-
水体磷污染问题由来已久[1-2]。进入水体中的磷可通过一系列物理化学作用蓄积在沉积物中,而在环境因子或水动力条件发生改变时,沉积物中的磷又会重新回到水中,从而诱发河湖富营养化[3-6]。沉积物对磷的吸附过程,是水体磷循环的关键环节[7-9]。沉积物对磷的吸附能力,反映了河流、湖泊和湿地对于外源磷污染的净化和贮存能力。近年来,已有研究人员对黄河三角洲湿地[10]、黄河兰州段消落带[11]和洱海入湖河口湿地[12-13]等水生态系统的沉积物进行了分析,证实其均具有缓冲外源磷污染的能力。吸附模型拟合也成为了描述沉积物-水界面磷交换行为的重要方法。如使用线性模型拟合吸附等温线得到的沉积物磷吸附-解吸平衡浓度 (EPC0) 是判断沉积物是否发生磷释放的关键指标。当上覆水中磷质量浓度大于EPC0时,沉积物会吸附磷,反之则会释放磷[14-17]。
新河地处我国北方半湿润半干旱季风气候区[18],发源自秦岭浅山区,是渭河支流之一。除洪水期外,新河天然径流严重不足[19]。同时,流域面源污染和沿岸城镇排污也导致新河水质出现恶化,氮和磷质量浓度峰值为25.08和2.94 mg·L−1,远超V类标准[20]。目前,有关沉积物磷吸附特征的研究多集中在清洁或微污染水体中,对具有较高磷本底值的受污染河道较少[7],故沉积物中超量累积的磷对其吸附行为的影响尚不清楚。
采集新河3个典型点位在不同季节的沉积物样品,测定其pH、粒径、化学组成、有机质、总磷含量和磷形态分级等多个理化指标,通过吸附实验和吸附模型研究其磷吸附行为,分析其影响因素。本研究结果将有助于掌握新河沉积物磷污染状况,并为制定相关生态修复策略提供参考。
受污染城市河道沉积物磷吸附特征及其影响因素
Characteristics and influencing factors of phosphorus adsorption in polluted urban river sediments
-
摘要: 采集了典型受污染城市河道——陕西省新河不同季节的沉积物,研究其磷吸附特征及影响因素,并考察其缓冲外源污染的能力,评估其磷释放风险。结果显示,沉积物平均粒径在秋季小于夏季和春季,pH为7.64~8.88;沉积物总磷 (TP) 为870~2 173 mg·kg−1;计算了沉积物磷富集系数,明确了新河部分点位为重度污染类型。吸附动力学研究结果表明:0~2 h沉积物对磷的吸附量在正负之间波动;2~4 h吸附量迅速增加,吸附速率也达到了峰值;之后吸附量增加趋势变缓,并在48 h达到平衡。绘制吸附等温线,可知沉积物的磷吸附-解吸平衡质量浓度 (EPC0) 为0.39~2.21 mg·L−1,高于同时段上覆水中磷的质量浓度,具有释放风险;磷最大缓冲容量MBC和Freundlich常数KF呈现秋季>>夏季>春季的规律;经D-R模型拟合,绝大多数样品的吸附能为8.45~11.18 kJ·mol−1,说明吸附机制为离子交换。相关性分析结果表明,沉积物的磷吸附速率常数与钙的相对含量呈显著相关 (P<0.05) 。EPC0与沉积物的总磷和易释放态磷含量呈显著相关 (P<0.01) ,与沉积物平均粒径和有机质显著相关 (P<0.05) ,与pH显著相关 (P<0.05) 。本研究结果可为受污染城市河道治理提供参考。Abstract: The sediment samples of Xinhe River were collected, which was a typical polluted urban river in Shaanxi Province. The phosphate immobilization capacities of the sediment samples were studied through adsorption experiments, and the influencing factors were also analyzed though a statistical method. The results showed that the pH of sediments was between 7.64 and 8.88, and their average particle size in autumn was smaller than that in summer and spring. The total phosphorus contents of the sediment were between 870.00 and 2 173.00 mg·kg−1. The sediment phosphorus enrichment coefficient was calculated, and some sites of Xinhe River were identified as the type of heavy pollution. The adsorption kinetics showed that the phosphate adsorption amount of the sediment fluctuated between positive and negative in the first 2 hours, and then increased rapidly in 2 to 4 h, and the adsorption rate reached the peak. Subsequently, the adsorption amount increased slowly and reached equilibrium at 48 h. The adsorption isotherms showed that the phosphate adsorption-desorption equilibrium concentration (EPC0) of the sediment ranged from 0.39 to 2.21 mg·L−1, which was higher than the phosphate concentration in the overlying water, and had the risk of release. The maximum phosphorus buffer capacity (MBC) and Freundlich constant KF showed the tendency of autumn>summer>spring. For most of the samples, adsorption energy was between 8.45 and 11.18 KJ·mol−1, indicating that the adsorption mechanism was ion exchange. The correlation analysis showed that the phosphate adsorption rate constant was significantly positively correlated with the calcium content of the sediment (P<0.05). The EPC0 value was highly significantly positively correlated with the total phosphorus and easily released phosphorus content (P<0.01), and was significantly positively correlated with the average particle size and organic matter (P<0.05). Nevertheless, EPC0 was negatively correlated with pH (P<0.05). This study could offer reference for the remediation of polluted urban river.
