Processing math: 100%

微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制

胡炽盛, 马徐, 倪炯, 王亮, 王海波, 石宝友. 微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制[J]. 环境工程学报, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
引用本文: 胡炽盛, 马徐, 倪炯, 王亮, 王海波, 石宝友. 微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制[J]. 环境工程学报, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
HU Chisheng, MA Xu, NI Jiong, WANG Liang, WANG Haibo, SHI Baoyou. Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control[J]. Chinese Journal of Environmental Engineering, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
Citation: HU Chisheng, MA Xu, NI Jiong, WANG Liang, WANG Haibo, SHI Baoyou. Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control[J]. Chinese Journal of Environmental Engineering, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085

微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制

    作者简介: 胡炽盛 (1997—) ,男,硕士研究生,zshu_st@rcees.ac.cn
    通讯作者: 王海波(1981—),男,博士,副研究员,hbwang@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(52070189,51838005);国家重点研发计划项目(2019YFD1100105)
  • 中图分类号: X703

Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control

    Corresponding author: WANG Haibo, hbwang@rcees.ac.cn
  • 摘要: 针对饮用水管网系统可能存在的微生物风险问题,采用模拟不同处理条件下的输配水管道系统,通过宏基因组学分析探究微量磺胺甲恶唑以及次氯酸钠消毒对管道中生物膜与抗性基因组成的影响。结果表明,2 μg·L−1磺胺甲恶唑的添加对微生物群落以及抗性基因组成无明显影响,而浮霉菌门细菌表现出很强的抗次氯酸钠消毒能力。在未消毒条件下丰度前十的抗性基因与携带差异性抗性基因的细菌在消毒后丰度均明显有所下降,次氯酸钠消毒使ARGs总量下降了91.9%,因此,次氯酸钠消毒通过控制携带抗性基因物种从而有效控制群落抗性基因的传播。同时,通过组间显著性差异的功能基因与组间显著性差异的抗性基因相关性分析,功能基因的变化情况与抗性基因变化情况一致,因此,长期消毒改变了细菌群落组成及其功能,并最终影响抗性基因传播。这项研究有助于控制长期运行的饮用水管网输配系统中可能存在的包括抗药基因在内的微生物相关风险问题。
  • 为了增强镀液的分散能力和达到良好的镀层效果,电镀工艺常向镀液中投加大量络合剂,这些络合剂与重金属离子配位结合形成络合重金属[1]。电镀过程中,仅有一小部分金属被有效镀在物件上,其他的均以废水的形式排出[2]。络合重金属具有生物难降解性和高毒性,由于络合重金属具有很高的水溶性,且可在广泛的pH范围内稳定存在,故常规的化学沉淀法难于将其从水中去除[3]

    高级氧化技术广泛用于络合重金属的处理,如芬顿氧化[4]、臭氧氧化[5]和电催化氧化[6],解络后游离的重金属离子一般是通过加碱沉淀予以去除。但在电催化处理中,由于可以通过电还原的方式使重金属离子在阴极表面沉积,因此,电催化技术在络合重金属解络的同时还可以实现重金属离子的回收,使出水中的重金属离子浓度极大地降低,从而减少碱的投加和污泥的产生[7]。目前,电催化技术大多基于电催化氧化原理,利用氧化性活性物种(·OH、Cl·和SO4)攻击配体结构,使其逐步降解并失去络合性,将重金属离子游离出来[4-8]。但是,在电镀行业中,电镀的原理是利用金属络合物直接在阴极还原,从而使金属电镀在基底材料上[1]。这意味着通过电还原的方式可以破坏金属络合物的络合结构。然而目前采用电还原法处理金属络合物的相关研究鲜有报道。

    粒子电极是近些年研究比较多的电极材料,通过填充在阴阳极板间构成电极床而实现污染物质的降解去除[9]。在电场的驱动下,粒子可以形成微小的复极性电极,粒子的一端为阳极端,另一端为阴极端,因此在粒子电极的表面既可以发生氧化反应又可以发生还原反应[10]。由于粒子电极大大地增加了污染物与电极之间的有效接触面积,是传统板状电极面积的几十到几百倍,而且每2个相邻的粒子电极之间距离很小,因此,粒子电极的填充缩短了污染物迁移距离和传质距离,提高了传质速率。因而,仅需较低的电流密度即可获得较高的电流强度,并实现较高的电流利用效率[11]。粒子电极床广泛运用在印染废水[12]、焦化废水[13]和制药废水[14]等的废水处理中。粒子电极通常由催化剂和载体组成。常用于电还原的金属催化剂包括Pd、Pt、Fe、Cu、Co和Ni[15-18]。贵金属催化剂具有高催化活性,然而,他们的稀有性和高昂的价格阻碍了其大规模应用。Ni是一种过渡金属,具有高电流密度和低过电位的特点,并且资源丰富、价格低廉和稳定性高。Ni具有出色的还原性能,法拉第效率接近100%,因此,被广泛用作电还原催化剂[19-20]。粒子电极的载体材料有高岭土[21]、γ-Al2O3[22]、泡沫镍[23]、活性炭[24]和介孔碳[25]等,活性炭由于价格低廉、比表面积巨大和化学性质稳定等优点而被广泛用作粒子电极的载体,但其导电性和电子传递效率较差[26]。石墨烯是一种二维碳材料,可以为离子和电子的传输提供较短的有效长度,从而可以增强传质和电荷传输[27-28],在活性炭载体材料中掺杂石墨烯可以增强粒子电极的传质效率和导电性。因此,本文以Ni为催化剂,活性炭(PAC)和氧化石墨烯(GO)为载体制备了催化粒子电极。由于乙二胺四乙酸(EDTA)是一种非常重要的络合剂,广泛应用于镀铜工艺,故本文选择Cu-EDTA作为目标污染物,考察了粒子电极焙烧温度、焙烧时间和PAC与GO比例对Cu-EDTA解络效能的影响,探讨了最佳制备条件下的粒子电极对Cu-EDTA解络和铜回收率的影响及相关机制。

    1)主要试剂和材料:活性炭(PAC)购于北京科诚光华公司,氧化石墨烯(GO)购于深圳图灵公司;阴极板Ti(6 cm×2.5 cm)和阳极板Ti/RuO2(6 cm×2.5 cm)购于北京恒力钛公司;五水合硫酸铜、乙二胺四乙酸二钠、六水合硝酸镍、硫酸钠、聚乙烯醇、叔丁醇、苯酚均为分析纯,磷酸铵为优级纯,购于国药公司;5,5-二甲基-1-氧化吡咯啉(DMPO)购于梯希爱化成公司;乙腈为色谱纯,购于赛默飞世尔科技公司。

