-
再生水厂的除臭问题不容忽视。传统的除臭方式分为物化法及生化法[1]。物化法主要包括活性炭、化学除臭、等离子除臭和臭氧氧化除臭[2-3]。活性炭法灵活迅速,但对活性炭的消耗量大;化学法适合处理高浓度臭气,然而药剂的使用不具有生态可持续性;等离子和臭氧氧化设备操作简单,但需要建设高压脉冲放电设施。生化除臭法是利用生物对臭气进行吸附转化,主要包括生物滤池、生物滴滤塔和生物滤床[4-5],虽较物化的处理方式更加绿色,然而上述处理方式均需封闭恶臭单元,占地面积大、动力消耗高、建设和运行费用高[6]。全过程除臭是近几年兴起的一种除臭方法,其关键设备是一台置于生化池中的除臭培养箱。利用培养箱中的填料富集并驯化污水中的脱氮、除磷、脱硫优势微生物,使其随回流污泥充斥于整个系统内并长效增殖[7],以实现对各个工艺环节的NH3和H2S的全过程高效脱除。同时,位于箱底的曝气头可推动水流,强化气-液-固三相传质,从而在源头上削减臭气[8]。全过程除臭技术通过调控整个污水系统里的微生物而达到减臭除臭目的,使用的设备结构简单、安装方便、运行稳定、投资成本低、运行能耗少[9],是一种高效低碳的技术。
冯辉等[10]在天津市张贵庄污水处理厂的设计中采用了全过程除臭工艺,对厂区周界下风向无组织排放恶臭、氨、硫化氢进行了检测,其最大浓度均达到了天津市地方标准《恶臭污染物排放标准》 (DB12/-059-95) 。薛二军等[11]发现,采用全过程除臭工艺后,污水厂粗细格栅的H2S质量浓度由原工艺的180 mg·m−3 降至30 mg·m−3以下。然而,针对全过程除臭工艺,若构筑物中臭气监测点位少及污染物检测的种类少,则无法准确表征污水处理过程中臭气的排放规律和强度,易造成臭气的主成分和关键污染点位识别不准确的问题,故需要对多构筑物中的多种气相污染物进行监测。此外,再生水厂的臭气来源于微生物发酵污水中的含N和S等有机物,主要包括NH3、H2S及甲烷等。污水中的有机氮经氨化作用分解生成氨,作为硝化和同化作用的底物,氨主要以NH4+-N的形式溶于水[12],待NH4+-N饱和后便转化为NH3释放到大气中[13],H2S产生于厌氧阶段-硫酸盐还原菌(sulfate-reducing bacteria,SRB)还原高浓度硫酸根离子的过程[14],因此对于污水中的污染物进行监测,可加深对于全过程除臭工艺的认识。
本研究以典型含N和含S污染物为主要探针,对多构筑物中的液相和气相污染物进行监测,以期评估全过程除臭工艺的效果。考察进水、粗格栅、曝气沉砂池和沉淀池污水中的[NH4+-N]和H2S的质量浓度,监测粗格栅、污泥储池、污泥脱水泵房及污泥堆场废气中的H2S、NH3等的质量浓度,研究模拟换气环境下工艺关键环节及厂界的H2S、NH3及臭气的浓度等,通过分析各关键工艺节点的气液两相中污染物的主成分及排放通量特征,识别关键污染风险点,并参照相关标准评估该工艺的应用效果,以期为开发污水处理厂的减污降碳除臭工艺提供参考。
全过程除臭工艺在北京某再生水厂的应用及其中气液两相污染物的削减过程
Application of the whole process deodorization process in a reclaimed water plant in Beijing and the reduction of gas-liquid two-phase pollutants
-
摘要: 全过程除臭是一种以微生物法为核心的低碳除臭方式。为评估其应用效果,分析了北京市某再生水厂的产排污关键环节中的气液两相污染物削减情况。结果表明:初始污水中[NH4+-N]高于H2S的质量浓度,分别为55 mg·L−1和6 mg·L−1,二者随污水反应进程呈逐渐降低的趋势,分别在生化段和粗格栅处去除效果最好;气相污染物主要为NH3和H2S,其中NH3在粗格栅处排放通量较高,质量浓度为0.4 mg·m−3,化学浓度贡献率为71%~91%,H2S在污泥储池处质量浓度较高,为0.16 mg·m−3;对粗格栅处进行模拟换气实验,H2S、NH3和臭气的浓度分别为 0.027~0.036 mg·m−3、0.023~0.031 mg·m−3和10~15;厂界的NH3和H2S质量浓度在上风向的检测值均低于下风向,最高值为0.100和 0.007 mg·m−3,臭气 (无量纲) ,甲烷体积分数为1.7×10−6,粗格栅模拟换气和厂界排放浓度均达到北京市《大气污染物综合排放标准》 (DB11/501-2017) 和《城镇污水处理厂污染物排放标准》 (GB18918-2002) 。该研究结果对北京某再生水厂进行气液两相污染物削减分析,证明了全过程除臭工艺应用的有效性,可为同类水厂的除臭问题提供参考。Abstract: Aiming at the demand for reducing pollution and carbon in the deodorization process of a reclaimed water plant, the whole process deodorization process was adopted, which was a relatively low carbon deodorization method based on microbial method. In order to evaluate its application effect, the reduction of liquid and gas phase pollutants in the key point of production and sewage of a reclaimed water plant in Beijing was analyzed in this study. The results showed that the concentration of NH4+-N in the initial sewage was higher than H2S, which was 55 mg·L−1 and 6 mg·L−1, respectively. The concentration of NH4+-N and H2S decreased gradually with the process of sewage reaction, and