-
Key words:
- phosphate /
- sediment /
- adsorption /
- polluted river.
-
表 1 沉积物理化性质
Table 1. Physical and chemical characteristics of the sediments
季节 点位 平均粒径
/μmpH 化学组成 有机质 SiO2 CaO Al2O3 Fe2O3 其他 夏季 1# 25.79 8.88 57.88% 10.54% 13.62% 8.14% 9.82% 1.56% 2# 46.25 7.64 59.14% 5.74% 14.64% 8.69% 11.79% 2.42% 3# 54.13 8.13 61.08% 8.56% 13.29% 6.61% 10.46% 2.07% 秋季 1# 22.63 8.63 58.36% 9.34% 14.08% 8.29% 9.93% 1.82% 2# 33.06 7.98 59.64% 6.99% 14.33% 8.39% 10.65% 2.33% 3# 48.16 8.1 61.03% 8.43% 13.33% 6.82% 10.39% 2.33% 春季 1# 56.33 8.24 60.9% 6.92% 13.66% 8.03% 10.49% 1.56% 2# 96.19 7.89 57.63% 6.72% 15.77% 8.76% 11.12% 2.49% 3# 50.10 8.1 60.35% 7.12% 14.11% 7.76% 10.66% 2.17% 表 2 不同模型对吸附动力学的拟合结果
Table 2. Fitting results of adsorption kinetics by different models
季节 点位 准一级动力学模型 准2级动力学模型 k1 qe R2 k2 qe R2 夏季 1# 0.25 161.14 0.92 0.002 7 119.05 0.99 2# 0.06 62.60 0.56 0.011 2 64.94 0.99 3# 0.08 77.75 0.75 0.022 5 64.10 0.92 秋季 1# 0.24 169.82 0.98 0.000 7 151.52 0.90 2# 0.09 146.99 0.98 0.000 4 204.08 0.96 3# 0.14 126.68 0.95 0.041 8 89.29 0.94 春季 1# 0.11 140.60 0.88 0.012 0 133.33 0.88 2# 0.20 129.03 0.95 0.009 3 111.11 0.87 3# 0.09 166.07 0.98 0.000 8 232.56 0.99 表 3 不同模型对吸附等温线的拟合结果
Table 3. Fitting results of adsorption isotherms by different models
季节 点位 线性模型 Langmuir模型 Freundlich模型 D-R模型 NAP EPC0 R2 Qmax KL R2 MBC n KF R2 E R2 夏季 1# 23.90 0.39 0.98 1 000.00 0.10 0.92 98.04 0.72 102.47 0.98 8.45 0.98 2# 185.35 2.02 1.00 1 428.57 0.05 0.95 68.97 0.91 63.08 0.98 7.45 0.98 3# 71.19 1.07 1.00 833.33 0.11 0.81 95.24 0.68 102.66 0.93 9.13 0.93 秋季 1# 75.07 0.46 0.99 1 666.67 0.09 0.97 153.85 0.68 176.44 0.99 9.13 0.99 2# 174.13 0.85 0.97 1 250.00 0.18 0.87 222.22 0.54 252.12 0.93 10.00 0.93 3# 126.75 0.82 0.98 2 500.00 0.05 0.87 133.33 0.78 149.42 0.99 8.45 0.99 春季 1# 41.44 0.41 0.95 416.67 0.15 0.95 64.10 0.62 66.28 0.95 9.13 0.96 2# 241.05 2.21 0.96 526.32 0.11 0.81 55.87 0.64 15.21 0.92 9.13 0.92 3# 143.86 0.53 0.99 555.56 0.31 0.97 169.49 0.50 149.45 0.97 11.18 0.98 表 4 吸附模型参数与沉积物理化指标相关分析结果
Table 4. Correlation analysis results between adsorption model parameters and physicochemical indexes of sediments
参数 平均粒径 pH 有机质 SiO2 Al2O3 CaO Fe2O3 TP Liable-P k1 −0.153 0.753 −0.42 −0.71* 0.116 0.703* 0.249 −0.342 −0.345 k2 0.247 −0.248 0.249 0.568 −0.41 0.034 −0.713* 0.116 0.157 EPC0 0.67* −0.741* 0.754* −0.39 0.743* −0.604 0.361 0.913** 0.898** KF −0.685* 0.192 0.016 0.214 −0.348 0.229 −0.169 −0.357 −0.332 注:*和**分别表示在 P<0.05 和 P<0.01 水平下显著相关;双尾检验。 -
