-
化学合成工业的蓬勃发展,在给人类生活带来便捷、高效、舒适生活的同时,亦给生态环境保护和人类健康带来巨大安全隐患。其中,废水中的酚类污染物主要来源于焦化厂、煤气发生站、合成酚厂、制药厂、合成纤维厂等化工生产过程产生的含酚废水[1],酚类化合物在生物体内能够使细胞组织失去活性[2],由于其高毒性、难降解、易生物积累等特性而受到广泛关注[3],苯酚、间甲酚、2,4-二氯酚、对硝基苯酚等6种酚类被列为我国水体优先控制污染物黑名单。如何去除与回收工业废水中的酚类化合物是目前国内外化工与环境领域关注的焦点问题之一。
目前,水体中酚类化合物的常用去除方法主要有萃取法[4]、吸附法[5-6]、生物降解法[7-8]及高级氧化法[9-10]等。溶剂萃取法工艺简单、易操作,但仅用于对高浓度含酚废水进行预处理;吸附法脱酚效率不高,需与其他脱酚方法联用;生物降解法经济可靠,但一般用来处理较低浓度的含酚废水;高级氧化法处理效果好,但成本高,目前工业上应用较少。乳化液膜法在20世纪70年代初期提出,能实现对液相中酚的分离与富集[11],具有低能耗、低成本、界面面积大、传质速率高、操作简单等特点,受到国内外研究者的广泛关注[12-13]。
传统乳化液膜多采用石油基溶剂,如煤油[14-15]、环乙烷[16]、正庚烷[17]等,具有毒性且不可被生物降解、不能再生,如果排放到环境中将对环境产生巨大危害[18]。采用绿色可持续的植物油来代替传统石油基溶剂是目前的一大研究趋势。棕榈油已被报道作为乳化液膜的绿色稀释剂用于分离苯酚(83%)[19]、银(97%)[20]、活性染料(90%)[18]、铬(97%)[21]等,其中分离苯酚的效果并不理想。本研究采用棕榈油作为绿色稀释剂来制备乳化液膜用于去除和回收焦化废水中的苯酚,以聚异丁烯多丁二酰亚胺(T-155)作为表面活性剂同时配以载体正辛醇,以期提高GELM体系分离酚的能力。本研究以模拟含酚废水为研究对象,通过单因素实验研究油内比、表面活性剂浓度、载体浓度、内水相浓度、制乳时间及制乳转速对乳化液膜稳定性的影响,考察表面活性剂浓度、载体浓度、内水相浓度、油内比、乳外比、搅拌转速和萃取时间苯酚去除率的影响,并研究该乳化液膜对不同酚类的去除效果和对苯酚的富集能力,以期为实验室研究与工业化应用提供参考。
-
试剂:工业煤油、氢氧化钠、正辛醇、铁氰化钾、氯化铵、氨水、4-氨基安替比林、苯酚均为分析纯;T-155、棕榈油为工业级;仪器:722光栅分光光度计、JJ-1A160W数显电动搅拌器(金坛新瑞)、JRJ300-SH型剪切乳化搅拌机(上海沪析)。
-
取一定量的乳化液置于玻璃毛细管内,放置24 h,观察破乳情况,记录破乳量,破乳率按式(1)计算。用乳化液膜分离提取模拟废水中的苯酚,苯酚去除率按式(2)计算,提取前后苯酚富集倍数按式(3)计算。
式中:Vt为放置24 h后乳化液的破乳量,mL;V0为放入毛细管中的乳化液的体积,mL;Ƞ为破乳率,%;
ρ0 为模拟废水苯酚初始浓度,mg·L−1;ρA 为萃取水相的苯酚浓度,mg·L−1;ρE 为破乳后水相中的苯酚浓度,mg·L−1;n为脱酚率,%;m为苯酚富集倍数。采用4-氨基安替比林分光光度法(HJ 503-2009)测定废水中苯酚的含量、重铬酸钾法(HJ 828-2017)测定废水的COD。
-
将苯酚与去离子水混合配制成一定浓度的模拟废水,以模拟废水为研究对象,研究制备的乳化液膜对酚的去除能力。有研究指出[22],棕榈油和煤油按7∶3的比例混合得到的乳液最稳定,因此本研究中棕榈油与煤油的比例确定为7∶3。先将棕榈油和煤油按比例混合,然后将表面活性剂溶解于棕榈油和煤油的混合物中,用电动搅拌器对混合物进行搅拌,并加入载体。待搅拌均匀后,加入一定浓度的NaOH溶液作为内相,如图1所示,将搅拌好的液体立即用剪切乳化搅拌机制乳[23],即可制得油包水型(W/O)乳白色油状液膜。按照一定的乳外比(乳液与外相溶液的体积比),将一定量的乳化液加入到含酚废水中,并用电动搅拌器使混合液搅拌均匀。W/O型乳化液分散至外相中形成水包油再包水型(W/O/W)乳化液膜体系。待传质过程结束后,停止搅拌,让混合液静置分层,然后取出50 mL下层清液,用于测定酚含量。同时收集分层后的乳液,通过加热破乳使乳化液与内水相分离,浓缩回收内水相中的苯酚。
-
