-
全球污水处理厂碳排放量约占总量的1.6%[1-2],我国则占全社会总量的1%~2%[3]。其中,CH4排放量可占达全社会的4%,N2O排放量可达5%。随着提标改造的进行,污水处理行业的碳排放量和排放强度呈上升趋势[4]。因此,污水处理行业仍是“双碳”目标重点关注的行业之一[5]。
现有国内外污水处理厂的碳排放研究主要通过边界界定、源解析、决策建议等方式揭示较大规模污水处理厂碳排放数据的年际变化规律[6]。随着“减污降碳协同增效”需求的提出,减排策略的精准性要求逐渐提升,以往基于年数据的碳排放定量评估已不能充分指导精准减排策略的实施,而基于连续月变化数据的精准碳排放定量评估研究也尚不多见[7]。同时,联合国政府间气候变化专门委员会 (IPCC) 清单模型法中的碳排放因子值往往对应行业和国家的宏观信息,在单个水厂精准评估中往往产生偏差,难以揭示碳排放的动态变化规律[8-9],而采用国外推荐值的排放因子评估我国水厂的适用性也尚存争议[10-11]。因此,基于我国污水处理厂精准运行调度和监测数据,兼顾碳排放核算时空边界条件的复杂性和可获得性,参考我国水厂基准和动态碳排放特征拟定排放因子,才能针对“双碳”目标实施路径的需求弥补相关研究领域的知识缺口。
基于北京市作为首都所应在“双碳”目标中起带头作用的需求,本研究以北京市某区3座典型区级污水处理厂 (处理总量达全区的30%) 为评估对象,结合我国校准后的排放因子,综合参考《城镇水务系统碳核算与减排路径技术指南》 (以下简称“指南”) [12]、《污水处理厂低碳运行评价技术规范》 (以下简称“规范”) [13]和《IPCC 2006 年国家温室气体清单指南 2019 修订版》 (以下简称“清单”) 碳排放核算方法[14],精准识别各个水厂基于月变化数据的动态碳排放边界及特征,对各厂各运行阶段碳排放影响的核心要素及其响应模式进行定量计算分析,梳理“双碳”目标下适合北京市某区各水厂实际运行特征且可行的碳减排路径与策略,为有效助力实现我国污水处理厂精准“双碳”目标提供参考。
基于月排放数据的北京3座区级污水处理厂年碳排放特征
Characterization of annual carbon emissions of three district-level wastewater treatment plants in Beijing based on monthly emission data
-
摘要: 以3座北京市某区代表性区级污水处理厂为研究对象,综合《城镇水务系统碳核算与减排路径技术指南》、《污水处理厂低碳运行评价技术规范》和《IPCC 2006 年国家温室气体清单指南 2019 修订版》碳排放核算方法,采用定量统计、相关性分析及敏感性分析等手段对污水处理厂正常运行状态下碳排放核算和影响因素进行特征分析和规律识别,并提出针对性减排路径建议。结果表明:C厂C-TECH工艺的吨水碳排放强度为三厂最低1.35 kg CO2eq·m−3,处于我国较低水平,接近“双碳”目标要求;而B厂改良SBR工艺的单位污染去除碳排放强度较小,其COD碳排放强度为3.16 t CO2eq·t−1,TN碳排放强度为36.44 t CO2eq)·t−1,TP碳排放强度为176.69 t CO2eq·t−1,处于我国中上水平,从效能角度更接近“双碳”目标要求。不同工艺产生的温室气体、进水水质波动及用电消耗导致三厂碳排放强度上存在差异,但各工艺的主排碳因子均为间接碳排放 (A厂、B厂和C厂中分别占73%、59%和59%) ,间接碳排放的主贡献因子为电力消耗 (A厂、B厂和C厂中分别占33%、40%和40%) 。相关性分析发现,各水厂碳排放强度还与N2O造成的直接碳排放有较大相关性,3座水厂年排放N2O 2.48×104 t CO2eq,A厂、B厂和C厂中相关性系数值分别达到0.68、0.87、0.66。敏感性分析表明,整体碳排放强度对电力消耗、N2O排放和药耗的变化更为敏感,药耗中葡萄糖溶液和多效高分子除磷剂对碳排放强度影响较大。以上结果表明,北京区级污水处理厂应从优化曝气系统、水泵效能等节电措施和调整水厂加药模式等节药措施上实现减排。Abstract: In order to support the planning and implementation of emission reduction pathways for wastewater treatment plants in the northern region of China, this paper taked three representative district-level wastewater treatment plants in a district of Beijing as the research object, synthesized the Carbon Accounting and Emission Reduction Pathway Technical Guidelines for Urban Water Systems, the Technical Specification for Evaluation of Low-Carbon Operation of Wastewater Treatment Plants, and the carbon emission accounting method of the IPCC 2006 Guidelines for National Greenhouse Gas Inventories, Revised 2019, and adopted the quantitative statistics, correlation analysis, and sensitivity analysis, quantitative statistics, correlation