[1] LE MOAL M, GASCUEL-ODOUX C, MéNESGUEN A, et al. Eutrophication: A new wine in an old bottle?[J]. Science of The Total Environment, 2019, 651: 1-11. doi: 10.1016/j.scitotenv.2018.09.139 [2] XU J, MO Y, TANG H, et al. Distribution, transfer process and influence factors of phosphorus at sediment-water interface in the Huaihe River[J]. Journal of Hydrology, 2022, 612: 128079. doi: 10.1016/j.jhydrol.2022.128079 [3] YAN Q, CHENG T, SONG J, et al. Internal nutrient loading is a potential source of eutrophication in Shenzhen Bay, China[J]. Ecological Indicators, 2021, 127: 107736. doi: 10.1016/j.ecolind.2021.107736 [4] XIA L, VERBEECK M, BERGEN B, et al. Effect of external and internal loading on source-sink phosphorus dynamics of river sediment amended with iron-rich glauconite sand[J]. Journal of Environmental Management, 2023, 332: 117396. doi: 10.1016/j.jenvman.2023.117396 [5] 高敏, 姜晓霞, 储茵. 不同水文条件下巢湖典型河流磷形态研究[J]. 水文, 2023, 43(1): 90-95. [6] 黄镁宁, 宁寻安, 张建易, 等. 漫水河清远流域磷污染特征及富里酸对沉积物释磷的影响[J]. 环境工程学报, 2022, 16(5): 1549-1557. doi: 10.12030/j.cjee.202112023 [7] LIAO R, HU J, LI Y, et al. Phosphorus transport in riverbed sediments and related adsorption and desorption characteristics in the Beiyun River, China[J]. Environmental Pollution, 2020, 266: 115153. doi: 10.1016/j.envpol.2020.115153 [8] 鲍林林, 李叙勇. 河流沉积物磷的吸附释放特征及其影响因素[J]. 生态环境学报, 2017, 26(2): 350-356. doi: 10.16258/j.cnki.1674-5906.2017.02.023 [9] NGUYEN T T N, NEMERY J, GRATIOT N, et al. Phosphorus adsorption/desorption processes in the tropical Saigon River estuary (Southern Vietnam) impacted by a megacity[J]. Estuarine Coastal and Shelf Science, 2019, 227: 106321. doi: 10.1016/j.ecss.2019.106321 [10] XU G, SONG J, ZHANG Y, et al. Enhancement of phosphorus storage capacity of sediments by coastal wetland restoration, Yellow River Delta, China[J]. Marine Pollution Bulletin, 2020, 150: 110666. doi: 10.1016/j.marpolbul.2019.110666 [11] 王若凡, 田甜, 刘骅, 等. 黄河兰州段消落带表层沉积物对磷的吸附[J]. 环境工程学报, 2023, 17(1): 343-350. doi: 10.12030/j.cjee.202205138 [12] 顾艳林, 宝冬润, 侯磊, 等. 洱海河口湿地沉积物对磷的吸附特征及影响因素[J]. 环境科学研究, 2021, 34(10): 2358-2368. doi: 10.13198/j.issn.1001-6929.2021.05.37 [13] 王书锦, 刘云根, 王妍, 等. 洱海入湖河口湿地干湿季沉积物氮、磷、有机质垂向分布特征及污染风险差异性[J]. 环境科学, 2016, 37(12): 4615-4625. doi: 10.13227/j.hjkx.201605193 [14] PALMER-FELGATE E J, BOWES M J, STRATFORD C, et al. Phosphorus release from sediments in a treatment wetland: Contrast between DET and EPC0 methodologies[J]. Ecological Engineering, 2011, 37(6): 826-832. doi: 10.1016/j.ecoleng.2010.12.024 [15] JARVIE H P, JüRGENS M D, WILLIAMS R J, et al. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye[J]. Journal of Hydrology, 2005, 304(1): 51-74. [16] 杨文澜, 蒋功成, 王兆群, 等. 