以棕榈油和煤油的混合物为膜溶剂,体积分数为4%的T-155为表面活性剂,体积分数为0.4%的正辛醇为载体,内相浓度为0.1 mol·L−1,制乳转速为1 300 r·min−1,制乳时间5 min,研究不同油内比对乳化液膜稳定性的影响,结果如图2(a)所示。油内比增大时乳化液的破乳率会下降。油内比较低时有机溶剂不足以实现对内相溶液的适当包封,从而使得液膜较薄,乳液不稳定[24]。油内比增大会使得液膜变厚,稳定性提高。但油内比过大会导致液膜的黏度、厚度增大,使待分离物质在膜内的传质速率下降,所以应该在保证稳定性较好的前提下选择较小的油内比。本实验确定油内比为1∶1。在研究表面活性剂浓度、内相浓度、油内比、制乳转速以及制乳时间相同的实验条件下,研究不同载体浓度对乳化液膜稳定性的影响,结果如图2(b)所示。破乳率随着载体浓度的增加会先增大后减小,在载体浓度为0.4%时破乳率最低。AHMAD等[25]指出,过多的载体会使更多的溶质从外相快速转移到内相,导致外相和内相之间渗透梯度的显著变化,从而使得乳化液滴膨胀、液膜破裂。本实验选用载体正辛醇的浓度为0.4%。
以棕榈油和煤油的混合物为膜溶剂,0.4%的正辛醇为载体,油内比为1∶1,内相浓度为0.1 mol·L−1,制乳转速为1 300 r·min−1,制乳时间5 min,研究不同表面活性剂浓度对乳化液膜稳定性的影响,结果如图2(c)所示。可见,破乳率随着表面活性剂的增加会先升高后降低,在表面活性剂浓度为4%时破乳率最低。增加表面活性剂的浓度可以降低表面张力,从而形成更多的细小液滴,产生更稳定的乳液[26]。但随着表面活性剂用量增加到一定量时,会降低了乳化液滴的运动速率,导致液滴发生溶胀[27]。本实验选用表面活性剂T-155的浓度为4%。在研究表面活性剂浓度、载体浓度、油内比、制乳转速以及制乳时间相同的实验条件下,研究不同内相浓度对乳化液膜稳定性的影响,结果如图2(d)所示。当内相浓度为0.1 mol·L−1时,破乳率最低,在内相浓度大于0.1 mol·L−1后,随着浓度的增大,液膜的稳定性变差。KUMAR等[28]指出,在较高内相氢氧化钠浓度下,氢氧化钠会与表面活性剂发生反应,使表面活性剂水解,从而导致乳化液膜的稳定性降低。本实验选用内相浓度为0.1 mol·L−1。
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,油内比为1∶1,内相浓度为0.1 mol·L−1,制乳转速为1 300 r·min−1,研究不同制乳时间对乳化液膜稳定性的影响,结果如图2(e)所示。可见,制乳时间越长,乳化液的破乳率越低,制乳时间大于5 min后,破乳率变化不大。制乳时间越长,液膜粒径就越小,粒径分布范围也就越小,分散效果越好,反之分散效果会降低,导致乳化液膜的稳定性受到影响[29]。并且过长的乳化时间会使得内相液滴一直在高速剪切下,导致进入内相的水的转移速率增加,从而造成膜破损[30]。本实验选用制乳时间为5 min。在研究表面活性剂浓度、载体浓度、油内比、内相浓度以及制乳时间相同的实验条件下,研究不同制乳转速对乳化液膜稳定性的影响,结果如图2(f)所示。制乳转速为1 300 r·min−1时,破乳率最低。油相在剪切力的作用下分散为均匀的乳化液颗粒,当剪切力过大时会破坏乳化液颗粒,使得乳滴半径太小而会快速结合,当膜无法克服碰撞力时便导致乳液液滴破裂[19]。本实验选用制乳转速为1 300 r·min−1。
-
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,内相浓度为0.1 mol·L−1,乳外比为1:3,搅拌转速500 r·min−1,萃取时间5 min,研究不同油内比对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(a)所示。油内比是制备乳化液膜时添加的油相与内相的体积比。随着油内比的增加,脱酚率会先升高后降低,当油内比为1:1时脱酚率最高。从经济角度来看,降低油内比可以减少制备乳化液膜原料的使用量,从而提高经济效益;从处理效果方面来看,提高油内比可以形成更稳定的乳液,但油内比过大会使得液膜厚度增加,导致待分离物质在膜内的传质速率下降[31],脱酚率下降。本实验选择油内比为1∶1。在研究表面活性剂浓度、内相浓度、油内比、乳外比、搅拌转速以及萃取时间相同的实验条件下,研究不同载体浓度对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(b)所示。随着载体浓度的增加,脱酚率先增加而后基本保持不变。载体正辛醇是直链氢键缔合溶剂,能与酚形成弱氢键缔合物[32],可实现对苯酚的选择性迁移,使得传质效率增大。由于棕榈油中的主要成分甘油三酯可以与苯酚形成苯酚-甘油三酯络合物,故棕榈油的存在有利于Ⅱ型传质,可促进苯酚迁移至膜内,而外加载体有利于脱酚率的进一步提高。当外加载体正辛醇的浓度增加到0.4%时,脱酚率达到最大值,说明此时载体浓度最佳。当载体浓度继续增加时,载体会有富余,经济效益下降,同时载体过多会使得乳液粘度变大而增加传质阻力[33],导致脱酚率降低。因此,本实验选择载体浓度为0.4%。
