-
诺氟沙星(1-乙基-6-氟-1,4-二氢-4-氧代-7-(1-哌嗪基)-3-喹啉羧酸,NOF)是抑菌范围广,活性强且安全性、稳定性高的喹诺酮类抗生素药物,通常被广泛应用于治疗尿道、呼吸道感染、皮肤感染和其他疾病。NOF广泛存在于自然界的水环境和土壤中,可以引发人体常见的头疼头晕等神经毒性反应以及腹痛腹泻等肠胃不良反应。自然环境中的NOF会被植物吸收和富集,影响其生长,而且会使土壤中的部分益生菌死亡,扰乱土壤内部环境。许多研究表明,NOF及其代谢物已普遍存在于自然水体和土壤中,其可通过食物链进入到人体,从而对人体造成危害。ZHOU等[1]使用GC-MS技术检测辽河、黄河和海河沉积物常用抗生素(大环内酯类、磺胺类、四环素类、和喹诺酮类)的存在情况,结果表明,海河沉积物中抗生素含量高于其他河流,其中NOF高达5 770 ng·g−1。NA等[2]在黄海海域检测出NOF含量高达108.8 ng·L−1。LI等[3]在以畜禽粪便为肥料的种植的蔬菜中检测出658.3 µg·kg−1的NOF残留。此外,残留在环境中的NOF还将使细菌产生抗药性,进而大量繁殖,对人类、生物乃至生态环境造成危害[4-5]。因此,选择合适的方法降解NOF是必不可少的。在众多方法中,被认为是最有效并且降解效率最高的方法是高级氧化法[6-9]。常见的高级氧化法有臭氧氧化法[10-11] 、催化湿式氧化法[12-13] 、电化学氧化法[14-15] 、Fenton氧化法[16-17]等。其中,Fenton氧化法主要是利用Fe2+与H2O2反应,催化生成具有强氧化性的·OH,可以氧化各种难生物降解的有机化合物,从而达到去除污染物的目的。
目前,对NOF残留的去除研究主要包括了混凝、吸附、膜分离及高级氧化等。其中,混凝和吸附不利于去除低质量浓度条件下的污染物,且废水中的其他污染物对其影响较大。膜分离技术需要高压驱动,膜成本偏高,难以大规模推广。非均相Fenton是一种新型的高级氧化技术,降解效率高,而且能同时去除多种污染物,在抗生素废水治理领域有良好的应用前景。已有大量文献将Fenton技术用于去除NOF的研究,CHAO等[18]采用HA-Fenton体系降解NOF,结果表明,HA-Fenton体系在3.0~9.0的较宽pH范围内均能有效降解,是Fenton体系的10.9倍。作为Fenton技术之一的铁基催化剂介导技术,虽然在去除水中有机污染物方面起着不可或缺的作用,但其在当前的应用中仍存在着局限性。例如,有磁性的铁基催化剂(Fe0、Fe3O4等)仅能在酸性条件具有优异的活化H2O2能力,其对pH耐受性方面的研究还有待完善,并且在高效活化H2O2方面的技术还有待提高[19-21];铁的硫化物(二硫化亚铁、硫化亚铁和三硫化二铁等)虽然能够高效活化H2O2且具有较宽的pH适用性,但其回收利用的过程非常困难,极易造成再次污染[22- 23]。由上述分析可知,Fe0和Fe3O4等传统Fe基催化剂和铁的硫化物在活化H2O2方面具有明显的互补性。因此,我们推断,若能将二者结合构建复合Fe基催化剂不仅可以提高Fe基催化剂的pH适用性,还能实现催化剂的快速回收。
基于此,本文以NOF为目标污染物,采用水热法制备新型铁基催化剂(Fe0/FeS2),研究其对H2O2的催化效果,并在铁基催化剂非均相芬顿体系的基础上,对NOF的降解路径及机理做出探讨。本实验选用XRD、VSM、XPS、SEM-Mapping等方法对所制备的新型铁基催化剂(Fe0/FeS2)进行表征,综合研究不同污染物初始质量浓度、pH、H2O2质量浓度、催化剂投加量对其活化H2O2降解NOF的影响,以期为非均相芬顿体系催化降解新型有机污染物提供参考。
Fe0/FeS2活化H2O2快速降解诺氟沙星
Rapid degradation of norfloxacin by Fe0/FeS2 activated H2O2
-
摘要: 通过水热法成功制备具有磁性的Fe0/FeS2复合铁基催化剂,并将其用于构建非均相芬顿体系降解典型的喹诺酮类抗生素(诺氟沙星,NOF)。SEM-Mapping 结果显示,制备的Fe0/FeS2复合材料由Fe和S两种元素组成,形态为颗粒状且尺寸不一。XRD、XPS、Raman和磁学测量系统(VSM)等表征结果表明进一步证明Fe0/FeS2复合材料的成功制备且具有良好的磁性。通过实验得到 Fe0/FeS2/H2O2体系降解NOF最优的降解体系为初始pH为5,NOF起始质量浓度20 mg·L−1,Fe0/FeS2 投加量为0.2 g·L−1,H2O2质量浓度0.051 g·L−1。Fe0/FeS2介导的非均相芬顿体系可以快速降解NOF,10 min后的降解率为99.27%,且具有良好的重复利用性,使用 3 次后,NOF 的降解效率仍超过75%。NOF在羟基自由基(·OH)的作用下可能破坏C-F键以及实现哌嗪环和喹诺酮环的开环,最终生成一些小分子物质,如 F−、H2O、CO2和NO3−等。Abstract: The magnetic Fe0/FeS2 composite iron-based catalyst was successfully prepared by hydrothermal method, and was employed to mediate a heterogeneous Fenton system for the remediation of a typical Fluoroquinolones antibiotic (norfloxacin, NOF). The SEM-Mapping results showed that the Fe0/FeS2 composite was composed of Fe and S elements, and displayed granular structure with different sizes. The characterization results of XRD, XPS, Raman and Magnetic Measurement System (VSM) showed that the Fe0/FeS2 composite material had been successfully prepared with good magnetic properties. The results of NOF degradation