    2)主要仪器:高效液相色谱仪(Agilent 1260,安捷伦科技有限公司),原子吸收分光光度计(AA7000,日本岛津有限公司),扫描电子显微镜(SU8220,日立高新技术公司),X射线衍射分析仪(XRD-7000s,日本岛津有限公司),电子顺磁共振仪(EMX plus,Bruker),电化学工作站(CHI660E,上海辰华公司)。

    称取CuSO4·5H2O和Na2EDTA溶解于去离子水中,配制10 mmol·L−1 Cu-EDTA储备液,Cu2+与EDTA摩尔比为1∶1。实验前,使用去离子水稀释至1 mmol·L−1,并加入10 mmol·L−1 Na2SO4作为电解质。

    1)粒子电极的制备。将Ni(NO3)2·6H2O 溶于去离子水中配得0.5 mol·L−1溶液,将PAC与GO充分混合并浸渍于硝酸镍溶液中,恒温振荡8 h后,离心取出并烘干。向混合粉末中加入质量分数为5%的聚乙烯醇,造粒后在马弗炉中焙烧。为了解焙烧温度和时间的影响,焙烧温度设置为200、300、450、600和800 ℃,焙烧时间4 h;焙烧时间设置2、4、6和8 h,焙烧温度为800 ℃。在最佳焙烧温度和时间下,分别制备PAC、Ni/PAC、Ni/GOx-PACy粒子电极,其中xy的质量比为0.5∶9.5、1∶9和2∶8。

    2)粒子电极的表征。采用扫描电子显微镜观察粒子电极使用前后的表面形貌,并采用能谱仪(EDS)对样品表面元素的分布情况进行分析。使用X射线衍射分析仪对晶体结构和物相组成进行分析。

    实验装置如图1所示。有机玻璃反应器的长×宽×高为3 cm×3.5 cm×2 cm,粒子电极填充量为5 g,1.00 L的Cu-EDTA模拟废水以循环方式处理,处理时间为360 min,每间隔30 min取样。一部分样品直接用于总铜(TCu)浓度的测定;另一部分样品用1 mol·L−1 NaOH调节pH至11.0,静置过夜以沉淀游离铜离子,上清液用于Cu-EDTA和总络合态铜(TCCu)的测定。TCCu指所有络合态铜物种,包括Cu-EDTA和中间态络合铜,TCu指所有铜物种,包括TCCu和游离的铜离子。

    图 1  电催化Cu-EDTA解络反应装置图
    Figure 1.  Schematic diagram for electrocatalytic decomplexation of Cu-EDTA

    使用DMPO为捕获剂,采用电子顺磁共振仪(ESR)技术测定系统中自由基的产生情况。自由基淬灭实验采用叔丁醇和苯酚作为淬灭剂,叔丁醇浓度为3.0 mol·L−1,苯酚浓度为0.7 mol·L−1

    在-0.87~2.00 V电势窗口下,采用三电极体系测试催化粒子电极在CuSO4、EDTA和Cu-EDTA中的循环伏安曲线,三者浓度均为50 mmol·L−1,扫速为50 mV·s−1。铂丝为对电极,Ag/AgCl电极为参比电极,覆有粒子电极材料的玻碳电极为工作电极。工作电极制备中,取10 mg粒子电极材料,加入质量分数为5% Nafion溶液50 μL和1 mL乙醇,混匀充分;取10 μL混合液滴于玻碳电极表面。测试前向待测溶液中充15 min氮气以除去氧气。使用能斯特方程将测试电位EAg/AgCl转换为可逆氢电极电位ERHE[29],转换关系如式(1)所示。

    ERHE=EAg/AgCl+0.059pH+0.197 (1)

    采用高效液相色谱法测定Cu-EDTA浓度,色谱柱为Agilent TC-C18柱(4.6 mm×250 mm,5 μm),流动相为75%磷酸铵(20 mmol·L−1,pH为3.0)和25%乙腈,流速为1 mL·min−1,检测波长为254 nm。TCCu、TCu和镍离子的浓度采用原子吸收分光光度法测定。

    电催化解络的单位电能消耗量的计算见式(2)[30]

    EEO=UjStVlog(C0C) (2)

    式中:EEO为Cu-EDTA降解一个能级所需的电能,kWh·m−3U为施加的电压,V;j为电流密度,mA·cm−2S为电极表面积,cm2t为反应时间,h;V为反应溶液的总体积,cm3C0C分别是在开始和在时间t时的Cu-EDTA浓度,mmol·L−1

    1)焙烧温度对Cu-EDTA解络效能的影响。在PAC:GO质量比为9:1和焙烧时间4 h条件下,制备了不同焙烧温度下的粒子电极。如图2(a)所示,随着温度的升高,Cu-EDTA的解络率先增加后降低,焙烧温度为600 ℃时的解络率达到最高,为77.6%;此时能耗也为最低,仅为0.25 kWh·m−3(图2(b))。由图2(c)中的XRD结果可以看出,Ni在200 ℃和300 ℃下未形成明显的催化剂晶体结构;在450~800 ℃焙烧温度下,观测到2θ为44.51°、51.85°和76.37°的3个特征峰,分别对应零价态的镍(Ni0,JCPDS 04-0850)的(111)、(200)和(220)晶面。还观测到37.25°、43.28°和62.88°处的3个微弱的特征峰,分别对应着NiO(JCPDS 44-1159)的(101)、(012)和(110)晶面。较低的焙烧温度不能使镍催化剂完全活化,因此,在催化剂上不能形成良好的晶体结构,导致粒子电极的电催化活性较低[31]。而当焙烧温度增加到800 ℃时,由于催化剂在过高的焙烧温度下容易烧结而导致粒子电极失去电催化活性[32]。正因为金属性Ni0具有一定导电性,使600 ℃下粒子电极的导电性增强,从而降低了单位电能消耗量。Ni/GO0.1-PAC0.9用于降解Cu-EDTA后,Ni的晶体结构没有发生明显变化(图2(d)),且在处理360 min后,溶液中未检测到镍离子,说明所负载的催化剂不易受到电催化过程的影响。

    图 2  焙烧温度对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响
    Figure 2.  Effect of calcination temperature on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    2)焙烧时间对Cu-EDTA解络效能的影响。如图3(a)所示,当PAC:GO质量为9:1、焙烧温度为600 ℃时,焙烧时间4 h的解络效果最好,Cu-EDTA的解络率为77.6%,比焙烧时间2 h的提高了30.9%,能耗也由0.59 kWh·m−3降低为0.25 kWh·m−3。随着焙烧时间继续延长,粒子电极的电催化活性略有降低,6 h和8 h下的解络率下降至72.2%和71.6%,能耗分别增加至0.26 kWh·m−3和0.32 kWh·m−3。焙烧时间的延长可以增加催化剂和载体之间结合的强度,能够充分地活化催化剂,但过长的焙烧时间会破坏催化剂原有的催化活性和粒子电极原有的空隙结构,从而影响粒子电极的电催化性能[31]。由XRD图谱(图3(c)~(d))可以看出,不同焙烧时间下所形成的催化剂仍以Ni0为主,含有少量的NiO,焙烧时间对于Ni0衍射峰的强弱有一定影响,焙烧4 h时衍射峰最强。但无论焙烧时间为多长,在处理Cu-EDTA后,粒子电极的晶体结构均没有发生明显变化。