the removal effect was the best at the biochemical section and coarse grid. The main gaseous pollutants were NH3 and H2S, among which NH3 had the highest emission flux of 0.4 mg·m−3 at the coarse grid and the contribution rate of chemical concentration was 71%~91%, while H2S had the highest concentration of 0.16 mg·m−3 at the sludge storage tank. The simulated air exchange experiments were carried out at the coarse grille, and the concentrations of H2S, NH3 and odor were 0.027~0.036 mg·m−3, 0.023~0.031 mg·m−3 and 10~15, respectively. The concentration of NH3 and H2S in the factory boundary in the upwind direction was lower than that in the downwind direction, the highest values were 0.100 and 0.007 mg·m−3, odor (dimensionless), methane concentration was 1.7×10−6. The simulated ventilation of coarse grille and the emission concentration of plant boundary reached the comprehensive emission Standard of Air Pollutants of Beijing(DB11/501-2017) and Pollutant Emission Standard of Urban Sewage Treatment Plant (GB18918-2002). In this study, the gas-liquid two-phase pollutant reduction analysis of a Beijing recycled water plant proved the effectiveness of the whole process deodorization process, and provided a technical reference for the deodorization problem of similar water plants.
-
Key words:
- whole process deodorization /
- NH4+-N /
- H2S /
- sewage /
- plant boundary
-
表 1 监测点位、监测样品、监测指标
Table 1. Monitoring points, samples, indicators
相属性 序号 监测
点位监测
样品监测
污染物备注 液相 1 提升泵房进水 废水 H2S
NH4+-N该点位位于工艺图上的① 粗格栅 污泥回流后,与污水充分混合后采样,该点位位于工艺图上的② 旋流沉砂池出水口 该点位位于工艺图上的③ 污泥沉淀池 污泥静置,取上清液,该点位位于工艺图上的④ 气相 2 粗格栅 废气 H2S
NH3回流污泥与污水充分混合后采样,需密封空间,按无组织采样 污泥储池 废气 密封后,按无组织采样 污泥泵房 废气 密封后,按无组织采样,车间内采样 污泥堆场 环境空气 提前清理场地,后按无组织采样 3 粗格栅 废气 H2S 模拟每小时6次换气,从构筑物中于日较大和较小水量时段采样 (无组织) NH3 臭气 4 厂界无组织废气 无组织废气 H2S 在单位周界采样 NH3 -
[1] 薛勇刚, 薛韵涵, 戴晓虎, 等. 污水处理厂除臭技术比较及选择[J]. 给水排水, 2013, 49(S1): 218-222. [2] 龚永骏, 孙英战. 低温等离子除臭技术在医疗废水处理中的应用[J]. 能源与环境, 2017(1): 81-82. doi: 10.3969/j.issn.1672-9064.2017.01.039 [3] 张夏彬, 沈超, 高洋, 等. 臭氧工艺尾气在污水处理厂除臭中的回收利用研究[J]. 给水排水, 2020(S1): 469-472. [4] 高雪晴, 范玉婧, 高志岭, 等. 基于好氧反硝化的SND生物滴滤塔除氨机制及微生物学分析[J]. 环境科学学报, 2020, 40(4): 1422-1429. [5] 苏宝康, 刘军, 张艳丽. 开放式生物滤床处理恶臭气体工程实例[J]. 环境科技, 2013(3): 55-57. doi: 10.3969/j.issn.1674-4829.2013.03.014 [6] 刘晓军. 烟台市套子湾污水处理厂一期工程除臭工艺分析[J]. 中国给水排水, 2022, 38(10): 130-133. doi: 10.19853/j.zgjsps.1000-4602.2022.10.022 [7] LI C H, LIU J C. Sludge dewaterability and floc structure in dual polymer conditioning[J]. Advances in Environmental Research, 2001, 5(2): 129-136. doi: 10.1016/S1093-0191(00)00049-6 [8] 王辉. 全过程生物除臭技术环境影响分析[J]. 环境与发展, 2014, 26(4): 144-147. doi: 10.3969/j.issn.1007-0370.2014.04.044 [9] 郑龙行, 张飞, 林梅山, 等. 污水处理厂全过程除臭工艺及应用[J]. 