experiments showed that the optimal conditions of Fe0/FeS2/H2O2 system for norfloxacin degradation were initial pH=5, norfloxacin initial concentration of 20 mg·L−1, Fe0/FeS2 dosage of 0.2 g·L−1, H2O2 concentration of 0.051 g·L−1. The heterogeneous Fenton system could instantaneously degrade 99.27% of NOF in 10 min, and the Fe0/FeS2 exhibited a good reusability. After 3 runs, the degradation efficiency of NOF was still over 75%. Under the attack of ·OH, norfloxacin may break the C-F bond and open the ring of piperazine and quinolone, and finally small molecular substances such as F−, H2O, CO2 and NO3− will be generated.
-
Key words:
- Fe0/FeS2 /
- H2O2 /
- norfloxacin /
- heterogeneous Fenton /
- degradation
-
表 1 NOF 降解过程中的中间产物
Table 1. Identification of the intermediates during NOF degradation
代谢物 m/z 分子式 诺氟沙星 320.140 5 C16H18FN3O3 N1 350.147 C16H16FN3O5 N2 294.124 8 C14H16FN3O3 N3 279.077 6 C13H11FN2O4 N4 251.082 6 C12H11FN2O3 N5 318.144 8 C16H19N3O4 N6 350.134 7 C16H19N3O6 N7 322.139 7 C15H19N3O5 N8 352.129 6 C16H17FN3O5 N9 278.130 5 C16H16FN3O2 N10 302.130 1 C16H20N3O3 N11 316.130 0 C16H18N3O4 N12 332.124 4 C16H18N3O5 -
[1] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034 [2] NA G, GU J, GE L, et al. Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 1093-1102. doi: 10.1007/s00343-011-0225-1 [3] LI, Y W, WU, X L, MO, C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China[J]. Journal of agricultural and food chemistry, 2011, 59(13): 7268-7276. doi: 10.1021/jf1047578 [4] ALLEN H K, DONATO J, WANG H H, et al. Call of the wild: Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4): 251-259. doi: 10.1038/nrmicro2312 [5] 张娣, 王懿萱, 牛红云, 等. 纳米Fe3O4/H2O2降解诺氟沙星[J]. 环境科学, 2011, 32(10): 2943-2948. [6] CHEN S, DENG J, YE C, et al. Simultaneous removal of para-arsanilic acid and the released inorganic arsenic species by CuFe2O4 activated peroxymonosulfate process[J]. Science of the Total Environment, 2020, 742:140587. [7] ZHENG S, JIANG W, CAI Y, et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today, 2014, 224: 83-88. doi: 10.1016/j.cattod.2013.09.040 [8] ZHAO Z, PAN S, YE Y, et al. FeS2/H2O2 mediated water decontamination from p- arsanilic acid via coupling oxidation, adsorption and coagulation: Performance and mechanism[J]. Chemical Engineering Journal, 2020, 381: 122667. doi: 10.1016/j.cej.2019.122667 [9] XIE X, ZHAO W, HU Y, et al. Permanganate oxidation and ferric ion precipitation (KMnO4 -Fe (III)) process for treating phenylarsenic compounds[J]. Chemical Engineering Journal, 2019, 357: 600-610. doi: 10.1016/j.cej.2018.09.194 [10] SNYDER S A, WERT E C, REXING D J, et al. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater[J]. Ozone:Science & Engineering, 2007, 28(6): 445-460. [11] 马富军, 李新洋, 宗博洋, 等. 