    图 3  焙烧时间对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响
    Figure 3.  Effect of calcination time on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    3) PAC与GO质量比对Cu-EDTA解络效能的影响。在焙烧温度为600 ℃和焙烧时间为4 h条件下,制备了PAC与GO不同质量比的粒子电极。如图4(a)所示,当PAC不负载Ni时,Cu-EDTA的解络率只有36.1%,电耗EEO值高达1.33 kWh·m−3(图4(b))。当仅使用PAC作为载体,负载Ni催化剂后,Cu-EDTA的解络率升高到了59.6%,可见Ni的负载明显提升了粒子电极的催化性能。不仅如此,负载Ni后,PAC的EEO值下降至0.47 kWh·m−3。这是因为PAC本身导电性较差,Ni0的负载可以增强粒子电极的导电性。当粒子电极材料中分别掺杂5%、10%和20%的GO后,Cu-EDTA的解络率再进一步提升到63.4%、76.6%和85.4%,可见GO的掺入进一步使粒子电极的催化性能得到提升。这是因为GO表面的含氧官能团为GO提供了丰富的缺陷位点,并且良好的电子传递性能,可以促进电极表面的电荷转移,使得GO具有一定的电催化性能[33]。当在粒子电极材料中掺杂GO后,粒子电极的催化性也得到增强。不仅如此,随着GO掺杂比例的增加,EEO值明显下降,当GO的掺杂比为20%时,EEO值仅为0.17 kWh·m−3,说明GO确实增加了粒子电极的导电性能,降低了能耗。在惰性气氛中,经高温焙烧后,GO表面的含氧官能团在高温作用下被分解,能很大程度恢复石墨烯的共轭结构,从而提高导电性[34]。结合以上解络率和耗能结果,确定焙烧温度600 ℃、焙烧时间4 h和PAC∶GO为8∶2作为后续粒子电极的最佳制备条件,制得电极为Ni/GO0.2-PAC0.8

    图 4  PAC与GO质量比对Cu-EDTA解络率和能耗的影响
    Figure 4.  Effect of mass ratio of PAC to GO on Cu-EDTA decomplexation efficiency and energy consumption

    对Ni/GO0.2-PAC0.8粒子电极使用前后的表面形貌进行了表征,结果如图5所示。可以看出,不管是使用前还是使用后,PAC载体表面都比较粗糙,这有利于催化剂的负载。此外,还观察到有白色细小的晶体颗粒物附着在PAC表面,这是Ni元素所形成的催化晶粒。能谱分析结果显示(表1),使用前电极表面存在C、O和Ni三种元素,Ni的质量分数为10.74%。使用后电极表面Ni的质量分数为下降至9.00%。除了C、O和Ni外,还检测到Cu和S元素。Cu的质量分数为2.33%,表明电催化解络过程中粒子电极表面沉积有大量的铜元素。由于使用了Na2SO4作为电解质,因此,也观测到6.57%的S元素。

    图 5  Ni/GO0.2-PAC0.8使用前后的SEM图
    Figure 5.  SEM images of Ni/GO0.2-PAC0.8 before and after use
    表 1  Ni/GO0.2-PAC0.8使用前后的EDS分析
    Table 1.  EDS analysis of Ni/GO0.2-PAC0.8 before and after use
    元素使用前使用后
    质量分数/%原子分数/%质量分数/%原子分数/%
    C74.0584.4667.0077.59
    O15.2113.0317.1017.06
    Ni10.742.519.001.53
    Cu2.330.54
    S6.573.28
     | Show Table
    DownLoad: CSV

    使用Ni/GO0.2-PAC0.8粒子电极,在电流密度为1.6 mA·cm−2下,对Cu-EDTA解络和铜回收的效能进行了研究。结果表明(图6(a)),Cu-EDTA的解络率达到99.6%,而其他电催化方法对于Cu-EDTA的解络率仅为15%~60%[35-36]。TCCu的解络率为99.4%,仅比Cu-EDTA低0.2%。通常EDTA降解过程中会形成乙二胺三乙酸、乙二胺二乙酸和乙二胺单乙酸等中间产物,这些产物也具有一定的络合性[8]。0.2%的解络率差别说明铜以其他络合形态存在的量非常低,Ni/GO0.2-PAC0.8粒子电极对Cu的所有络合态都具有解络效果。实验结果还显示,TCu的回收率达到93.7%,溶液中仅含有5.9%的铜未去除。在以不锈钢为阴极、TiO2/Ti为阳极的电氧化解络过程中,总铜的回收率仅为18%~40%[36-37]。可以看出,总铜的高回收率说明粒子电极具有良好的还原性能。

    图 6  Ni/GO0.2-PAC0.8 系统中的Cu-EDTA、TCCu解络率和TCu回收率以及相应的反应动力学
    Figure 6.  Decomplexation efficiency of Cu-EDTA, TCCu and recovery efficiency of TCu, and corresponding reaction kinetics in Ni/GO0.2-PAC0.8 system

    图6(b)所示,Cu-EDTA、TCCu和TCu的-ln(C/C0)与处理时间之间均呈良好的线性关系,拟合系数R2均在0.9以上(表2),说明Cu-EDTA、TCCu的解络和TCu的回收符合拟一级反应动力学规律。Cu-EDTA和TCCu的反应速率常数均为0.018 min−1,而TCu的反应速率常数为0.008 min−1。与臭氧氧化过程中Cu-EDTA反应速率常数0.450 min−1相比[5],本实验中的反应速率常数偏低,这是因为施加电流密度较低,反应速率较慢,也可能是铜不断在粒子电极上沉积而导致反应速率偏慢。

    表 2  Cu-EDTA、TCCu解络和TCu回收反应动力学拟合参数
    Table 2.  Kinetics parameters of Cu-EDTA, TCCu decomplexation and TCu recovery
    污染物拟合方程kobs/(min−1)R2
    Cu-EDTA−ln(C/C0)=0.018t−0.7920.0180.947
    TCCu−ln(C/C0)=0.018t−0.9460.0180.916
    TCu−ln(C/C0)=0.008t−0.4280.0080.940
     | Show Table
    DownLoad: CSV