山东化工, 2022, 51(3): 196-197. doi: 10.3969/j.issn.1008-021X.2022.03.066 [10] 冯辉, 王舜和. 天津市张贵庄污水处理厂除臭系统设计[J]. 中国给水排水, 2017, 33(14): 51-54. [11] 薛二军, 李玉庆, 聂英进, 等. 一种新型的污水处理厂除臭工艺[J]. 环境科技, 2011(3): 42-44. doi: 10.3969/j.issn.1674-4829.2011.03.010 [12] 吴传栋. 基于碳源调控的污泥堆肥氮素转化及氨同化作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [13] 严兴, 侯毛宇, 李碧清, 等. 微生物发酵菌和生物质炭及蘑菇渣对污泥堆肥效果的影响[J]. 环境科学研究, 2018, 31(1): 136-142. doi: 10.13198/j.issn.1001-6929.2017.03.24 [14] 刘洪波, 潘定, 高赛赛, 等. 典型初期雨水调蓄池的运行控制模式[J]. 净水技术, 2015, 34(5): 96-99. doi: 10.3969/j.issn.1009-0177.2015.05.018 [15] 肖作义, 段耀庭, 赵鑫等. 混合填料在生物滤池中除臭效果研究[J]. 安全与环境工程, 2020, 27(6): 88-94. doi: 10.13578/j.cnki.issn.1671-1556.2020.06.013 [16] 唐建, 唐恒军, 司马卫平, 等. 生物除臭菌剂除臭效能及其对微生物影响研究[J]. 四川轻化工大学学报:自然科学版, 2021, 34(5): 26-32. [17] 乔蕴虹, 杜瑞, 唐堂, 等. 全过程除臭工艺在包头北郊水质净化厂的应用[J]. 中国给水排水, 2016, 32(14): 60-63. doi: 10.19853/j.zgjsps.1000-4602.2016.14.014 [18] KYUNG-SUK CHO. A review on emission and mitigation of N2O in biological wastewater treatment[J]. Microbiology and Biotechnology Letters, 2018, 46(3): 181-193. doi: 10.4014/mbl.1804.04015 [19] 孙事昊, 彭永臻, 贾体沛, 等. 填料对生物滴滤塔去除市政污水处理厂恶臭气体运行效果的影响[J]. 北京工业大学学报, 2019, 45(5): 493-501. doi: 10.11936/bjutxb2018120015 [20] 陈竞, 谢玉清, 代金平, 等. 一种腐熟菌剂对粪肥腐熟过程中菌群结构及其肥效的影响[J]. 新疆农业科学, 2019, 56(5): 927-935. [21] 谢嘉倩, 辛晓东, 洪俊明, 等. 闽南地区低温下复合填料强化生物滤柱除臭及微生物分析[J]. 环境工程学报, 2022, 16(4): 1123-1132. doi: 10.12030/j.cjee.202201169 [22] YIN DX, LIU W, ZHAI NN, YANG GH, WANG XJ, FENG YZ, REN GX, et al. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition[J]. Bioresource Technology, 2014(166): 373-380. [23] 邵栓, 党晓伟, 李慧娟, 等. 响应面法优化微生物除臭效果的研究[J]. 中国畜牧兽医, 2020, 47(8): 2684-2693. doi: 10.16431/j.cnki.1671-7236.2020.08.039 [24] 曹令通. 皖南某城市污水处理厂除臭设计优化措施及原因分析[J]. 清洗世界, 2022, 38(5): 82-84. doi: 10.3969/j.issn.1671-8909.2022.05.028 [25] CHEN D, SZOSTANK P. Factor analysis of H2S emission at a wastewater lift station: a case study.[J]. Environmental Monitoring & Assessment, 2013, 185(4): 3551-3560. [26] 郭学彬, 常江, 赵珊, 等. 污水处理厂恶臭气体产排规律及除臭菌群分布研究[J]. 环境保护科学, 2022, 48(2): 102-108. doi: 10.16803/j.cnki.issn.1004-6216.2022-02-020 [27] LINS P, MALIN C, WAGNER A. , et al. Reduction of accumulated volatile fatty acids by an acetate-degrading enrichment culture[J]. FEMS Microbiol Ecol, 2010(3): 469-478. [28] 余鹏举, 曹先贺, 李少杰. 微生物在恶臭污染治理中的研究及应用[J]. 微生物学通报, 2021, 48(1): 165-179. doi: 10.13344/j.microbiol.china.200332 [29] 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111. [30] 程皇座, 赵旦华, 马渭青, 等. 益生菌制剂在育肥猪养殖中的应用研究进展[J]. 中国饲料, 2018(21): 36-40. doi: 10.15906/j.cnki.cn11-2975/s.20182108 [31] 吴伟霞, 席北斗, 黄彩红, 等. 有机固废堆肥中产臭及除臭技术的微生物作用机制研究进展[J]. 环境科学研究, 2021, 34(10): 2486-2496. doi: 10.13198/j.issn.1001-6929.2021.05.38