。因此,本研究通过中心复合设计方法(central composite design, CCD)进行响应面曲线回归模型构建,以猪粪为研究对象,以抗生素初始质量分数、厌氧消化时间和猪粪含固率为影响因素,分析其对厌氧消化过程磺胺类抗生素中的2种常见抗生素磺胺二甲嘧啶、磺胺甲恶唑(sulfamethoxazole, SMX)去除效率的相互影响,优化最佳运行参数,为提升厌氧消化处理技术对抗生素的去除效果提供科技支撑。
响应面法优化厌氧消化过程中抗生素去除效果
Optimization of antibiotic degradation efficiency during anaerobic digestion of swine manure using response surface method
-
摘要: 为了深入探究厌氧消化过程中厌氧消化时间、猪粪含固率、抗生素初始质量分数对磺胺二甲嘧啶和磺胺甲噁唑去除效果的相互影响,本研究采用响应面优化法,以厌氧消化时间、猪粪含固率、抗生素质量分数为3因素,以抗生素残留质量分数和厌氧消化产气量为响应值,探索使用厌氧消化法降低抗生素残留质量分数的最佳工艺参数。结果表明,根据响应面分析可知,当猪粪含固率为3%,初始质量分数为40 mg·kg−1TS,厌氧消化时间为30 d,预测的磺胺二甲嘧啶残留质量分数最低为0.428 mg·kg−1TS;当猪粪含固率为7%,磺胺二甲嘧啶初始质量分数为40 mg·kg−1TS,厌氧消化时间为20 d,预测的磺胺甲噁唑残留质量分数最低为0.1063 mg·kg−1TS。综合产气量考虑,当猪粪含固率为5.58%,磺胺二甲嘧啶初始质量分数为80 mg·kg−1TS,厌氧消化时间为27.8 d,预测的产气量最高为389.3 mL·kg−1TS。当猪粪含固率为5.89%,磺胺甲噁唑初始质量分数为80 mg·kg−1TS,厌氧消化时间为30 d,预测的产气量最高为389.6 mL·kg−1TS。该研究可为猪粪厌氧消化过程中的降低抗生素残留、提高产气量的工艺优化提供参考。Abstract: To study interaction of the fermentation time, total solids and initial concentration on degradation efficiency during anaerobic digestion of swine manure, response surface methodology was used to find out optimal parameters to reduce antibiotic residual concentrations of sulfadimidine (SD) and sulfamethoxazole (SMX), by using the above three factors as independent variables and antibiotic residual concentration and gas production as response values. The results showed that the lowest residual concentration of SD was 0.428 mg·kg−1TS when there were 3% TS, 40 mg·kg−1TS initial concentration and 30 d; the lowest residual concentration of SMX was 0.1063 mg·kg−1TS when there were 7% TS, 40 mg·kg−1TS initial concentration and 20 d. The highest gas yield of swine manure with SD was 389.3 mL·kg−1TS when there were 5.58% TS, 80 mg·kg−1TS initial concentration and 27.8 d; the highest gas yield of swine manure with SMX was 389.6 mL·kg−1TS when there were 5.88% TS, 80 mg·kg−1TS initial concentration and 30 d. This study provides theoretical and technical support for reducing antibiotic residues and increasing gas production during anaerobic digestion of swine manure.
