-
长江上游地区是我国重要的经济发展带,位于长江上游的中大型城市多以丘陵地貌为主,具有地势落差大、雨污收集速度快、地下水渗入率高等雨污排放特征[1-3]。城市污水处理厂是雨污治理的重要基础设施。一方面,污水处理厂减少了有机污染物、氮磷等污染物的排放,在水环境污染物控制中发挥重要作用[4-6]。城市污水处理厂累计削减的有机污染物 (以COD计) 占全国减排总量的70%以上,且占比逐年增加[7];另一方面,城市污水处理厂需消耗大量电能。污水处理厂的用电量约占全社会用电量的2.6‰[8],且占比逐年上升。此外,城市污水处理厂在深度脱氮除磷中,需使用大量的有机碳源和混凝剂[9-11]。
随着城市污水水量增加和污染物种类增多,污水处理厂面临严峻挑战。为保证出水水质达标,污水处理厂会考虑延长处理工艺单元链和增加了药剂的投加量,致使其运行成本增加[12-13]。本研究拟基于长江上游西南丘陵城市污水处理厂的运行优化需求,以泸州作为长江上游西南丘陵城市的代表,分析2020—2022年泸州中心区城市污水处理厂的电力、混凝剂和碳源使用量和使用效率,并与同期全国城市污水处理厂运行情况比较,以期掌握西南典型丘陵城市污水处理厂的用电量和药剂使用量特征,为污水处理厂运行优化提供参考。
-
本研究中泸州中心区5座城市污水处理厂的运行用电量、药剂投加量和进水与出水水质由泸州市住房和城乡建设局、泸州市兴泸水务 (集团) 股份有限公司提供,全国污水处理厂的运行数据来自住建部全国城镇污水处理管理信息系统和《中国城镇污水处理与再生利用发展报告 (1978-2020) 》。污水处理厂的用电量和药剂投加量为月累积用量;进水和出水水质指标为月均数据;统计期 (2020年1月—2022年4月) 内中位值用于定量讨论水质特征,5th~95th概率分布 (将数据按大小顺序排列的5%和95%分位值) 和箱式图用于表示水质数据分布特征。
-
泸州市位于长江上游丘陵地区,其城市污水和初期雨水经由排水管网进入污水处理厂处理后再排入河流中。该市中心区共有5座城市污水处理厂,依次为纳溪污水处理厂、鸭儿凼污水处理厂、二道溪污水处理厂、城东污水处理厂和城南污水处理厂。5座污水处理厂的设计污水处理量、主体处理工艺和主要耗能单元如表1所示。
-
污水处理厂的处理水量和运行负荷如图1所示。一方面,污水处理厂水量突然升高情况较多,与该地区的降雨频繁密切关联;另一方面,水量随季节性波动明显,二道溪、城东和城南污水处理厂在7—9月份的水量较大[14]。从2021年开始,城南污水处理厂和城东污水处理厂处理水量长期大于设计处理量,主体工艺处于高负荷运行状态。此外,表2展示了5座污水处理厂进出水水质,出水符合《城镇污水处理厂污染物排放标准》 (GB 18918-2002) 一级A排放标准,但距离地表Ⅲ类水相关指标限值尚有一定差距。
-
1) 运行用电量。用电量是污水处理厂的主要运行成本之一,亟需识别西南典型丘陵城市污水处理厂的用电特征和用电效率[15-16]。总用电量 (Q,104 kW·h) 、单位处理水量的用电量 (QV,kW·h·m−3) 和单位污染物去除量的用电量 (QCOD和QNH3-N,分别指去除污水中单位质量有机污染物 (以COD计) 或NH3-N的用电量,kW·h·kg−1) ,常用于表示用电特征和用电效率,计算方法如式 (1)~(3) 。
泸州中心区5座城市污水处理厂的总用电量Q为20.0~110.9 104 kW·h (5th~95th) ,如图2 (a) 所示。鸭儿凼污水处理厂的Q值最大 (中位值105.75 104 kW·h) ,其次为二道溪污水处理厂 (中位值 85.10 104 kW·h) 。城东和城南污水处理厂的处理水量和主体处理工艺相同,但城南污水处理厂Q的中位值为51.01 104 kW·h ,高于城东污水处理厂 (中位值47.61 104 kW·h) 。在污水处理厂的实际运行当中,曝气是主要的耗能工艺。此外,5座城市污水处理厂均在三级处理流程中设置了紫外消毒渠处理单元,这也会增加污水处理厂的总用电量。伴随着污水处理工艺链的延长,电耗的总量和来源也逐渐增加。
泸州中心区5座城市污水处理厂的QV为0.25~0.52 kW·h·m−3 (5th~95th) ,如图2(b)所示。鸭儿凼的QV值最高 (中位值0.46 kW·h·m−3) ,与其膜生物反应器 (membrane bioreactor,MBR) 处理工艺能耗较高有关[17]。城东污水处理厂的QV值最低 (中位值0.28 kW·h·m−3) ,且显著低于城南污水处理厂 (中位值 0.36 kW·h·m−3) 。城东污水处理厂与城南污水处理厂的处理水量相近、工艺相同,QV差异表明进水水质、运营操作等因素会导致用电效率的差异。
泸州中心区城市污水处理厂的QCOD和QNH3-N分别如图2(c)和图2(d)所示。QCOD为1.12~3.55 kW·h·kg−1 (5th~95th) 。其中,鸭儿凼污水处理厂的QCOD最高 (中位值2.58 kW·h·kg−1) ,城东污水处理厂QCOD稍高于城南污水处理厂且分布范围较大 (中位值1.94 kW·h·kg−1) 。QNH3-N为9.64~30.6 kW·h·kg−1 (5th~95th) 。鸭儿凼污水处理厂的QNH3-N最大 (中位值20.57 kW·h·kg−1) ,而城东污水处理厂的QNH3-N最小 (中位值11.23 kW·h·kg−1) ,且显著低于城南污水处理厂 (中位值 17.39 kW·h·kg−1)。
2) 运行用电效率。分析2020—2021年全国5 799座城镇污水处理厂处理用电量 (图3(a)) 。QV为0.16~1.20 kW·h·m−3 (5th~95th) ,中位值和平均值分别为0.36和0.47 kW·h·m−3。80%的污水处理厂的QV低于0.60 kW·h·m−3。此外,泸州中心区5座城市污水处理厂的QV均优于全国平均值,但差于前28%的污水处理厂。其中,鸭儿凼、二道溪和城南污水处理厂的QV差于国内50%以上的污水处理厂。由此说明,泸州中心城区城市污水处理厂的用电效率整体较高,但仍可通过处理工艺优化和升级进一步提高用电效率[18-19]。