    采用电子顺磁共振谱法测定了反应体系中的自由基,结果如图7(a)所示。可见,系统中出现了峰高为1∶2∶2∶1的四重峰,超精细耦合常数为a(N)=a(H)=14.9 G,这是DMPO-OH加成物的特征峰,表明Ni/GO0.2-PAC0.8系统中产生了·OH自由基,在粒子电极的阳极H2O会发生电解产生·OH[25]。当使用叔丁醇和苯酚作为·OH的淬灭剂时,淬灭剂的加入没有抑制TCCu的降解(图7(b)),TCCu的解络率仍达到97%以上,·OH对Cu-EDTA的解络没有影响。在UV/氯[8]、非热等离子体[38]氧化解络体系中,是通过破坏EDTA结构来使Cu-EDTA解络,当O21O2、·OH和Cl·等氧化活性物种被淬灭后,EDTA的氧化降解受到抑制,导致Cu-EDTA解络效果明显下降。这说明粒子电极降解Cu-EDTA不是基于EDTA结构被氧化而实现,而是基于Cu-EDTA中Cu2+的还原而实现。

    图 7  Ni/GO0.2-PAC0.8系统中DMPO-OH的ESR谱图和淬灭剂对TCCu解络率的影响
    Figure 7.  ESR spectra of DMPO-OH and effect of quencher on the decomplexation efficiency of TCCu in Ni/GO0.2-PAC0.8 system

    为进一步了解Cu-EDTA在粒子电极上的电化学行为,对Ni/GO0.2-PAC0.8在EDTA、Cu-EDTA和CuSO4溶液中的循环伏安特征进行了分析。如图8所示,在EDTA溶液中,除1.55 V处出现一个较弱的氧化峰外,在-0.87~1.2 V内都没有氧化还原峰的出现。这说明EDTA很难在Ni/GO0.2-PAC0.8粒子电极表面发生直接氧化或还原反应。而对于CuSO4溶液,在0.22 V和0.48 V处出现一对还原峰和氧化峰,这是由于Cu2+在电极上还原和氧化引起的。当使用Cu-EDTA溶液时,在0.09 V和0.31 V处出现2个还原峰,在0.49 V和0.55 V处出现2个氧化峰。这说明Cu-EDTA在Ni/GO0.2-PAC0.8粒子电极上发生了直接还原和氧化反应。0.09 V和0.31 V的2个还原峰来自Cu+还原为Cu0和Cu2+还原为Cu+;而在0.49 V和0.55 V处的2个氧化峰分别对应于Cu0氧化为Cu+和Cu+氧化为Cu2+的过程。结合自由基淬灭实验的结果,可以看出Ni/GO0.2-PAC0.8粒子电极电催化Cu-EDTA解络是通过Cu(Ⅱ)的逐步还原完成,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0。由于Cu2+的还原,从而导致Cu-EDTA的络合结构受到破坏。

    图 8  Ni/GO0.2-PAC0.8在Cu-EDTA、EDTA和CuSO4溶液中的循环伏安曲线
    Figure 8.  Cyclic voltammetry curves of Ni/GO0.2-PAC0.8 in Cu-EDTA, EDTA and CuSO4 solutions

    1)通过Cu-EDTA的解络率和耗能结果确定粒子电极的最佳焙烧温度为600 ℃,焙烧时间为4 h,PAC与GO的最佳质量比为8:2。

    2)粒子电极上的镍主要以Ni0存在,含有少量NiO;Ni0的负载增强了粒子电极的电催化性能和导电性,粒子电极在处理Cu-EDTA后,其形貌和催化剂结构没有受到影响。

    3) Cu-EDTA、TCCu的解络率和TCu的回收率分别为99.8%、99.6%和93.7%,解络和回收均符合拟一级反应动力学。

    4) Cu-EDTA在Ni/GO0.2-PAC0.8粒子电极体系中的解络是通过电还原完成,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0并沉积在粒子电极表面上。

  • 图 1  群落门水平与种水平组成

    Figure 1.  The relative abundance of total bacterial communities at phylum level and species level.

    图 2  Venn结果和组间显著性差异物种分析

    Figure 2.  The Venn results and Metastats analysis at species level

    图 3  群落抗性基因组成,差异抗性基因以及携带耐药性基因物种

    Figure 3.  The relative abundance of antibiotic resistance genes(ARGs) of communities,the Metastats analysis on ARGs and the contribution of each species to the different ARGs.

    图 4  群落功能基因组成,差异功能基因以及携带功能基因物种

    Figure 4.  The relative abundance of antibiotic functional genes of communities, the Metastats analysis on KEGG functional genes and the contribution of each species to the different functional genes

    图 5  群落抗性基因与功能基因、显著差异性群落抗性基因与功能基因之间的相关性网络分析

    Figure 5.  The network analysis revealing the relationship between ARGs and functional genes for communities,ARGs with KEGG functional genes and network analysis between ARGs and functional genes in significantly different communities