analysis and sensitivity analysis to characterize and identify the patterns of carbon emission accounting and influencing factors under the normal operating state of wastewater treatment plants, and to propose targeted emission reduction paths. The results showed that the ton of water carbon emission intensity of C-TECH process of C plant was the lowest at 1.35 kg CO2eq·m-3 for the three plants, which was at a lower level in China and close to the target requirement of "double-carbon". The carbon emission intensity of the unit pollution removal of B plant's improved SBR process was small, and the COD carbon emission intensity of was 3.16 t CO2eq·t-1, TN carbon emission intensity was 36.44 3.16 t CO2eq·t-1, TP carbon emission intensity was 176.69 3.16 t CO2eq·t-1, which was in the middle and upper level in our country, while it was closer to the target requirement of "double carbon" from the viewpoint of efficiency. The greenhouse gases generated by different processes, fluctuations in water quality and electricity consumption led to differences in the carbon emission intensity of the three plants. Despite the differences in carbon emission intensity of different processes, the main carbon emission factor of each process was indirect carbon emission (73%, 59% and 59% in Plant A, Plant B and Plant C, respectively), and the main contributor of indirect carbon emission was electricity consumption (33%, 40% and 40% in Plant A, Plant B and Plant C, respectively). The correlation analysis found that the carbon emission intensity of each water plant also had a large correlation with the direct carbon emission caused by N2O, and the three water plants emitted 24.8 million t CO2-eq of N2O annually, with correlation coefficients of 0.68, 0.87, and 0.66 in Plants A, B, and C, respectively. The sensitivity analysis showed that the overall carbon emission intensity was more sensitive to the changes in electric power consumption, N2O emission, and drug consumption, and the overall carbon emission intensity was more sensitive to the changes in electric power consumption, N2O emission, and drug consumption. Glucose solution and multi-effect polymer phosphorus remover in drug consumption had a greater impact on carbon emission intensity. The above results indicated that the emission reduction should be achieved by optimizing the efficiency of aeration system and pump and adjusting the dosing mode of water plant for the district-level wastewater treatment plants in Beijing.