泸州是典型的西南丘陵城市。进一步比较其与西南地区和其他地区的用电效率,结果如图3(b)所示。华北地区的QV值最高 (中位值 0.61 kW·h·m−3) ,西南地区、西北地区和华东地区的QV值为中等 (中位值 0.36~0.51 kW·h·m−3) 。东北地区、华中地区和华南地区的QV值最低 (中位值 0.27~0.36 kW·h·m−3) 。与各地区典型运行效率相比,泸州市中心城区5座污水处理厂的QV优于华北地区、西北地区和西南地区的QV。各地区Qv的存在较显著的差异,与污水进水水质、处理工艺和气候紧密关联[20-21]。
为增加运行用电效率,污水处理厂从厂区设计方面应该结合所处的地形特点,在处理单元高程布置中采用合理的布局,以减少提升泵的使用。此外,鼓风机和搅拌器是主要耗能设备,从选购的角度来说,应考虑实际处理水量和水质,选择型号适宜的设备;从布置的角度来说,精准曝气以增加溶解氧的传质速率可提升运行用电效率[22]。
-
1) 除磷混凝剂用量。泸州市中心城区污水处理厂投加的混凝药剂为聚合硫酸铁 (polyferric sulfate,PFS) 。2020—2022年5座城市污水处理厂的单位处理水量的PFS投加量 (PFSV,mg·L−1) 和单位总磷 (TP) 去除量的PFS投加量 (PFSTP,mg·mg−1) 如图4所示。鸭儿凼和二道溪污水处理厂的PFSV较高,为48.42~53.57 mg·L−1;城东和城南污水处理厂的PFSV较低,为25.11~26.98 mg·L−1。
PFSTP与进水和出水水质密切相关。泸州中心城区污水处理厂出水TP均满足一级A排放要求。进一步分析发现,泸州中心城区5座污水处理厂的PFSTP为2.67~30.41 mg·mg−1 (5th~95th) 。城东污水处理厂PFS投加质量分数较低,但同时PFSTP仅为9.41 mg·mg−1;鸭儿凼不仅PFS投加质量分数较高,同时PFSTP达到19.16 mg·mg−1。这与鸭儿凼污水处理厂二级出水的磷形态 (偏磷酸盐或溶解态为主) 等有关,需进一步开展水质分析来提高除磷工艺优化[23-24]。值得注意的是,城东污水处理厂和城南污水处理厂的工艺和设计规模相同,但城南污水处理厂的PFSTP显著较高,为13.34 mg·mg−1。这可能是由于工艺操作和水中磷形态不同。如PFS对偏磷酸盐的去除效果较差,对磷形态分析和操作条件优化将有助于提高除磷效率和混凝剂投加效率[25]。
2) 除磷混凝剂使用效率。比较泸州市中心城区5座污水处理厂与国内其他污水处理厂的混凝剂用量,结果如表3所示。北京市吴家村污水处理厂和上海市城投污水处理厂投加的混凝剂为PFS,但其PFSTP是泸州市中心城区污水处理厂的1.36和2.06倍;昆明市第三污水处理厂投加的混凝剂为聚合氯化铝 (polyaluminium chloride,PAC) ,单位TP去除量的PAC投加量 (PACTP) 为11.1 mg·mg−1。混凝剂使用效率比较结果表明,泸州市中心城区的PFS使用效率较高;由于PFS与PAC的性质差异,混凝剂的处理效率和使用效率存在差异。后续可基于混凝剂的单位除磷效率,进行混凝剂种类、操作条件和投加量等工艺条件优化[26]。污水处理厂的PFSTP与进出水TP关系如表3和图5所示,拟合结果表明其线性相关性较差。这说明污水处理厂的在三级处理化学除磷过程中,混凝剂使用效率PFSTP与进出水TP线性不相关[27]。
-
1) 碳源投加量。为实现高效除氮,污水处理厂通常需要补充外部碳源[30-31]。如图6 (a) 所示,泸州市中心区5座城市污水处理厂单位处理水量的碳源投加量 (CV,折合COD计) 为1.45~161.38 g·m−3 (5th~95th) 。污水处理厂之间CV差别较大,其中纳溪污水处理厂投加的碳源较少 (中位值14.04 g·m−3) ,城东污水处理厂投加的碳源较多 (中位值 96.43 g·m−3) 。污水处理厂的CV差异与进水碳源、形态、污水处理工艺等因素相关。在泸州市的中心区污水处理厂中,单位总氮 (TN) 去除量对应碳源投加量 (CTN,以COD计) 为0.13~6.55 g·g−1 (5th~95th) (图6 (b) )。污水处理厂间的CTN差异规律与CV相似。城东污水处理厂的CTN较高 (中位值为4.88 g·g−1) ,二道溪污水处理厂较低 (中位值为0.60 g·g−1) 。
2) 碳源使用效率。2020年全国2 347座城镇污水处理厂的CV和CTN如图7所示,CV为1.4~154.2 g·m−3 (5th~95th) ,中位值为20.2 g·m−3 (图7(a)) ; CTN为0.04~4.67 g·g−1 (5th~95th) ,中间值为4.84 g·g−1 (图7(b)) 。泸州中心区的5座污水处理厂CV和CTN均差于国内50%以上的污水处理厂,这说明泸州市这5座污水处理厂的碳源使用效率仍有较大提升空间。
为探究碳源使用效率CTN与进出水TN的相关性,对CTN与进出水TN进行线性拟合,结果如图8所示,这说明污水处理厂在外加碳源增强反硝化脱氮过程中,碳源使用效率CTN与进出水TN线性不相关。为提升碳源的使用效率或减少碳源的使用量,可考虑从运行优化、工艺升级与协同两个方面入手。以往污水处理厂投加外加碳源是凭借经验控制投加量,这会导致在维持出水TN达标的情况下,部分碳源可能浪费且增加水体BOD5。而精准加碳可提升碳源的使用效率,可通过对硝酸盐和亚硝酸盐质量浓度的在线监测和反馈调节来实现精准加碳。此外,工艺升级与协同可减少碳源的使用量,采用短程硝化工艺使得氮元素以亚硝酸根的形式存在,进而减少还原过程中的碳源投加量。此外,反硝化滤池工艺的增加和协同不仅可减少碳源在A2/O工艺的投加量,还可维持出水TN稳定性。
-