  • [1] HOZALSKI R M, LAPARA T M, ZHAO X, et al. Flushing of stagnant premise water systems after the COVID-19 shutdown can reduce infection risk by Legionella and Mycobacterium spp[J]. Environmental Science & Technology, 2020, 54(24): 15914-15924.
    [2] 张明露, 周贺, 关磊等. 饮用水配水系统中微生物研究方法的进展[J]. 环境与健康杂志, 2015, 32(5): 458-462. doi: 10.16241/j.cnki.1001-5914.2015.05.024
    [3] TANG W, LI Q, CHEN L, et al. Biofilm community structures and opportunistic pathogen gene markers in drinking water mains and the role of pipe materials[J]. ACS ES& T. Water, 2021, 1(3): 630-640.
    [4] 祝泽兵, 裴云燕, 单莉莉等. 供水管网生物膜中微生物种间相互作用及其影响因素综述[J/OL]. 环境工程: 1-15[2023-03-17]. http://kns.cnki.net/kcms/detail/11.2097.X.20221123.0807.002.html.
    [5] SIDHU J P S, GUPTA V V S R, STANGE C, et al. Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater[J]. Water Research, 2020, 185: 0043-1354.
    [6] LIANG J, MAO G, YIN X, et al. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment[J]. Water Research, 2020, 168: 115160. doi: 10.1016/j.watres.2019.115160
    [7] CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nature Reviews Microbiology, 2022, 20: 621-635. doi: 10.1038/s41579-022-00682-4
    [8] 钟丹, 周子仪, 马文成等. 供水管网中抗生素抗性基因环境风险浅析[J]. 给水排水, 2020, 56(S2): 59-63. doi: 10.13789/j.cnki.wwe1964.2020.S2.010
    [9] LI J, ZHAO L, FENG M, et al. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review[J]. Water Research, 2021, 202: 117463. doi: 10.1016/j.watres.2021.117463
    [10] YIN R, GUO W, REN N, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research, 2020, 171: 115374. doi: 10.1016/j.watres.2019.115374
    [11] ZHANG B, QIN S, GUAN X, et al. Distribution of antibiotic resistance genes in Karst River and its ecological risk[J]. Water Research, 2021, 203: 117507. doi: 10.1016/j.watres.2021.117507
    [12] ZHANG Z, WANG Y, CHEN B, et al. Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms[J]. Environmental Pollution, 2022, 306: 119396. doi: 10.1016/j.envpol.2022.119396
    [13] LIN Q, LI L, FANG X, et al. Substrate complexity affects the prevalence and interconnections of antibiotic, metal and biocide resistance genes, integron-integrase genes, human pathogens and virulence factors in anaerobic digestion[J]. Journal of Hazardous Materials, 2022, 438: 129441. doi: 10.1016/j.jhazmat.2022.129441
    [14] TANG T, CHEN Y, DU Y, et al. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater[J]. Journal of Hazardous Materials, 2023, 441: 129870. doi: 10.1016/j.jhazmat.2022.129870
    [15] WANG H, EDWARDS M. A, FALKINHAM J. O 3RD, et al. Probiotic approach to pathogen control in premise plumbing systems? A review[J]. Environmental Science & Technology, 2013, 47(18): 10117-10128.
    [16] LU Z, SUN W, LI C, et al. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon pro`cess[J]. Water Research, 2019, 161: 459-472. doi: 10.1016/j.watres.2019.05.065
    [17] 陈蕾. 污水中抗生素抗性菌及抗性基因的去除技术. 污水中抗生素抗性菌及抗性基因的去除技术[J]. 生态环境学报, 2018, 27(11): 2163-2169.
    [18] LI B, QIU Y, ZHANG J, et al. Real-time study of rapid spread of antibiotic resistance plasmid in biofilm using microfluidics[J]. Environmental Science & Technology, 2018, 52(19): 11132-11141.
    [19] FARHAT N, KIM L, MINETA K, et al. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine[J]. Water Research, 2022, 210: 117975. doi: 10.1016/j.watres.2021.117975
    [20] 付树森, 王艺, 王肖霖, 等. 氯和紫外消毒过程中胞外抗性基因的产生特征[J]. 中国环境科学, 2021, 41(10): 4756-4762. doi: 10.3969/j.issn.1000-6923.2021.10.032
    [21] LU Z, JING Z, HUANG J, et al. Can we shape microbial communities to enhance biological activated carbon filter performance?[J]. Water Research, 2022, 212: 118104. doi: 10.1016/j.watres.2022.118104
    [22] 李晓明, 王飞, 李建勇等. 饮用水中抗生素污染现状及降解技术研究进展[J]. 食品安全导刊, 2016, 144(21): 94-95. doi: 10.16043/j.cnki.cfs.2016.21.069
    [23] 钟文辉, 曹一鸣, 肖露等. 自来水厂次氯酸钠消毒技术应用总结[J]. 清洗世界, 2022, 38(6): 93-96.
    [24] 漆文光. 自来水厂采用次氯酸钠替代液氯消毒效果研究[J]. 供水技术, 2019, 13(3): 43-47.
    [25] GOMEZ-SMITH C K, LAPARA T M, HOZALSKI R M. Sulfate reducing bacteria and Mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system[J]. Environmental Science & Technology, 2015, 49(14): 8432-8440.
    [26] POTGIETER S, DAI Z, HAVENGA M, et al. Reproducible microbial community dynamics of two drinking water systems treating similar source waters[J]. ACS. ES& T. Water, 2021, 1(7): 1617-1627.
    [27] THOM C, SMITH C J, MOORE G, et al. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap[J]. Water Research, 2022, 212: 118106. doi: 10.1016/j.watres.2022.118106
    [28] BORSETTO C, RAGUIDEAU S, TRAVIS E, et al. Impact of sulfamethoxazole on a riverine microbiome[J]. Water Research, 2021, 201: 117382. doi: 10.1016/j.watres.2021.117382
    [29] CHEN J, YANG Y, LIU Y, et al. Bacterial community shift in response to a deep municipal tail wastewater treatment system[J]. Bioresource Technology, 2019, 281: 195-201. doi: 10.1016/j.biortech.2019.02.099
    [30] 韩雪, 孙坚伟, 张力等. 紫外氯胺组合消毒供水系统中病毒微生物的分布特征[J]. 环境科学, 2021, 42(2): 860-866. doi: 10.13227/j.hjkx.202007039
    [31] WANG Y H, WU Y H, LUO L W, et al. Metagenomics analysis of the key functional genes related to biofouling aggravation of reverse osmosis membranes after chlorine disinfection[J]. Journal of Hazardous Material, 2021, 410: 124602. doi: 10.1016/j.jhazmat.2020.124602
    [32] EOH H, LIU R, LIM J, et al. Microbial characterization during distribution with and without residual chlorine[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 958240. doi: 10.3389/fcimb.2022.958240
    [33] WANG M, LIAN Y, WANG Y, et al. The role and mechanism of quorum sensing on environmental antimicrobial resistance[J]. Environmental Pollution, 2023, 322: 121238. doi: 10.1016/j.envpol.2023.121238
    [34] ZOU S, ZHANG Q, ZHANG X, et al. Environmental factors and pollution stresses select bacterial populations in association with protists[J]. Frontiers in Marine Science, 2020, 7: 659. doi: 10.3389/fmars.2020.00659
    [35] MORRISSEY K, IVESA L, DELVA S, et al. Impacts of environmental stress on resistance and resilience of algal-associated bacterial communities[J]. Ecology and Evolution, 2021, 11: 15004-15019. doi: 10.1002/ece3.8184
    [36] SMITS S H J, SCHMITT L, BEIS K. Self-immunity to antibacterial peptides by ABC transporters[J]. FEBS Letters, 2020, 594: 3920-3942. doi: 10.1002/1873-3468.13953
    [37] AHMED M S, LAUERSEN K J, IKRAM S, et al. Efflux transporters' engineering and their application in microbial production of heterologous metabolites[J]. ACS Synthetic Biology, 2021, 10,4: 646-669.
    [38] GOMEZ-ALVAREZ, SIPONEN S, KAUPPINEN A, et al. A comparative analysis employing a gene- and genome-centric metagenomic approach reveals changes in composition, function, and activity in waterworks with different treatment processes and source water in Finland[J]. Water Research, 2023, 229: 119495. doi: 10.1016/j.watres.2022.119495
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.9 %DOWNLOAD: 8.9 %HTML全文: 85.2 %HTML全文: 85.2 %摘要: 5.9 %摘要: 5.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.9 %其他: 96.9 %XX: 1.7 %XX: 1.7 %上海: 0.1 %上海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.3 %北京: 0.3 %厦门: 0.1 %厦门: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %天津: 0.1 %天津: 0.1 %成都: 0.1 %成都: 0.1 %武汉: 0.1 %武汉: 0.1 %漯河: 0.1 %漯河: 0.1 %衢州: 0.1 %衢州: 0.1 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %重庆: 0.1 %重庆: 0.1 %镇江: 0.1 %镇江: 0.1 %青岛: 0.1 %青岛: 0.1 %其他XX上海内网IP北京厦门呼和浩特天津成都武汉漯河衢州西安运城重庆镇江青岛Highcharts.com
图( 5)
计量
  • 文章访问数:  3009
  • HTML全文浏览数:  3009
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-03
  • 录用日期:  2023-05-12
  • 刊出日期:  2023-06-26
胡炽盛, 马徐, 倪炯, 王亮, 王海波, 石宝友. 微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制[J]. 环境工程学报, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
引用本文: 胡炽盛, 马徐, 倪炯, 王亮, 王海波, 石宝友. 微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制[J]. 环境工程学报, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
HU Chisheng, MA Xu, NI Jiong, WANG Liang, WANG Haibo, SHI Baoyou. Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control[J]. Chinese Journal of Environmental Engineering, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085
Citation: HU Chisheng, MA Xu, NI Jiong, WANG Liang, WANG Haibo, SHI Baoyou. Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control[J]. Chinese Journal of Environmental Engineering, 2023, 17(6): 2077-2087. doi: 10.12030/j.cjee.202302085