-
表 1 3座污水处理厂运维基础数据信息
Table 1. Basic operation and maintenance data information of three sewage treatment plants
指标及单位 A厂 B厂 C厂 污水日处理量Q/(万t·d−1) 1.7 11.2 5.9 生物池温度Tb/ ℃ 18 20.24 24.67 生物池MLVSS浓度/(mg·L−1) 6 540.46 5 455.81 5 018.35 生物池HRT/d 0.56 0.5 0.62 生物池SRT/d 13 15 14 进水BOD5,Bin/(mg·L−1) 115.07 224.46 176.94 人为投加的额外碳源质量浓度Bex/(mg·L−1) 140.29 54.34 50.78 出水BOD5,Beff/(mg·L−1) 1.22 0.68 1.58 进水COD,Cin/(mg·L−1) 290.76 510.53 385.10 出水COD,Ceff/(mg·L−1) 13.83 20.76 18.96 进水总磷,TPin/(mg·L−1) 6.15 8.50 4.47 出水总磷,TPeff/(mg·L−1) 0.08 0.10 0.07 进水总氮,TNin/(mg·L−1) 39.46 46.47 37.95 出水总氮,TNeff/(mg·L−1) 10.27 6.03 7.80 进水总凯氏氮,TKNin/(mg·L−1) 35.66 37.43 33.36 出水总凯氏氮,TKNeff/(mg·L−1) 5.322 3.31 4.01 进水氨氮,NH3-N/(mg·L−1) 29.66 28.08 26.56 出水氨氮,NH3-N/(mg·L−1) 0.37 0.55 0.57 外运污泥干重/(t·d−1) 12 60 73 外运污泥含水率 60% 80% 80% 污泥脱水比能耗/(kWh·t−1) 50.5 28.3 28.3 预处理系统能耗/(kWh·d−1) 1 650 7 755 4 077 生化系统能耗/(kWh·d−1) 6 840 21 010 10 200 深度处理及附属系统能耗/(kWh·d−1) 1 920 35 955 16 990 厂区辅助生产系统能耗/(kWh·d−1) 1 590 5 780 2 713 总电能消耗/(kWh·d−1) 12 000 70 500 33 980 葡萄糖溶液消耗/(t·d−1) 4.50 7.90 4.30 多效高分子除磷剂消耗/(t·d−1) 2.00 5.10 2.90 聚丙烯酰胺消耗/(t·d−1) 0.02 0.10 0.02 次氯酸钠消耗/(t·d−1) 0.50 3.30 1.50 三氯化铁消耗/(t·d−1) 0.60 0.20 — 生石灰消耗/(t·d−1) 1.20 0.30 — 直接碳排放量/(×104 t CO2eq) 0.32 2.49 1.19 间接碳排放量/(×104 t CO2eq) 0.91 3.58 1.72 总碳排放量/(×104 t CO2eq) 1.23 6.07 2.91 表 2 3座污水处理厂不同年均碳排放强度比较
Table 2. Comparison of different annual carbon emission intensities of three sewage treatment plants
排放指标
及单位厂号 污水直接排放 资源能源消耗间接排放 合计 气体排放 污泥
处理电力
消耗药耗 化石源
CO2CH4 N2O 葡萄糖
溶液多效高分
子除磷剂聚丙烯
酰胺次氯
酸钠三氯
化铁生石
灰CESww/
(kg CO2eq·m−3)A厂 0.27 0.05 0.17 0.03 0.67 0.39 0.29 1.74×10−3 0.03 9.18×10−3 0.08 1.99 B厂 0.13 0.07 0.4 0.01 0.59 0.1 0.11 1.32×10−3 0.03 4.64×10−3 0.03 1.48 C厂 0.15 0.06 0.33 0.01 0.54 0.11 0.12 0.5×10−3 0.03 — — 1.35 CESCOD/
(t CO2eq·t−1)A厂 1.17 0.19 0.76 0.15 2.89 1.69 1.28 0.008 0.13 0.04 0.34 8.62 B厂 0.27 0.14 0.86 0.03 1.26 0.22 0.24 0.003 0.06 0.01 0.06 3.16 C厂 0.4 0.15 0.91 0.04 1.47 0.29 0.33 0.001 0.07 — — 3.66 CESTN/
(t CO2eq·t−1)A厂 9.18 1.47 5.95 1.15 22.72 13.3 10.05 0.06 1 0.31 2.65 67.84 B厂 3.13 1.6 9.9 0.35 14.54 2.54 2.79 0.032 0.72 0.11 0.72 36.44 C厂 4.68 1.73 10.53 0.45 17.06 3.37 3.87 0.016 0.79 — — 42.49 CESTP/
(t CO2eq·t−1)A厂 52.07 8.32 33.77 6.51 128.89 75.43 57.02 0.34 5.65 1.78 15.05 384.81 B厂 15.2 7.73 47.99 1.7 70.52 12.33 13.54 0.16 3.47 0.55 3.51 176.69 C厂 32.72 12.1 73.66 3.14 119.39 23.58 27.04 0.11 5.54 — — 297.29 -