1) 西南丘陵城市泸州市中心区城市污水处理厂的电力、混凝剂和碳源的用量具有显著季节特征,夏季降雨较多时的用电量和药剂用量较高。2) 在用电量方面,泸州市中心城区污水处理厂的QV为0.25~0.52 kW·h·m−3,用电效率较好,位于全国28%~66%。其中,鸭儿凼污水处理厂的QV较高 (中位值 0.46 kW·h·m−3) ,与其膜生物处理工艺有关。城东和城南污水处理厂的设计处理水量和工艺相同,但QV和QNH3~N差异较大,主要原因为进水中污染物的种类和[NH3-N]差异较大。因此,污水处理厂用电量、用电效率与水量相关,也与进水出水水质、操作条件等相关。3) 在药剂投加量方面,泸州市中心城区污水处理厂以PFS为除磷混凝剂,PFSTP效率较高,为2.67~30.41 mg·mg−1;泸州市中心区城市污水处理厂的碳源使用率较低,位于全国44%~95%,需通过对进水中硝酸盐与亚硝酸盐质量浓度进行监测、升级脱氮工艺和外加碳源精准投加等方式来提升碳源使用效率。
西南丘陵城市泸州中心区城市污水处理厂用电量和药剂投加量特征
Characteristics of electricity consumption and chemical dosage of urban wastewater treatment plants in the central area of the southwestern hilly city Luzhou
-
摘要: 用电量和药剂投加量是城市污水处理厂运行的主要成本,也是污水处理厂减污降碳的重要环节。西南丘陵城市具有地势落差大、雨污收集速度快、地下水渗入率较高等显著区域特征,但其城市污水处理中的电力和药剂使用量和使用效率仍不清楚。分析了西南丘陵城市泸州中心区5座城市污水处理厂电力、混凝剂和碳源的使用量和使用效率。研究发现,电力和药剂使用量具有显著的季节特征,夏季降雨较多时的用电量和药剂用量较高。泸州市中心城区污水处理厂的单位处理水量的用电量为0.28~0.46 kW·h·m−3,位于全国28%~66%;单位总磷去除量的混凝剂用量为25.11~53.57 mg·mg−1,单位总氮去除量的碳源 (折合COD计) 投加量为0.60~4.88 g·g−1,位于全国44%~95%。泸州中心区城市污水处理厂的电力使用效率较高,但碳源使用效率较低,脱氮工艺和操作仍有待优化。本研究可为长江上游地区丘陵城市污水处理厂的优化运行管理和节能降耗工作提供参考。Abstract: Electricity consumption and chemical dosage are major costs in the operation of urban wastewater treatment plants and important aspects of reducing pollution and carbon in wastewater treatment plants. Southwestern hilly cities have significant regional characteristics such as large terrain drop-offs, rapid rainwater collection rates, and high groundwater infiltration rates, but the amount and efficiency of electricity and chemical use in their urban wastewater treatment remains unclear. The usage and efficiency of electricity, coagulant, and carbon source in five urban wastewater treatment plants in the central area of the southwestern hilly city of Luzhou were analyzed in this paper. It was found that electricity consumption and chemical dosage had significant seasonal characteristics, with higher electricity and chemical usage in summer due to more rainfall. The electricity consumption per unit of treated water volume in the central urban wastewater treatment plant in Luzhou ranged from 0.28 to 0.46 kW·h·m−3, located at 28%~66% nationally. The coagulant dosage per unit of total phosphorus removal ranged from 25.11~53.57 mg·mg−1, and the carbon source dosage per unit of total nitrogen removal ranged from 0.60~4.88 g·g−1 (reduced COD value meter), located at 44%~95% nationally. The central area of Luzhou urban wastewater treatment plant had a high efficiency of power utilization but a low efficiency of carbon source utilization, and the denitrification process and operation still needed to be optimized. This study can provide important basic information for the optimal operation and management of urban wastewater treatment plants in hilly cities to save energy and consumption reduction in the upper Yangtze River region.