微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制

    通讯作者: 王海波(1981—),男,博士,副研究员,hbwang@rcees.ac.cn
    作者简介: 胡炽盛 (1997—) ,男,硕士研究生,zshu_st@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 绍兴市上虞区供水有限公司,绍兴 312300
基金项目:
国家自然科学基金资助项目(52070189,51838005);国家重点研发计划项目(2019YFD1100105)

摘要: 针对饮用水管网系统可能存在的微生物风险问题,采用模拟不同处理条件下的输配水管道系统,通过宏基因组学分析探究微量磺胺甲恶唑以及次氯酸钠消毒对管道中生物膜与抗性基因组成的影响。结果表明,2 μg·L−1磺胺甲恶唑的添加对微生物群落以及抗性基因组成无明显影响,而浮霉菌门细菌表现出很强的抗次氯酸钠消毒能力。在未消毒条件下丰度前十的抗性基因与携带差异性抗性基因的细菌在消毒后丰度均明显有所下降,次氯酸钠消毒使ARGs总量下降了91.9%,因此,次氯酸钠消毒通过控制携带抗性基因物种从而有效控制群落抗性基因的传播。同时,通过组间显著性差异的功能基因与组间显著性差异的抗性基因相关性分析,功能基因的变化情况与抗性基因变化情况一致,因此,长期消毒改变了细菌群落组成及其功能,并最终影响抗性基因传播。这项研究有助于控制长期运行的饮用水管网输配系统中可能存在的包括抗药基因在内的微生物相关风险问题。

English Abstract

  • 饮用水安全问题对人类健康至关重要[1-2]。近些年饮用水安全方面的挑战涵盖了微生物的方方面面,通常细菌在饮用水管网输配系统(drinking water distribution systems,DWDSs)的生物膜中自然定殖,并形成稳定的微生物生态系统[3-4],这种稳态环境有利于细菌的生长并能够给其在面对消毒过程时提供一定的庇护作用,进而带来包括致病菌、抗性基因等微生物风险问题[5]。因此,探究长期运行的DWDSs生物膜的细菌群落组成对于控制饮用水微生物风险具有重要意义。

    抗生素抗性基因(antibiotic resistance genes,ARGs)会增强细菌宿主对抗生素的抵抗能力[6-7],细菌产生ARGs通常需要一个稳定的环境,而生物膜恰恰能提供这种“温床”[8-9],因此长期运行的DWDSs生物膜最终可能导致微生物的ARGs风险。此外,包括磺胺甲恶唑在内的抗生素在临床上的广泛使用,不可避免地导致抗生素污染[10-11]。抗生素不仅会影响细菌的生长过程,还会对ARGs的传播造成影响[12-13]。低剂量的抗生素(0.5 mg·L−1),如土霉素和磺胺甲恶唑,会加速活性氧的生成并促进ARGs的传播[14]。因此,探究微量抗生素对长期运行的DWDSs生物膜中ARGs的影响十分重要。饮用水处理和消毒被认为是20世纪最伟大的公共卫生成就之一[15],消毒工艺通常被认为能够抑制微生物的生长以及控制ARGs传播[16]。但同样有研究报道消毒对ARGs的形成存在促进作用[17-20]。因此,探究消毒是否对长期运行的DWDSs生物膜中的ARGs起到有效控制将有助于控制管网微生物风险。此外,消毒过程作为细菌遭受到的一种环境胁迫压力,往往会影响与细菌新陈代谢有关的功能基因[21]。但是关于功能基因与ARGs之间是否存在关系,目前研究报道不多。

    因此,本研究的目的是利用模拟不同处理条件下的DWDSs,研究微量磺胺甲恶唑对细菌群落组成和ARGs的影响;通过长期模拟运行探究次氯酸钠消毒对ARGs的控制效果;最后通过相关性分析探讨功能基因与ARGs之间可能存在的关系,探讨消毒过程通过改变细菌的代谢过程从而影响细菌的生长进而控制ARGs传播。

    • 实验用水来自于中国东部一个饮用水处理厂(drinking water treatment plant,DWTP)。出水经过混凝、沉淀、砂滤处理。该原水的pH为7.89±0.05,浊度为(1.24±0.10) NTU,耗氧量CODMn为(3.00±0.14) mg·L−1,余氯质量浓度为0,异养菌平板计数为(120±5) CFU·mL−1,没有检测到总大肠菌群。

    • 实验在1.50 m长全新的PE管材(DN 60 mm)中进行。管道进水为每日从DWTP处理后获取的60.0 L砂滤(SF)出水,并通过蠕动泵以1.50 mL·s−1的流速在各管中缓慢流过,运行为期1 a。

      共采用9根管道来模拟饮用水管网输配系统(DWDSs),共设计3种实验条件,各条件有3个平行。条件A1,不使用消毒剂的SF出水作为实验进水;条件A2,在不使用消毒剂的SF出水添加2.00 μg·L−1的磺胺甲恶唑作为实验进水。条件B1,SF出水添加2.00 μg·L−1的磺胺甲恶唑并使用次氯酸钠(NaClO)消毒剂进行消毒作为实验进水。其中,磺胺甲恶唑的添加质量浓度是考虑到了可能发生的磺胺类抗生素污染情况[22];而以游离氯消毒的出厂水质量浓度一般控制在0.3~0.8 mg·L−1[23-24],因此,实验模拟管网进水游离氯质量浓度控制在0.50 mg·L−1