-
Key words:
- animal manure /
- antibiotic /
- anaerobic digestion /
- solid content /
- response surface methodology
-
表 1 优化抗生素去除效果的自变量因素和编码
Table 1. Levels of independent variables for optimization of antibiotic removal effect
试验因子 水平和编码 −2 −1 0 1 2 X1 猪粪含固率/% 1 3 5 7 9 X2 抗生素初始质量分数/ (mg·kg−1TS) 20 40 60 80 100 X3 厌氧消化时间/d 15 20 25 30 35 表 2 试验设计表
Table 2. Experimental design
处理 X1 X2 X3 处理 X1 X2 X3 T1 0 0 0 T11 1 −1 −1 T2 0 −2 0 T12 0 2 0 T3 0 0 2 T13 0 0 0 T4 0 0 −2 T14 0 0 0 T5 0 0 0 T15 1 1 −1 T6 1 −1 1 T16 −1 −1 1 T7 1 2 1 T17 −1 −1 −1 T8 −2 0 0 T18 −1 1 −1 T9 0 0 0 T19 −1 1 1 T10 2 0 0 T20 0 0 0 表 3 各组的试验参数以及厌氧消化后磺胺二甲嘧啶和磺胺甲恶唑残留质量分数及产气量
Table 3. Sulfadimidine and sulfamethoxazole residual concentration and gas production after anaerobic digestion with values of factors for each treatment of experiments
处理 自变量 Y1抗生素残留质量分数/
(mg·kg -1TS)Y2产气量/(mL·kg−1TS) Y3抗生素残留质量分数/
(mg·kg−1TS)Y4产气量/(mL·kg−1TS) X1/% X2/(mg·kg−1TS) X3/d 实际值 预测值 实际值 预测值 实际值 预测值 实际值 预测值 T1 5 60 25 1.278 1.264 338.56 374.05 0.112 0.115 269.89 337.87 T2 5 20 25 0.525 0.423 297.16 312.20 0.123 0.125 209.46 206.00 T3 5 60 35 1.264 1.412 356.20 365.43 0.110 0.115 355.25 394.38 T4 5 60 15 1.132 1.073 289.71 325.83 0.114 0.113 261.55 262.75 T5 5 60 25 1.224 1.264 357.10 374.05 0.110 0.115 287.16 337.87 T6 7 40 30 1.225 1.193 342.04 345.08 0.115 0.107 292.37 249.24 T7 7 80 30 3.197 2.893 371.66 399.32 0.118 0.116 410.23 379.55 T8 1 60 25 0.131 0.031 253.45 294.89 0.120 0.119 300.10 305.74 T9 5 60 25 1.143 1.264 369.29 374.05 0.121 0.115 371.19 337.87 T10 9 60 25 2.289 2.477 325.12 329.04 0.096 0.101 75.36 110.06 T11 7 40 20 1.117 1.063 316.25 315.03 0.105 0.106 68.93 80.83 T12 5 100 25 1.950 2.141 395.33 434.87 0.125 0.127 316.83 360.62 T13 5 60 25 1.245 1.264 376.75 374.05 0.110 0.115 365.85 337.87 T14 5 60 25 1.272 1.264 333.26 374.05 0.122 0.115 333.10 337.87 T15 7 80 20 2.415 2.340 374.86 379.89 0.124 0.119 300.14 252.35 T16 3 40 30 0.442 0.428 327.82 321.28 0.126 0.127 331.23 338.69 T17 3 40 20 0.426 0.641 330.29 301.12 0.125 0.122 343.90 334.26 T18 3 80 20 0.715 0.659 374.09 369.54 0.112 0.116 355.78 358.58 T19 3 80 30 0.903 0.868 379.37 379.09 0.123 0.117 374.03 321.80 T20 5 60 25 1.331 1.264 382.44 374.05 0.112 0.115 269.89 337.87 -
[1] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 2(1): 265-270. doi: 10.3321/j.issn:1000-0933.2006.01.032 [2] LIU L, LIA C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088-1093. doi: 10.1016/j.chemosphere.2013.01.007 [3] YIN F B, DONG H M, ZHANG W Q, et al. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline[J]. Bioresource Technology, 2018, 250: 247-255. doi: 10.1016/j.biortech.2017.11.015 [4] JJEMBAP K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63: 113-130. doi: 10.1016/j.ecoenv.2004.11.011 [5] 张志强. 设施菜田土壤四环素类抗生素污染与有机肥安全施用[D]. 北京: 中国农业科学院, 2013. [6] BIALK B A, STOLE S, MATZKE M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221-222: 264-274. doi: 10.1016/j.jhazmat.2012.04.044 [7] TAPPE W , HERBST M , HOFMANN D, et al. Degradation of Sulfadiazine by Microbacterium lacus Strain SDZm4, Isolated from Lysimeters Previously Manured with Slurry from Sulfadiazine-Medicated Pigs[J]. Applied & Environmental Microbiology, 2013, 79(8): 2572-2577. [8] QIAO M, YING G M, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016 [9] HWANG I Y, KOH E, KIM H R, et al. 2016. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria[J]. Drug Resistance Updates, 2016, 27: 59-71. doi: 10.1016/j.drup.2016.06.002 [10] LINS P, REITSCHULER C, ILLMER P. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion[J]. Bioresource Technology, 2015, 190: 148-158. doi: 10.1016/j.biortech.2015.04.070 [11] TURCIOS A E, WEICHGREBE D, PAPENBROCK J. Uptake and biodegradation of the antimicrobial sulfadimidine by the species Tripolium pannonicum acting as biofilter and its further biodegradation by anaerobic digestion and concomitant biogas production[J]. Bioresource Technology, 2016, 219: 687-693. doi: 10.1016/j.biortech.2016.08.047 [12] 孙建平, 郑平, 胡宝兰. 多种抗生素对畜禽废水厌氧消化的联合抑制[J]. 环境科学. 2009, 12(9): 125-130. [13] ZHANG X, GU J, WANG X, et al. Effects of tylosin, ciprofloxacin, and sulfadimidine on mcrA gene abundance and the methanogen community during anaerobic digestion of cattle manure[J]. Chemosphere, 2019, 221: 81-88. doi: 10.1016/j.chemosphere.2018.12.043 [14] ZHI S, ZHANG K. Antibiotic residues may stimulate or suppress methane yield and mi-crobial activity during high-solids anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 1303-1315. doi: 10.1016/j.cej.2018.11.050 [15] CETECIOGLU Z, INCE B, ORHON D, et al. Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis[J]. Water Research, 2016, 90: 79-89. doi: 10.1016/j.watres.2015.12.013 [16] 李月, 钟为章, 牛建瑞, 等. 体系含固率对土霉素菌渣厌氧消化的影响[J]. 环境工程学报, 2022, 16(7): 2347-2355. doi: 10.12030/j.cjee.202203074 [17] LU X Q, ZHEN G Y, LIU Y, et al. Long-term effect of the anti- biotic cefalexin on methane production during waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2014, 169: 644-651. doi: 10.1016/j.biortech.2014.07.056 [18] 凌文翠, 范玉梅, 方瑶瑶, 等. 京津冀地区畜禽养殖业抗生素污染现状分析[J]. 环境工程技术学报, 2018, 8(4): 390-397. [19] APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed. American, Public, Health, Association[S]. Washington, DC, USA: 1998. [20] 杜连柱, 梁军锋, 杨鹏, 等. 猪粪固体含量对厌氧消化产气性能影响及动力学分析[J]. 农业工程学报, 2014, 30(24): 246-251. doi: 10.3969/j.issn.1002-6819.2014.24.030 [21] MOHRING S A I, STRZYSCH I, FERNANDES M R, et al. Degradation and elimination of various sulfonamides during anaerobic fermentation: A promising step on the way to sustainable pharmacy?[J]. Environmental Science & Technology, 2009, 43(7): 2569-2574. [22] WANG S, WANG J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp.[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 425-432. doi: 10.1007/s00253-017-8562-4 [23] 汪少娜. 磺胺类抗生素对猪粪厌氧发酵的影响及其降解机理研究[D]. 北京科技大学, 2020. [24] BARAN W, ADAMEK E, ZIEMIANSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082 [25] XU B, MAO D, LUO Y, et al. Sulfamethoxazole biodegradation and biotransformation in the waterisediment system of a natural river[J]. Bioresource Technology, 2011, 102(14): 7069-7076. doi: 10.1016/j.biortech.2011.04.086 [26] MOLAEY R, BAYRAKDAR A, SÜRMELI R O, et al. Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics[J]. Journal of Cleaner Production, 2018, 181: 794-800. doi: 10.1016/j.jclepro.2018.01.264 [27] AYDIN S, INCE B, INCE O. Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater[J]. Water Science and Technology, 2015, 71(11): 1620-1628. doi: 10.2166/wst.2015.126