电-多相臭氧催化技术处理金刚烷胺制药废水[J]. 中国环境科学, 2018, 38(10): 3713-3719. doi: 10.3969/j.issn.1000-6923.2018.10.014 [12] MISHRA V S, MAHAJANI V V, JOSHI J B. Wet air oxidation[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 2-48. [13] 张宣娇, 孙羽, 刘明, 等. CeO2形貌结构对催化湿式空气氧化苯酚性能的影响[J]. 中国环境科学, 2020, 40(10): 4330-4334. doi: 10.3969/j.issn.1000-6923.2020.10.016 [14] SIMOND O, SCHALLER V, COMNINELLIS C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J]. Electrochimica Acta, 1997, 42(13-14): 2009-2012. doi: 10.1016/S0013-4686(97)85475-8 [15] 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. doi: 10.3969/j.issn.1000-6923.2019.11.021 [16] RODOPULO A. K. Oxidation of tartaric acid in wine in the presence of heavy metal salts (activation of oxygen by iron)[J]. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia, 1951, 3: 115-128. [17] 杨远秀, 姚创, 刘晖, 等. 磁性Fen+@GO非均相Fenton催化氧化亚甲基蓝[J]. 中国环境科学, 2018, 38(5): 1719-1726. doi: 10.3969/j.issn.1000-6923.2018.05.014 [18] CHAO W, GUO C Y, HAI C, et al. Degradation of norfloxacin by hydroxylamine enhanced fenton system: Kinetics, mechanism and degradation pathway[J]. Chemosphere, 2021, 270: 129408. doi: 10.1016/j.chemosphere.2020.129408 [19] WAN Z, WANG J L. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst[J]. Journal of hazardous materials, 2017, 324(B): 653-664. [20] LI J, LI X, HAN J, et al. Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides[J]. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2 [21] LIU J, DU Y, SUN W, et al. et al., Preparation of new adsorbent-supported Fe/Ni particles for the removal of crystal violet and methylene blue by a heterogeneous Fenton-like reaction[J]. RSC Advances, 2019, 9(39): 22513-22522. doi: 10.1039/C9RA04710G [22] WU D, FENG Y, MA L. Oxidation of azo dyes by H2O2 in presence of natural pyrite[J]. Water, Air, & Soil Pollution, 2013, 224(2): 1-11. [23] CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273: 481-489. doi: 10.1016/j.cej.2015.03.079 [24] GUO C, TONG X, GUO X Y. Solvothermal synthesis of FeS2 nanoparticles for photoelectrochemical hydrogen generation in neutral water[J]. Materials Letters, 2015, 161: 220-223. doi: 10.1016/j.matlet.2015.08.112 [25] STUCKI, J. W. The quantitative assay of minerals for Fe2+ and Fe3+ using 1, 10-phenanthroline: II. A photochemical method[J]. Soil Science Society of America Journal, 1981, 45(3): 638-641. doi: 10.2136/sssaj1981.03615995004500030040x [26] LI D, ZHU X, ZHONG Y, et al. Abiotic transformation of hexabromocyclododecane by sulfidated nanoscale zerovalent iron: Kinetics, mechanism and influencing factors[J]. Water Research, 2017, 121: 140-149. doi: 10.1016/j.watres.2017.05.019 [27] MORALES-GALLARDO M V, AYALA A M, MOU P, et al. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity[J]. Chemical Physics Letters, 2016, 660: 93-98. doi: 10.1016/j.cplett.2016.07.046 [28] WANG Z. , DU Y., ZHOU P., et al. Strategies based on electron donors to accelerate Fe (III)/Fe (II) cycle in Fenton or Fenton-like processes[J]. Chemical Engineering Journal, 2023, 454: 140096. doi: 10.1016/j.cej.2022.140096 [29] 曾令玉. 黄铁矿(FeS2)异相 Fenton 反应催化氧化对硝基酚的研究[D]. 武汉: 华中科技大学, 2019. [30] EGGLESTON, CARRICK M, EHRHARDT, et al. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study[J]. American Mineralogist, 2015, 81(9-10): 1036-1056. [31] CAI Y F, PAN Y G, XUE J Y, et al. Comparative XPS study between experimentally and naturally weathered pyrites[J]. Applied Surface Science, 2010, 255(21): 8750-8760. [32] 吕源财. 纳米零价铁钯/微生物联合体系降解2, 2’, 4, 4’-四溴联苯醚的研究[D]. 广州: 华南理工大学, 2016. [33] ZHANG Y, ZHOU Z, WEN F, et al. A flower-like MoS2 decorated MgFe2O4 nanocomposite: Mimicking peroxidase and colorimetric detection of H2O2 and glucose[J]. Sensors and Actuators B-Chemical, 2018, 275: 155-162. doi: 10.1016/j.snb.2018.08.051 [34] REN B, MIAO J F, XU Y L, et al. A grape-like N-doped carbon/CuO-Fe2O3 nanocomposite as a highly active heterogeneous Fenton-like catalyst in methylene blue degradation[J]. Journal of Cleaner Production, 2019, 240: 118143. doi: 10.1016/j.jclepro.2019.118143 [35] WEN X J, NIU C G, HUANG D W, et al. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst[J]. Journal of Catalysis, 2017, 355: 73-86. doi: 10.1016/j.jcat.2017.08.028 [36] HUBICKA, URSZULAA, ŻMUDZKI P, et al. Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC[J]. Springer International Publishing, 2013, 7(1): 133. [37] WANG G, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4 /H2O2): Kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351: 747-755. doi: 10.1016/j.cej.2018.06.033 [38] LIU C, NANABOINA V, KORSHIN G V, et al. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater[J]. Water Research, 2012, 46(16): 5235-5246. doi: 10.1016/j.watres.2012.07.005 [39] ZHOU T, ZOU X L, WU X H, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37(1): 320-327. [40] WU D, CHEN Y, ZHANG Y, et al. Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions[J]. Separation and Purification Technology, 2015, 154: 60-67. doi: 10.1016/j.seppur.2015.09.016 [41] 周 洋. 基于黄铁矿的非均相类-Fenton反应高效降解邻苯二甲酸二乙酯的机制研究[D]. 芜湖: 安徽师范大学, 2019. [42] ZHANG W J, GAO H Y, HE J J, et al. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway[J]. Separation and Purification Technology, 2017, 172: 158-167. doi: 10.1016/j.seppur.2016.08.008 [43] CHE H, BAE S, LEE W, et al. Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361.