    • 在模拟的DWDSs运行1 a后,将每根PE管切成3段,每段长约50.0 cm。使用无菌金属刮刀从管段内部采集生物膜,刮刀距离切口至少40.0 cm,以尽量减少污染的风险[25]。使用FastDNA Spin Kits for Soil (MP Biomedicals Co., USA)试剂盒的说明进行DNA提取。用NanoDrop 2000(Thermo Fisher Scienrific., USA)和TBS-380(YPH-Bio., China)分别测量DNA质量浓度和纯度,并进行凝胶测试以验证其完整性(1%琼脂糖凝胶电泳)。每根管道3个DNA样品混合为1个样品,每个条件3个平行共3个DNA样品进行送样。

    • Illumina高通量测序是用HiSeq 2000平台进行的。宏基因组序列库由美吉生物公司构建。使用Fastp软件(http://github.com/OpenGene /fastp)对原始fastq文件进行了过滤。使用IDBA-UD/Megahit(https://github.com/voutcn/megahit)和Newbler(https://ngs.csr.uky.edu/Newbler)对序列进行多重混合拼接组装。使用Prodigal对拼接结果中的contigs进行基因预测。使用CD-HIT软件(http://www.bioinformatics.org/cd-hit/)构建非冗余基因集。

      微生物群落组成分析利用NR数据库进行比对(参数blastp;E≤10−5),并通过NR库对应的分类学信息数据库获得物种注释结果,然后使用物种对应的基因丰度总和计算该物种的丰度。功能基因与京都基因与基因组百科全书(KEGG)的基因数据库进行比对(参数blastp;E≤10−5),再根据对应的基因丰度总和计算该功能类别的丰度。抗生素抗性基因(ARGs)与抗性基因数据库(CARD)进行比对(参数blastp;E≤10−5),将目标基因与其耐药功能注释信息结合,获得注释结果。以上基因丰度是用TPM(trans per million),即基因丰度以该基因通过基因长度标准化后的基因丰度在该样本中所有基因长度标准化后的基因丰度总和中占比的百万倍表示。

    • 1)微生物群落组成。如图1(a)所示,当在DWDSs的进水中加入磺胺甲恶唑时,由TPM计算的生物膜中门分类水平微生物群落的总丰度仅改变了0.09%。丰度前十的门分别为放线菌门、变形菌门、浮霉菌门、拟杆菌门、酸酐菌门、疣微菌门、蓝藻门、厚壁菌门、芽单胞菌门以及硝化螺旋菌门。在不添加消毒剂的情况下,放线菌门和变形菌门的细菌在条件A1和A2的生物膜中占主导地位,丰度总和占总细菌的比例分别为83.1%和83.7%。许多研究表明,这2个门类是不同管道生物膜中的主要的细菌类型[26-27]。而他们在B1中仅占比24.5%,因此,消毒可以明显降低放线菌门与变形菌门的细菌在细菌群落中的比例。但同时,浮霉菌门细菌无论是占比(58.1%)还是相对丰度(TPM=70 099.6),均远远高于未消毒条件A1和A2,表明浮霉菌门具有较强的抗次氯酸钠消毒能力。厚壁菌门的细菌在3种条件(A1、A2、B1)中的丰度依次为6 839.6、6 607.8和6 802.1 TPM,消毒剂的加入并没有显著影响其丰度变化,因此,厚壁菌门的细菌也具有一定的抗消毒能力,这一结果与之前的研究结果类似[26]

      种水平上未消毒条件下(A1、A2)的优势种中(图1(b)),酸微菌Acidimicrobium sp.BACL27 MAG-120823-bin4在加入磺胺甲恶唑后其相对丰度值由64 879.8 TPM(A1)升高至80 593.3 TPM(A2),相应地其相对丰度占比由7.52%上升至9.34%。因此,微量磺胺甲恶唑对生物膜中该物种丰度产生影响。而消毒条件下(B1),酸微菌Acidimicrobium sp.BACL27 MAG-120823-bin4丰度仅占B1条件生物膜中所有细菌的0.07%,酸微菌属于放线菌门,而该条件下丰度前10的细菌均属于浮霉菌门(图1(c))。因此,消毒可以很好的控制包括酸微菌在内的放线菌门细菌生长,而浮霉菌门的细菌能够更好地适应消毒环境,对消毒表现出一定的抗性。

      2)物种的相似性与差异性。A1与A2条件下的群落物种不仅在丰度上差异很小,在物种种类相似程度也很高,相同的物种占到了总物种的97%以上(图2(a))。因此,添加磺胺甲恶唑对微生物群落组成的改变非常小。这一结果与之前的一项研究类似,即磺胺甲恶唑在环境相关质量浓度(< 4 μg·L−1)下没有明显影响河流沉积物中的细菌群落组成[28]。但消毒剂的加入改变了群落的组成,物种数量由12 330种下降至8 374种,因此,次氯酸钠消毒在水处理中确实对微生物生长能够起到一定的控制效果。

      图2(b)所示,在群落的差异性物种中,消毒条件B1与其他2种条件表现出的显著差异性物种均为浮霉菌纲细菌,包括Zavarzinella formosa,Planctomycetaceae bacterium SCGC AG-212-F19Gemmata_obscuriglobusGemmata sp.IIL30Singulisphaera acidiphilaGemmata sp.SH-PL17Schlesneria paludicola,这进一步证实浮霉菌纲细菌抗次氯酸钠消毒能力强。根据研究表明,浮霉菌在面对臭氧的胁迫时也体现了强适应能力,凭借出芽繁殖的方式保障细菌的正常繁殖生长[29]。而其余物种均属于放线菌与变形门细菌,这些物种在A1、A2中生长良好,但一旦长期暴露在次氯酸钠消毒条件中,则会遭到抑制。因此,次氯酸钠消毒对于放线菌与变形门类细菌控制有效[30],但对于浮霉菌几乎没有控制效果。