-
Key words:
- Luzhou City /
- urban wastewater treatment plant /
- electricity consumption /
- coagulant /
- carbon source
-
邻苯二甲酸酯(phthalate esters,PAEs)作为增塑剂,被大量添加在塑料、涂料、化肥和化妆品等商品中. 根据信息处理服务公司(Information handling services,IHS)的一份报告,2014年全球生产和消费的增塑剂为840万吨,其中PAEs类占了70%[1]. 预计2017—2022年全球对PAEs的需求将以年均1.3%的速度增长[2]. 目前,PAEs在中国每年的生产量和消费量大约为130万吨,占全球总量的20%[3]. 鉴于PAEs不是通过稳定的化学键与产品结合,此类化合物很容易通过多种方式释放到环境中,例如工业和市政废水排放、固体废物处置和浸出、产品使用过程中的迁移和挥发[4-6]. 研究表明全球大多数人群均已暴露于PAEs中,并且已在人体血清和脂肪中发现PAEs的存在[7]. 人体暴露于PAEs的主要途径为食物和饮用水的摄入[8-9],其中饮用水作为每日必须摄入的介质,其中含有的PAEs对人体的影响近年来受到了广泛关注[5,10-11].
邻苯二甲酸二甲酯(dinethyl phthalate,DMP)、邻苯二甲酸二乙酯(diethyl phthalate,DEP)、邻苯二甲酸二丁酯(di-n-phthalate,DBP)、邻苯二甲酸丁苄酯(butylbenzyl phthalate,BBP)、邻苯二甲酸二(2-乙基己基)酯(di(2-ethylhexyl)phthalate,DEHP)和邻苯二甲酸二辛酯(di-n-octyl phthalate,DNOP)已被联合国列入优先管控污染物[12],DMP、DBP和DEHP也已被列入我国水环境优先控制污染物黑名单,但均未列入我国2017年和2020年出台的两批《优先控制化学品名录》中. 我国《地表水环境质量标准》(GB3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《城市供水水质标准》(CJ/T206-2005)中也规定了部分PAEs的限值. DEHP由于存在最多的健康和环境问题,已被归类为国际癌症研究机构(IARC)确定的可能对人类致癌的物质[13]. 尽管近几年来,PAEs在各类饮用水环境中的检出引起了人们的重视,研究范围涉及水源水、自来水和瓶装水等样品,但针对江苏省沿江城市居民住宅自来水的研究几近空白.
本研究选取江苏省不同区域居民自来水中的PAEs作为研究对象,分析PAEs的污染特征,检验加热煮沸过程对自来水中的PAEs是否具有去除效果,评估经口摄入的人体健康风险,以期为全省饮用水健康安全管控提供科学支撑.
1. 材料与方法(Materials and methods)
1.1 样品的采集
于2017年3月至4月,分别采集江苏省沿江8市(南京、无锡、常州、苏州、南通、扬州、镇江、泰州)居民住宅自来水,采样点位如图1所示. 每个城市选取5户居民进行取样(n=40),采样体积为2 L,所有水样均置于棕色玻璃瓶中,4 ℃避光保存,并于24 h内运回实验室分析. 为了研究加热煮沸过程对水中PAEs的去除效果,从每个城市选取两份水样在实验室煮沸,冷却至室温后保存待测(n=16).
1.2 仪器与试剂
超高效液相色谱/串联质谱(Waters Acquity/TQD),Masslynx工作站,ODS液相色谱柱(waters, BEH C18, 50 mm×2.1 mm, 1.7 μm);Milli-Q超纯水器(美国Millipore公司);HLB玻璃材质固相萃取柱(200mg/5cc,Waters,美国).
6种PAEs(DMP、DEP、DBP、BBP、DEHP和DNOP)混合标准品储备液,质量浓度为100 μg·mL−1(德国Dr. Ehrenstorfer公司),纯度在98.5%—99.5%之间;替代标准物氘代邻苯二甲酸二正丁酯(d4-DBP)和内标物氘代邻苯二甲酸二乙酯(d4-DEP),质量浓度均为100 μg·mL−1(美国Accustandard公司),实验用甲醇、正己烷、乙腈、丙酮等试剂均为农药级或LC-MS级.
1.3 样品的前处理
取1L水样,加入回收率指示物(d4-DBP),以10 mL·min -1的流速通过HLB固相萃取柱. 上样前依次用10 mL乙醚、5 mL乙腈和5 mL超纯水活化萃取柱. 水样过柱后,用高纯氮气吹干HLB小柱,再用体积95:5的乙醚-乙腈溶液进行洗脱,收集洗脱液,氮吹浓缩至近干,用乙腈定容至1 mL,加入内标化合物(d4-DEP)后置于进样瓶中,等待进样.
1.4 仪器分析
本研究采用超高效液相色谱/串联质谱仪(Waters Acquity/TQD)、BEH C18色谱柱(50 mm×2.1 mm,1.7 μm)对目标化合物进行定性和定量分析. 进样量为10 μL,流动相为水(A相,含0.2%甲酸)和甲醇(B相),流速为0.4 mL·min−1,色谱柱温度为40 ℃,流动相梯度设置如下: 0 min,A相比例为90%,保持2 min; 2—12 min,A相比例由90%降为0%,保持4 min; 16—18 min,A相比例恢复至60%. 质谱采用电喷雾离子源(ESI),正离子扫描方式,多离子反应监测(MRM)模式,监测条件见表1. 离子源温度120 ℃,毛细管电压4.0 kV,去溶剂温度400 ℃.