[1] HE J,LI Z,ZHANG X,et al. Towards carbon neutrality:A study on China's long-term low-carbon transition pathways and strategies[J]. Environmental Science and Ecotechnology, 2022, 9: 100134. doi: 10.1016/j.ese.2021.100134 [2] LU L,GUEST J S,PETERS C A,et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability, 2018, 1(12): 750-758. doi: 10.1038/s41893-018-0187-9 [3] 戴晓虎,张辰,章林伟,等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. doi: 10.13789/j.cnki.wwe1964.2021.03.001 [4] 郭盛杰,黄海伟,董欣,等. 中国城镇污水处理行业温室气体排放核算及其时空特征分析[J]. 给水排水, 2019, 45(4): 56-62. doi: 10.13789/j.cnki.wwe1964.2019.04.009 [5] 杨勤. 基于生命周期评价的污水处理工艺低碳研究 [D]. 兰州: 兰州大学, 2012. [6] BUKHARY S,BATISTA J,AHMAD S. Water-energy-carbon nexus approach for sustainable large-scale drinking water treatment operation[J]. Journal of Hydrology, 2020, 587: 124953. doi: 10.1016/j.jhydrol.2020.124953 [7] 宋宝木,秦华鹏,马共强. 污水处理厂运行阶段碳排放动态变化分析:以深圳某污水处理厂为例[J]. 环境科学与技术, 2015, 38(10): 204-209. [8] XI J,GONG H,ZHANG Y,et al. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM) [J]. Science of The Total Environment, 2021, 797: 148967. doi: 10.1016/j.scitotenv.2021.148967 [9] WILLIS J L,YUAN Z,MURTHY S. Wastewater GHG accounting protocols as compared to the state of GHG science[J]. Water Environment Research, 2016, 88(8): 704-714. doi: 10.2175/106143016X14609975746965 [10] PAUSTIAN K, RAVINDRANATH N H, AMSTEL A V. 2006 IPCC guidelines for national greenhouse gas inventories[J]. International Panel on Climate Change, 2006. DOI: http://dx.doi.org/10.1016/S1462-9011(99)00023-4. [11] 张岳,葛铜岗,孙永利,等. 基于城镇污水处理全流程环节的碳排放模型研究[J]. 中国给水排水, 2021, 37(9): 65-74. doi: 10.19853/j.zgjsps.1000-4602.2021.09.011 [12] 中国城镇供水排水协会编. 城镇水务系统碳核算与减排路径技术指南 [M]. 北京: 中国建筑工业出版社, 2022. [13] 中国环境保护产业协会. 污水处理厂低碳运行评价技术规范: T/CAEPI -2022 [S]. 2022. [14] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory [R]. 2019. [15] SARPONG G,GUDE V G. Near future energy self-sufficient wastewater treatment schemes[J]. International Journal of Environmental Research, 2020, 14(4): 479-488. doi: 10.1007/s41742-020-00262-5 [16] 鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究 [D]. 北京: 北京林业大学, 2019. [17] 谢淘,汪诚文. 污水处理厂温室气体排放评估[J]. 清华大学学报 (自然科学版) , 2012, 52(4): 473-477. [18] WANG J,ZHANG N,XU S,et al. Carbon footprint analysis and comprehensive evaluation of municipal wastewater treatment plants under different typical upgrading and reconstruction modes[J]. Science of The Total Environment, 2023, 880: 163335. doi: 10.1016/j.scitotenv.2023.163335 [19] 彭卓,郭春梅,汪磊磊,等. 绿色建筑全生命周期CO2排放敏感性与减碳潜力研究[J]. 天津城建大学学报, 2021, 27(6): 436-441. [20] 周政, 李怀波, 王燕, 等. 低碳氮比进水 AAO 污水处理厂低碳运行 [J]. 中国环境科学, 42 (11) : 5088-5099. [21] GARFI M,FLORES L,FERRER I. Life Cycle Assessment of wastewater treatment systems for small communities:Activated sludge,constructed wetlands and high rate algal ponds[J]. Journal of Cleaner Production, 2017, 161: 211-219. doi: 10.1016/j.jclepro.2017.05.116 [22] DIAS D F,MARQUES R,MARTINS C,et al. The impact of a seasonal change in loading rate on the nitrous oxide emissions at the WWTP of a tourist region[J]. Science of The Total Environment, 2022, 804: 149987. doi: 10.1016/j.scitotenv.2021.149987 [23] GALLEGO-SCHMID A,TARPANI R R Z. Life cycle assessment of wastewater treatment in developing countries:a review[J]. Water Research, 2019, 153: 63-79. doi: 10.1016/j.watres.2019.01.010 [24] YAN P,SHI H X,CHEN Y P,et al. Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110160. doi: 10.1016/j.rser.2020.110160 [25] BAO Z,SUN S,SUN D. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing,China[J]. International Biodeterioration & Biodegradation, 2016, 108: 108-114. [26] 宋新新,刘杰,林甲,等. 碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J]. 环境科学学报, 2022, 42(4): 53-63. doi: 10.13671/j.hjkxxb.2021.0384 [27] 鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究 [D]. 北京: 北京林业大学, 2020. [28] CHEN W,ZHANG Q,HU L,et al. Understanding the greenhouse gas emissions from China’s wastewater treatment plants:Based on life cycle assessment coupled with statistical data[J]. Ecotoxicology and Environmental Safety, 2023, 259: 115007. doi: 10.1016/j.ecoenv.2023.115007 [29] 张克强,季民,雷英春,等. 一种处理高氨氮有机废水改良SBR反应器的性能研究[J]. 农业环境科学学报, 2004(5): 1009-1013. doi: 10.3321/j.issn:1672-2043.2004.05.038 [30] 张跃瀚. SBR微膨胀活性污泥法处理生活污水的研究 [D]. 沈阳: 沈阳建筑大学, 2020. [31] CHEN H, ZHENG Y, ZHOU K, et al. Carbon emission efficiency evaluation of wastewater treatment plants: evidence from China [J]. Environmental Science and Pollution Research, 2023: 1-11. [32] ZENG S,CHEN X,DONG X,et al. Efficiency assessment of urban wastewater treatment plants in China:Considering greenhouse gas emissions[J]. Resources,Conservation and Recycling, 2017, 120: 157-165. [33] HE Y,ZHU Y,CHEN J,et al. Assessment of energy consumption of municipal wastewater treatment plants in China[J]. China Shanghai Municipal Engineering Design & Research Ins, 2019, 228: 399-404. [34] 王琳,李德彬,刘子为,等. 泥处理处置路径碳排放分析[J]. 中国环境科学, 2022, 42(5): 2404-2412. [35] WANG H, YANG Y, KELLER A A, et al. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa[J]. Applied Energy, 2016, 184: 873-881. [36] 范成成, 董焱城, 耿文洋, 等. 河南省某AAO-MBR污水厂运行调控及节能降耗研究[C]// 中国环境科学学会2022年科学技术年会--环境工程技术创新与应用分会场, 南昌, 2022: 207-213 [37] 尚会来,彭永臻,王淑莹,等. 污水生物脱氮过程中N2O的产生和减量化控制[J]. 中国给水排水, 2008(16): 104-108. [38] 郝晓地,赵梓丞,李季,等. 污水处理厂的能源与资源回收方式及其碳排放核算:以芬兰Kakolanm?ki污水处理厂为例[J]. 环境工程学报, 2021, 15(9): 2849-2857. [39] DU W J,LU J Y,HU Y R,et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality[J]. Nature Water, 2023, 1(2): 166-175. doi: 10.1038/s44221-022-00021-0 [40] WERKNEH A A, GEBRU S B. Development of ecological sanitation approaches for integrated recovery of biogas, nutrients and clean water from domestic wastewater [J]. Environment and Sustainability, 2022: 100095.