    • 1)群落的抗性基因。与群落组成类似,添加2 μg·L−1磺胺甲恶唑对生物膜上抗性基因丰度影响不明显(图3(a))。在生物膜细菌群落的抗性基因中,Saur_rpoC_DAPmacBmfdaminocoumarin resistant alaSMtub_katG_INHmtrAoleCMtub_ropB_RIFEcol_ropB_RIFpatA是主要的ARGs类型(图3(a))。在同样添加磺胺甲恶唑的管道中,采取次氯酸钠消毒使得ARGs总量下降了91.9%,这表明消毒对于抗性基因有很好的控制效果。在差异性基因中,消毒条件中丰度占比较高的抗性基因分别是macBbcrApatAmdtBdrrA(图3(b))。而携带抗性基因的细菌主要是Acidimicrobium sp. BACL27 MAG-120823-bin4、Actinobacteria bacterium BACL15 MAG-120619-bin91alpha proteobacterium HIMB114Actinobacteria bacterium BACL2 MAG-120802-bin41actinobacterium SCGC AAA027-L06(图3(c))。这些细菌在各条件中的丰度也处于一个较高的水平,因此,产生抗性基因的一个原因可能是细菌本身能很好的适应生存环境。这一点在携带差异性基因的物种上也有很好的体现,例如未消毒条件中携带差异性抗性基因(macBpatA)的细菌Acidimicrobium sp.BACL27 MAG-120823-bin4Actinobacteria bacterium BACL15 MAG-120619-bin91在消毒后数量明显下降(图1(b)),该2种抗药基因消毒后同样下降明显。同时,抗性基因与物种的相关性分析也进一步表明物种与抗性基因在不同条件下的变化存在很好的相关性(R2 > 0.8)( 图3(d))。因此,以上结果说明消毒对抗性基因的控制效果很大程度体现在对细菌的控制上。

      2)群落功能基因。微生物群落的功能基因包括碳水化合物代谢、氨基酸代谢、能量代谢、辅助因子和维生素的代谢、核苷酸代谢、脂质代谢、信号转导、复制和修复以及翻译等(图4(a))。除信号转导外,部分功能基因的占比在加入磺胺甲恶唑后略有上升。而NaClO消毒使这些功能基因明显减少,这一结果与以前的研究结果一致[31]

      另外,对不同功能基因贡献度靠前的细菌与携带耐药性基因的细菌几乎一致(图4(b))。在A1、A2与B1群落的功能基因组成中,碳水化合物代谢类的功能基因占比分别为13.8%、13.9%和15.8%,在消毒处理后细菌的碳水化合物代谢基因水平出现了上升,说明面对消毒带来的环境胁迫压力时,生物膜中细菌可以通过调整碳水化合物相关过程的代谢来进行响应;与此类似的还有辅助因子与维生素相关的代谢,群落在面临消毒时同样出现了上调的现象,A1、A2和B1条件下该功能基因占比分别为5.47%、5.45%和6.75%。与此同时,功能基因与物种的相关性分析同样说明不同条件下物种丰度与功能基因变化表现出很好的相关性 (R2>0.8)(图4(c))。因此,细菌抗性基因的变化极有可能是与功能基因的变化趋势一致。

      3)群落功能基因与抗性基因之间的关系。对丰度前十的群落功能基因在KEGG二级通路上与抗性基因进行相关性网络分析后,我们发现抗性基因与每一大类的功能基因之间存在不同程度的正相关性(图5(a))。在对显著性差异的ARGs与KEGG三级通路的功能基因进一步分析后,发现存在显著性差异的抗性基因与功能基因((图3(d)与(图4(d))之间仍然存在相似结果,即每一种抗性基因均与各种的功能基因有着不同程度的正相关关系(图5(b))。这一结果表明次氯酸钠是通过改变物种并影响其功能基因进而改变抗性基因的丰度。很多研究中都报道了功能基因对于耐药性基因的形成存在影响,例如中心碳代谢功能影响结核分枝杆菌的耐药性[32],群体感应影响耐药性基因的产生[33]。与此同时,当环境压力改变细菌群落组成时[34],物种功能基因往往也会进行改变[35]。因此,当次氯酸钠消毒显著引起生物膜群落变化时,群落中微生物的功能基因也发生了相应的变化,最终也会影响其耐药性基因的形成。

      图5(b)中,抗性基因oleC是唯一与ABC转运蛋白功能基因呈正相关关系。细菌在某些应激条件下产生细菌素和微毒素会对周围物种产生一定的抗菌活性以便自身生存,而ABC转运蛋白能够帮助细菌通过免疫蛋白或者转运等方式保护自己[36]。在A1、A2中oleC主要存在于放线菌门的细菌中,在添加磺胺后oleC的丰度占比上升了0.14%(图3(b)),但放线菌门的细菌的丰度却出现了下降(图1(a))。因此,磺胺甲恶唑可能作为外源性刺激物质造成ABC转运蛋白功能水平的上升,进而赋予携带oleC抗性基因物种更强的生存优势并最终使得oleC抗性基因保持更高的丰度水平,同时研究证明由oleC的抗生素抗性效果源自ABC-转运体的外排转运系统[37]。但由于放线菌门的细菌并不能适应长期的消毒,导致其细菌丰度下降,进而使得功能基因与抗性基因也出现相同的趋势。因此,oleC抗性基因的产生与细菌功能基因的关系紧密。除oleC外,其他抗性基因均与各类功能基因存在正相关性,包括氨基酸生物合成,碳代谢,嘌呤代谢,嘧啶代谢,氧化磷酸化,群体感应以及氨基酸-tRNA的生物合成等。早先的研究证明了不同的输配水系统条件所施加的选择压力影响群落结构以及功能特性和代谢潜力水平的变化[38],因此,当群落处于长期消毒时,群落的组成发生变化,上述类型的功能基因与抗性基因也随之变化。

    • 1) 2 μg·L−1磺胺甲恶唑的添加对生物膜细菌群落结构组成无明显影响,次氯酸钠消毒对不同细菌包括变形菌门和放线菌门有很好的控制效果,但浮霉菌门与厚壁菌门细菌表现出很强的抗次氯酸钠消毒能力。

      2)在未消毒条件中丰度前10的抗性基因(包括Saur_rpoC_DAPmacBmfdaminocoumarin resistant alaSMtub_katG_INHmtrAoleCMtub_ropB_RIFEcol_ropB_RIFpatA)在次氯酸钠消毒后含量下降明显,ARGs总量下降了91.9%,同时携带差异性抗性基因(macBpatA)的细菌在消毒后数量也出现明显下降,因此,次氯酸钠消毒通过控制携带抗性基因物种从而有效控制抗性基因传播。

      3)抗性基因的形成与细菌功能代谢变化有关。组间显著性差异的功能基因(包括氨基酸生物合成、碳代谢、嘌呤代谢、嘧啶代谢、氧化磷酸化、群体感应以及氨基酸-tRNA的生物合成)与组间显著性差异的抗性基因存在良好的正相关关系。因此,长期消毒改变了细菌群落组成及其功能,并最终影响抗性基因传播。

    参考文献 (38)

返回顶部

目录

/

返回文章
返回