表 1 目标化合物的多反应监测条件Table 1. MRM parameters for target compounds化合物Compounds 母离子Precursor ions(m/z) 子离子Product ions (m/z) 解簇电压/VDeclustering potential 碰撞能量/VCollision energy DMP 195.3 163.0* 40 12 195.3 77.1 40 46 DEP 223.1 177.4* 50 25 223.1 149.3 50 12 BBP 313.3 91.3* 68 27 313.3 205.2 68 12 DBP 279.1 149.3* 72 20 279.1 205.2 72 12 DEHP 391.1 167.0* 84 18 391.1 149.0 84 32 DNOP 391.3 261.1* 60 10 391.3 149.0 60 20 1.5 质量保证与质量控制(QA/QC)
实验过程中发现采用液质联用分析PAEs时,存在较大的系统空白干扰,为解决该问题,参考已有研究方法并进行优化完善[14]:在液相输液泵和进样阀之间加入一根吸附分配柱,通过六通阀切换,流动相经过该分配柱后,进入定量环,将定量环中样品带入色谱柱进行分离分析; 由于色谱系统产生的干扰经过吸附分配柱后可以进行短暂的吸附保留,再进入色谱柱,而定量环中的样品则直接经过色谱柱被吸附保留. 因此,系统产生的干扰和目标化合物可以产生出峰时间差,从而减少误差干扰.
实验过程中避免使用塑料和橡胶器皿,所使用的玻璃容器均在马弗炉中400 ℃高温烘烤4 h后经正己烷、丙酮和乙腈清洗. 所有水样均添加回收率标样,每5份样品添加1个程序空白. 自来水中6种PAEs的加标回收率范围为86.5%—109%. 以3倍空白水样加标样测定结果的标准偏差计算各种物质的方法检出限(detection limit,DL),6种PAEs化合物的DL范围为0.1—0.5 μg·L−1.
1.6 健康风险评价
本研究采用美国环保署(USEPA)推荐的水环境健康风险评价模型,分别评估了通过饮用水途径暴露的DEHP致癌风险和∑PAEs非致癌风险. 通过饮用水摄入的日均PAEs剂量(CDI)可以通过公式(1)计算:
CDI=C×IR/BW (1) 式中, CDI为每天通过饮水摄入的PAEs平均剂量(mg·kg−1·d−1); C为饮用水中PAEs的含量(mg·L−1); IR为每日饮用水的摄入量(取2 L·d−1); BW为人均体重(取60 kg).
通过饮用水途径暴露的DEHP致癌风险(RDEHP)通过公式(2)计算:
RDEHP=CDI×SF (2) 式中,SF为经口摄入致癌斜率因子,DEHP的SF值为0.014 kg·d·mg−1.
PAEs非致癌风险采用危险指数(HI)进行评估,通过公式(3)计算:
HI=CDI/RfD (3) 式中,RfD为法规或指南中给出的PAEs非致癌危害的参考剂量(mg·kg−1·d−1),DEP、BBP、DBP、DNOP和DEHP的RfD分别为0.8、0.2、0.1、0.01、0.02 mg·kg−1·d−1,DMP缺少RfD参考剂量数据,HI小于1表示处于安全范围.
2. 结果与讨论(Results and discussion)
2.1 江苏城市饮用水中PAEs的含量与组成
江苏省8个城市居民自来水水样中PAEs检出率为100%,PAEs含量如图2所示,∑PAEs检出范围为4.10—14.23 μg·L−1,平均值为(8.43±2.76)μg·L−1,其中镇江市自来水中∑PAEs含量最高,达到(10.76±2.10)μg·L−1,苏州市其次((9.39±2.08)μg·L−1),泰州市最低((7.14±3.39)μg·L−1).
DBP在所有水样中均有检出,且平均含量最高((2.10±1.65)μg·L−1),17.5%的自来水样品中DBP浓度超过《生活饮用水规范》(GB5749-2006)限值(3 μg·L−1). 所有自来水样品中DEHP浓度均未超过《生活饮用水规范》(GB5749-2006)与世界卫生组织(WHO)《饮用水水质准则》限值(8 μg·L−1)或美国瓶装水中的标准限值(6 μg·L−1)[15],说明江苏省部分城市居民自来水已受到PAEs污染,存在一定的潜在健康风险,该结论与我国其他已有研究结果相似[16-17]. 然而,根据美国环保署1997年出台的饮用水法规和健康建议,由于DEHP致癌性,美国对DEHP的最终管理目标是零暴露风险[18]. 同时有研究表明,长期饮用含有微量PAEs的水,即使其含量满足饮用水标准,也可能对人体健康造成危害[19-20]. 从组成成分来看,DBP和DMP是造成自来水中PAEs含量差异的最主要因素.
表2列出了全球其他国家和地区饮用水中PAEs的污染情况,本研究结果与沙特阿拉伯(0.2—30.8 μg·L−1)和墨西哥(0.6—45.1 μg·L−1)等国家瓶装水中PAEs的含量相近[5],比葡萄牙(0.02—0.35 μg·L−1)、法国(0.03—0.35 μg·L−1)和伊朗(0.07—0.52 μg·L−1)等西方国家自来水中浓度高近两个数量级[11,21-22],比我国天津市居民饮用水((2.41±0.39)μg·L−1)高一个数量级[23],但低于河南省的研究结果(0.24—82.2 μg·L−1)[24],这与河南饮用水取样点位受到污染河流水平扩散、垂直渗透和雨水溶解有关. 已有研究表明江苏居民自来水中PAEs来源广泛,包括水源水赋存、生产过程带入和塑料管道析出等[25].