洪泽湖不同湖区表层沉积物对磷的吸附特征[J]. 地理学报, 2012, 67(7): 985-991. doi: 10.11821/xb201207011 [17] 魏荣菲, 庄舜尧, 杨浩, 等. 苏州河网区河道沉积物磷的吸附释放特征研究[J]. 水土保持学报, 2010, 24(3): 232-237. doi: 10.13870/j.cnki.stbcxb.2010.03.004 [18] 董雯, 王瑞琛, 李怀恩, 等. 渭河西咸段水质时空变异特征分析[J]. 水力发电学报, 2020, 39(11): 80-89. [19] 潘文学, 孙淑侠, 薛晨亮, 等. 沣西新城新河治理思路研究[J]. 陕西水利, 2018(6): 291-292. doi: 10.16747/j.cnki.cn61-1109/tv.2018.06.108 [20] 国家环境保护总局, 国家质量监督检验检疫总局. GB3838-2002地表水环境质量标准[S]. 北京, 中国标准出版社, 2002. [21] 鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2000. [22] WANG Z, LU S, WU D, et al. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite[J]. Chemical Engineering Journal, 2017, 327: 505-513. doi: 10.1016/j.cej.2017.06.111 [23] EMIL RYDIN. Potentially mobile phosphorus in Lake Erken sediment [J]. Water Research, 2000, 34(7); 2037-2042. [24] 任蕊, 王会锋, 卢婷, 等. 关中平原土壤地球化学基准值与背景值研究[J]. 西北大学学报(自然科学版), 2013, 43(5): 742-748. doi: 10.16152/j.cnki.xdxbzr.2013.05.010 [25] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 [M]. 第四版. 北京: 中国环境科学出版社, 2002. [26] 胡洁蕴, 李淑芹, 宋歌, 等. 北京市北运河沉积物对氮、磷的吸附/解吸动力学特征[J]. 湖泊科学, 2018, 30(3): 650-659. doi: 10.18307/2018.0307 [27] LI X, XIE Q, CHEN S, et al. Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies[J]. Environmental Pollution, 2019, 247: 9-17. doi: 10.1016/j.envpol.2019.01.008 [28] LIN J, ZHAO Y, ZHANG Z, et al. Immobilization of mobile and bioavailable phosphorus in sediments using lanthanum hydroxide and magnetite/lanthanum hydroxide composite as amendments[J]. Science of the Total Environment, 2019, 687: 232-243. doi: 10.1016/j.scitotenv.2019.06.042 [29] 李超, 张凤荣, 张天柱, 等. 土壤的石灰反应强度估测CaCO3含量和pH研究——以山西省黄土性母质土壤为例[J]. 土壤学报, 2017, 54(6): 1369-1376. [30] 李青. 基于河流地貌学的新河河道地形设计研究 [D]. 西安: 西安建筑科技大学, 2020. [31] 范亚宁, 刘康, 陈姗姗, 等. 秦岭北麓陆地生态系统水源涵养功能的空间格局[J]. 水土保持通报, 2017, 37(2): 50-56. doi: 10.13961/j.cnki.stbctb.2017.02.008 [32] 张潆元, 黑鹏飞, 杨静, 等. 本底吸附物对长江沉积物磷吸附容量的影响[J]. 环境科学研究, 2017, 30(4): 545-551. doi: 10.13198/j.issn.1001-6929.2017.01.78 [33] 向速林, 吴涛哲, 龚聪远, 等. 去除有机质对城市浅水湖泊氮磷释放特征的影响[J]. 水土保持通报, 2021, 41(5): 9-14+74. doi: 10.13961/j.cnki.stbctb.2021.05.002 [34] 于佳真, 王晓昌, 薛涛, 等. 不同温度下西安汉城湖沉积物吸附、释放特性和磷形态[J]. 环境工程学报, 2016, 10(11): 6275-6282. doi: 10.12030/j.cjee.201506085 [35] REDDY K R, DELAUNE R D. Biogeochemistry of Wetlands : Science and Applications [M]. Taylor and Francis Group, Boca Raton : Crc Press, 2008. [36] 赵海超, 王圣瑞, 张莉, 等. 有机质含量及其组分对洱海沉积物磷吸附-释放影响[J]. 