表 2 世界其他国家和地区自来水中PAEs含量Table 2. Concentrations of PAEs in other countries and regions around the world国家和地区Country and region BBP/(μg·L−1) DBP/(μg·L−1) DEP/(μg·L−1) DMP/(μg·L−1) DNOP/(μg·L−1) DEHP/(μg·L−1) ∑PAEs/(μg·L−1) 参考文献Reference 江苏省Jiangsu nd—7.39(0.71) 0.34—7.40(2.01) nd—6.41(1.40) nd—8.40(1.93) nd—5.23(1.23) nd—6.87(1.93) 4.10—14.23(8.43) 本研究 天津市Tianjin 0.44—0.71 0.38—0.68 — — — 1.10—1.78 1.92—2.78(2.41) [23] 河南省Henan nd 0.93 44.04 38.19 — 12.49 — [24] 武汉市Wuhan — 0.60 0.90 nd — — — [26] 葡萄牙Portugal 0.03 0.52 0.19 0.04 — 0.06 0.02—0.35 [21] 德国Germany 0.05 0.64 0.16 — — 0.06 0.02—0.60 [27] 西班牙Span nd nd—0.91 nd—0.38 nd—0.03 — nd 0.38—0.73 [10] 西班牙Span nd nd 0.19 nd — nd nd—0.19 [28] 法国France nd 0.04 0.03 nd — 0.35 — [22] 希腊Greece — 1.04 0.30 — — 0.93 0.30—1.04 [29] 捷克Czech 0.002 0.05 0.07 0.08 nd 0.66 — [30] 越南Vietnam 0.20—4.21 0.01—2.56 nd—2.57 nd—0.54 nd—1.93 1.01—14.50 2.10—18.00(11.2) [31] 伊朗Iran 0.05—0.15(0.10) nd—0.14(0.09) nd—0.09(0.05) 0.08—0.67(0.37) nd—0.11(0.01) nd—0.38(0.15) 0.07—0.52 [11] 注:nd,未检出,not detected;—,未参与检测,not included;( ),平均值,mean level 图3比较了自来水与煮沸后冷却至室温的水样中PAEs的浓度,结果与其他研究类似[32],加热或煮沸后的自来水中,PAEs含量有所下降,但下降程度有限,其中DBP平均降低程度最高(21.6%),其次是BBP(18.6%),DNOP最低(9.1%). 值得注意的是,有研究报道,若将开水立刻倒入塑料杯,高温会加速塑料中PAEs的析出,导致饮用水中PAEs含量显著升高[23].
2.2 PAEs健康风险评价
2.2.1 致癌风险评估
江苏省不同地区通过饮用水摄入导致的DEHP致癌风险如图4所示,所有自来水和煮沸冷却水中DEHP的致癌风险均低于USEPA推荐的健康风险可接受最大水平(1×10−6),其中苏州、南通和泰州水样中DEHP致癌风险较高. 煮沸后的自来水在一定程度上降低了DEHP的致癌风险,降幅达到78%. 但在高温情况下DEHP会从塑料包装中迁移至水体,导致DEHP的致癌风险有超过1×10−6的可能[23,33],另外随着储存时间的增加,水中DEHP的含量也会随之上升[22]. 因此,长期饮用存放在高温环境中的瓶装水,例如高温天气车内长时间放置的瓶装水,对人体健康危害极大,应引起高度重视.
2.2.2 非致癌风险评估
5种PAEs(DEP、BBP、DBP、DNOP和DEHP)的非致癌风险采用危险指数如图5和表3所示. 结果显示,江苏省8个城市自来水中∑PAEs的HI范围在8.26×10−3(无锡市)—3.25×10−2(南通市),均远小于1,表明江苏省不同地区自来水中PAEs摄入对人体造成的非致癌健康风险可忽略不计. 煮沸后的自来水PAEs非致癌风险与致癌风险变化情况类似,均有不同程度的降低,该结果与Wang[23]和Li[20]在天津市和黄海沿海城市的研究结果一致. DBP在自来水中占总非致癌风险的47.3%,而BBP和DEHP仅占1.60%和1.58%,该结果与天津市自来水中PAEs的非致癌风险占比(DEHP占比最大)有较大差别[23],主要原因是尽管DEHP毒性最大,但在江苏省8个城市自来水样中DEHP的含量相对较低,因此对∑PAEs非致癌风险贡献较小.
除了通过饮用水的暴露方式,PAEs还可以通过食物摄入和皮肤接触等途径对人体健康造成负面影响. 此外,自来水中可能存重金属、农药、消毒副产物和个人护理产品等多种污染物,它们之间的协同效应可能会对人体健康产生多重负面影响. 因此,建议进一步研究并持续监测这些化学物质在不同条件下的自来水和瓶装水中的赋存特征,以期更好地管控生态环境健康风险.
表 3 江苏省不同城市居民自来水中PAEs非致癌风险Table 3. Non-carcinogenic risks of PAEs in residential tap water from different cities in Jiangsu Province城市 City HIBBP HIDBP HIDEP HIDMP HIDNOP HIDEHP ∑HI 南京Nanjing 1.67×10−5 4.67×10−3 9.36×10−5 na 4.77×10−3 4.17×10−5 9.59×10−3 无锡Wuxi 1.27×10−3 4.72×10−3 2.66×10−4 na 1.07×10−3 9.36×10−4 8.26×10−3 常州Changzhou 1.67×10−5 2.48×10−3 1.23×10−4 na 5.02×10−3 1.64×10−3 9.28×10−3 苏州Suzhou 1.67×10−5 8.69×10−3 4.17×10−5 na 8.33×10−5 3.60×10−3 1.24×10−2 南通Nantong 1.67×10−5 1.58×10−2 4.17×10−5 na 1.26×10−2 3.09×10−3 3.15×10−2 扬州Yangzhou 3.97×10−4 1.15×10−2 4.17×10−5 na 6.66×10−3 1.97×10−3 2.06×10−2 镇江Zhenjiang 1.55×10−4 8.65×10−3 2.86×10−4 na 8.33×10−5 1.18×10−3 1.04×10−2 泰州Taizhou 3.24×10−4 1.60×10−2 4.17×10−5 na 5.91×10−3 2.73×10−3 2.50×10−2 注:na,无参考数据,no reference data 3. 结论(Conclusion)
(1)江苏省8个城市40份居民自来水中均检出了PAEs,检出范围为4.10—14.23 μg·L−1,其中镇江市自来水中PAEs的含量最高. 与其他国家和地区相比,本研究区域自来水中PAEs含量处于中等偏上水平,其污染来源有待进一步明确.
(2)与自来水相比,煮沸后冷却至室温的水样在一定程度上降低了PAEs浓度和此类化合物的致癌风险与非致癌风险.
(3)研究区域内DEHP致癌风险指数小于最大可接受风险水平(1×10−6),∑PAEs的非致癌风险指数远小于1,但部分水样中DBP含量超过《生活饮用水规范》(GB5749-2006)限值,存在潜在的生态环境健康风险.
-
图 4 泸州中心区城市污水处理厂单位处理水量的PFS投加量 (PFSV) 和单位总磷去除量的PFS投加量 (PFSTP) 时间变化和统计分布 (2020年1月—2022年4月)
Figure 4. Temporal variation and statistical distribution of PFS dosage per unit treated water volume (PFSV) and PFS dosage per unit total phosphorus removal (PFSTP) of urban wastewater treatment plants in the central area of Luzhou (2020-01—2022-04)
表 1 泸州中心区5座城市污水处理厂概况
Table 1. Overview of the five urban wastewater treatment plants in the central area of Luzhou
污水处理厂 设计污水处理量/(104 m3·d−1) 主体处理工艺和主要能耗单元 纳溪污水处理厂 2.75 曝气沉砂池-A2/O改良工艺-紫外消毒渠 鸭儿凼污水处理厂 8.0 曝气沉砂池-MBR-紫外消毒渠 二道溪污水处理厂 10.0 曝气沉砂池-A2/O-反硝化滤池-紫外消毒渠 城东污水处理厂 5.0 曝气沉砂池-A2/O改良工艺-D型滤池-紫外消毒渠 城南污水处理厂 5.0 曝气沉砂池-A2/O改良工艺-D型滤池-紫外消毒渠 注:A2/O改良工艺即在厌氧池前端增加了预反硝化单元。 表 2 泸州中心区城市污水处理厂进水和出水水质特征 (2020年1月—2022年4月)
Table 2. Quality characteristics of inlet and outlet water of urban wastewater treatment plants in the central area of Luzhou (2020-01—2022-04)
污水 处理厂 BOD5/(mg·L−1) TN/(mg·L−1) [NH3-N]/(mg·L−1) TP/(mg·L−1) 进水 出水 进水 出水 进水 出水 进水 出水 纳溪污水处理厂 198.47±60.79 12.03±3.87 27.80±6.67 9.57±1.10 18.70±5.72 0.61±0.45 2.79±0.72 0.21±0.06 鸭儿凼污水处理厂 197.01±55.66 11.77±1.79 29.85±5.18 7.83±1.54 23.21±2.95 0.51±0.32 3.40±1.01 0.24±0.06 二道溪污水处理厂 231.52±55.01 11.26±2.61 29.85±5.18 7.83±1.54 28.39±9.40 0.04±0.39 3.54±0.85 0.25±0.09 城东污水处理厂 182.33±78.28 19.86±3.55 33.18±8.68 10.20±1.21 25.69±6.69 0.04±0.28 3.28±1.08 0.31±0.03 城南污水处理厂 216.65±65.50 11.97±2.99 28.97±7.55 9.25±1.49 20.73±6.04 0.03±0.03 2.50±0.77 0.24±0.07 表 3 典型城市污水厂处理厂混凝剂药耗水平
Table 3. Coagulant consumption level in a typical urban wastewater treatment plants
-
[1] 翁异静, 周祥祥, 陈思静. 长江经济带经济高质量发展差异性机理及对策分析[J]. 资源开发与市场, 2022, 38(2): 186-193. doi: 10.3969/j.issn.1005-8141.2022.02.009 [2] 刘冬, 杨悦, 邹长新. 长江经济带大保护战略下长江上游生态屏障建设的思考[J]. 环境保护, 2019, 47(18): 22-25. doi: 10.14026/j.cnki.0253-9705.2019.18.004 [3] 魏山忠. 落实长江大保护方针 为长江经济带发展提供水利支撑与保障[J]. 长江技术经济, 2017, 1(1): 8-12. [4] 易倩文, 肖芳, 李江, 等. 贵阳市典型污水处理厂新污染物的赋存、去除及归趋[J/OL]. 环境科学学报: 1-12 [2023-05-17]. [5] 王启镔, 李浩, 董旭, 等. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059 [6] 王瑞霖, 张洪良, 张功良, 等. 基于污水处理厂提标改造需求的难降解工业废水处理工艺改进——以湖南省某城镇污水处理厂为例[J]. 环境工程学报, 2021, 15(11): 3781-3788. doi: 10.12030/j.cjee.202103199 [7] 宋连朋, 魏连雨, 赵乐军, 等. 我国城镇污水处理厂建设运行现状及存在问题分析[J]. 给水排水, 2013, 49(3): 39-44. doi: 10.3969/j.issn.1002-8471.2013.03.008 [8] 中国国家能源局-2022年全社会用电量[EB/OL] 3-01-18]. http://www.nea.gov.cn/2023-01/18/c_1310691508.htm.