环境科学学报, 2014, 34(9): 2346-2354. doi: 10.13671/j.hjkxxb.2014.0599 [37] PULLEY S, FOSTER I, ANTUNES P. The dynamics of sediment-associated contaminants over a transition from drought to multiple flood events in a lowland UK catchment[J]. Hydrological Processes, 2016, 30(5): 704-719. doi: 10.1002/hyp.10616 [38] ZHANG K, CHENG P D, ZHONG B C, et al. Total phosphorus release from bottom sediments in flowing water[J]. Journal of Hydrodynamics, 2012, 24(4): 589-594. doi: 10.1016/S1001-6058(11)60281-3 [39] TANG X, WU M, DAI X, et al. Phosphorus storage dynamics and adsorption characteristics for sediment from a drinking water source reservoir and its relation with sediment compositions[J]. Ecological Engineering, 2014, 64: 276-284. doi: 10.1016/j.ecoleng.2014.01.005 [40] PENG J-F, WANG B-Z, SONG Y-H, et al. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond[J]. Ecological Engineering, 2007, 31(2): 92-97. doi: 10.1016/j.ecoleng.2007.06.005 [41] 诸葛祥真. 上海市不同类型河岸带土壤磷的环境地球化学特征 [D]. 上海: 华东师范大学, 2014. [42] JAMES W F, LARSON C E. Phosphorus dynamics and loading in the turbid Minnesota River (USA): controls and recycling potential[J]. Biogeochemistry, 2008, 90(1): 75-92. doi: 10.1007/s10533-008-9232-5 [43] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 2015, 36(2): 448-456. doi: 10.13227/j.hjkx.2015.02.011 [44] YIN H, HAN M, TANG W. Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation[J]. Chemical Engineering Journal, 2016, 285: 671-678. doi: 10.1016/j.cej.2015.10.038 [45] ZHANG F, YAN J, FANG J, et al. Sediment phosphorus immobilization with the addition of calcium/aluminum and lanthanum/calcium/aluminum composite materials under wide ranges of pH and redox conditions[J]. Science of The Total Environment, 2023, 863: 160997. doi: 10.1016/j.scitotenv.2022.160997 [46] XIE F, DAI Z, ZHU Y, et al. Adsorption of phosphate by sediments in a eutrophic lake: Isotherms, kinetics, thermodynamics and the influence of dissolved organic matter[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562: 16-25. [47] 黄慧倩, 胡浩鹏, 杨斌, 等. 亚热带海湾表层沉积物对磷的吸附解析特征研究[J]. 环境科学研究, 2023, 36(2): 363-372. [48] 何宗健, 刘文斌, 王圣瑞, 等. 洱海表层沉积物吸附磷特征[J]. 环境科学研究, 2011, 24(11): 1242-1248. doi: 10.13198/j.res.2011.11.43.hezj.015 [49] 肖文娟, 曹秀云, 宋春雷, 等. 太湖不同营养类型湖区沉积物磷的形态与吸附行为的比较[J]. 环境工程学报, 2015, 9(7): 3525-3530. doi: 10.12030/j.cjee.20150772 [50] LABOSKI C, LAMB J A. Impact of manure application on soil phosphorus sorption characteristics and subsequent water quality implications[J]. Soil Science, 2004, 169(6): 440-448. doi: 10.1097/01.ss.0000131229.58849.0f [51] 李如忠, 宋敏, 杨继伟. 城市新城区公园沟塘沉积物磷释放风险及影响因素分析[J]. 环境科学, 2021, 42(9): 4287-4295. doi: 10.13227/j.hjkx.202101015 [52] 郝晓地, 王崇臣, 金文标. 磷危机概观与磷回收技术 [M]. 北京: 高等教育出版社, 2011.