[9] 张雪. 污水处理厂低碳节能的探讨与研究[J]. 建材发展导向, 2022, 20(24): 196-198. doi: 10.16673/j.cnki.jcfzdx.2022.0337 [10] OWODUNNI A A, ISMAIL S, KURNIAWAN S B, et al. A review on revolutionary technique for phosphate removal in wastewater using green coagulant[J]. Journal of Water Process Engineering, 2023, 52: 103573. doi: 10.1016/j.jwpe.2023.103573 [11] IWUOZOR KO. Prospects and challenges of using coagulation-flocculation method in the treatment of effluents[J]. Advanced Journal of Chemistry-Section A, 2019, 2(2): 105-127. [12] 周华, 何梓灏, 夏海波, 等. 关于城镇生活污水处理厂再提标的思考[J]. 给水排水, 2021, 57(10): 52-5. doi: 10.13789/j.cnki.wwe1964.2021.10.009 [13] 张安龙, 高楚玥, 王先宝, 等. 某城镇污水处理厂能耗调研与节能分析[J]. 给水排水, 2020, 56(S1): 459-464. doi: 10.13789/j.cnki.wwe1964.2020.S1.106 [14] 陈玮, 程彩霞, 徐慧纬, 等. 合流制管网截流雨水对城镇污水处理厂处理效能影响分析[J]. 给水排水, 2017, 53(10): 36-40. doi: 10.3969/j.issn.1002-8471.2017.10.009 [15] 陈宏儒. 城市污水处理厂能耗评价及节能途径研究[D]. 西安: 西安建筑科技大学, 2009. [16] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International[J]. 2019, 123: 9-10. [17] 李喆, 赵乐军, 朱慧芳, 等. 我国城镇污水处理厂建设运行概况及存在问题分析[J]. 给水排水, 2018, 54(4): 52-57. doi: 10.3969/j.issn.1002-8471.2018.04.010 [18] 张显忠, 程俊, 徐波. 基于低碳节能的城镇污水处理厂MBR工艺设计要点[J]. 中国市政工程, 2023(1): 36-40. doi: 10.3969/j.issn.1004-4655.2023.01.011 [19] 周政, 李怀波, 王燕, 等. 低碳氮比进水AAO污水处理厂碳排放特征及低碳运行研究[J/OL]. 中国环境科学: 1-14.[2023-05-17] [20] 周海蔚, 龙向宇, 唐然, 等. 温度与碳源类型对生物除磷性能和污泥沉降性能的影响[J]. 当代化工, 2022, 51(8): 1765-1772. doi: 10.3969/j.issn.1671-0460.2022.08.001 [21] 田文清, 俞小军, 邓颖, 等. 基于磷回收的低温微氧EBPR系统的表观与微观特性[J]. 中国环境科学, 2022, 42(4): 1625-1634. doi: 10.3969/j.issn.1000-6923.2022.04.016 [22] 焦煜涵. 城市污水处理厂能耗影响因素分析及节能环保措施研究[D]. 西安: 西北大学, 2020. [23] 郑晓英, 李楠, 邱丽佳, 等. 城市污水处理厂二级处理出水中磷深度去除技术[J]. 环境工程学报, 2019, 13(8): 1839-1846. doi: 10.12030/j.cjee.201811003 [24] 刘赛, 宋威. 大型生活污水处理厂高效澄清池工艺调试研究[J]. 给水排水, 2022, 58(S1): 164-169. doi: 10.13789/j.cnki.wwe1964.2021.03.23.0005 [25] 王晓勇, 王立勇, 刘立华. 聚合硫酸铁在污水除磷中的使用及效益分析[J]. 科技与创新, 2021(15): 70-71. doi: 10.15913/j.cnki.kjycx.2021.15.030 [26] 黄俊熙, 岑玉铭, 关宇霆, 等. 污水处理过程中除磷加药智能控制系统及应用研究[J]. 中国给水排水, 2022, 38(1): 104-107. doi: 10.19853/j.zgjsps.1000-4602.2022.01.016 [27] 王众众, 吴光学, 孙迎雪, 等. 污水深度处理微絮凝-V型滤池工艺运行性能分析[J]. 给水排水, 2013, 49(9): 52-56. doi: 10.3969/j.issn.1002-8471.2013.09.011 [28] 马伟芳, 郭浩, 姜杰, 等. 城市污水厂化学除磷精确控制技术研究与工程示范[J]. 中国给水排水, 2014, 30(5): 92-95. doi: 10.19853/j.zgjsps.1000-4602.2014.05.028 [29] 陈广. 城镇污水处理厂化学除磷研究[J]. 中国市政工程, 2015(3): 33-35. doi: 10.3969/j.issn.1004-4655.2015.03.010 [30] FU X, HOU R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of The Total Environment, 2022: 153061. [31] ZHANG F, MA C, HUANG X, et al. Research progress in solid carbon source–based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669 -