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,内相浓度为0.1 mol·L−1,油内比为1∶1,乳外比为1∶3,萃取时间5 min,研究不同的搅拌转速对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(c)所示。当转速为500 r·min−1时脱酚率最高。搅拌速度越高,强化了乳化液膜的传质过程,同时会产生较大表面积的细小液滴,可促进苯酚转移至膜内[34]。反之,当转速过低时,乳液不易分散完全,导致传质效果不好,脱酚率低。但在过高的搅拌速度下,形成的乳液液滴尺寸小,液膜变薄,乳液液滴会迅速聚结,最终导致膜破裂,脱酚率下降。因此,本实验选择的转速为500 r·min−1。在研究表面活性剂浓度、载体浓度、油内比、乳外比、搅拌转速以及萃取时间相同的实验条件下,研究不同内相浓度对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(d)所示。随着内相浓度的增加,当内相浓度小于0.5 mol·L−1时,脱酚率会有所增加,而当内相浓度超过0.5 mol·L−1时,脱酚率不随内相浓度的增大而增加。内相浓度越高,传质推动力增大,脱酚率变大。但NaOH浓度过高会使得乳化液膜的稳定性下降,同时高浓度的内相试剂会在外相和内相之间产生显着的渗透压差,导致乳液液滴尺寸增加,液滴更易破裂[35],ROUHANI等[36]研究也表明,内相试剂浓度过大时会降低液膜厚度,从而导致脱酚率下降。从乳化液稳定性和脱酚率的角度来看,当NaOH浓度为0.2 mol·L−1时液膜破乳率较低,脱酚率也较高,因此,本实验选择内相浓度为0.2 mol·L−1。
以棕榈油和煤油的混合物为膜溶剂,0.4%的正辛醇为载体,内相浓度0.2 mol·L−1,油内比为1∶1,乳外比为1∶3,搅拌转速500 r·min−1,萃取时间5 min,研究不同载体浓度对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(e)所示。当表面活性剂浓度为4%时,脱酚率最大。表面活性剂的加入可以降低界面张力,有助于小粒径的乳液液滴的形成,从而增大外相与乳化液膜之间的接触表面积[37],有利于酚的迁移,但当表面活性剂增大到一定量之后会导致液膜厚度增加、界面粘度变大从而使得传质阻力增大[38],脱酚率降低。因此,本实验选择表面活性剂浓度为4%。在研究表面活性剂浓度、载体浓度、内相浓度、油内比、搅拌转速以及萃取时间相同的实验条件下,研究不同乳外比对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图3(f)所示。随着乳外比的增大,脱酚率也相应增大。HUSSEIN等[39]发现较低的乳外比会使得外相和乳液之间的渗透压差增加,从而导致液膜更易破裂,脱酚率下降。而对于一定体积的外水相而言,乳外比越大,用来萃取的乳液量就越大,乳液与外水相的接触面积越大,使得脱酚率提高,但消耗的乳液多,经济效益下降。实际应用中需用较小的乳外比达到所要求的条件。本实验选择乳外比为1∶3。
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,内相浓度0.2 mol·L−1,油内比为1∶1,乳外比为1∶3,搅拌转速500 r·min−1,研究不同的萃取时间对100 mg·L−1的模拟苯酚废水去除率的影响,结果如图4(a)所示。随着萃取时间的增大,脱酚率先升高后降低,当萃取时间为5 min时,脱酚率最大。萃取时间的增加有助于将大的乳液液滴破碎成大量较小的乳液液滴,从而增大传质表面积[40],使得酚与液膜接触越充分,提高脱酚率。但随着萃取时间的延长,由于更多的外相分子转移到内相中,会使乳液溶胀,最终导致膜破裂增加[28],脱酚率下降。因此,本实验选择萃取时间为5 min。在研究表面活性剂浓度、载体浓度、内相浓度、油内比、乳外比以及搅拌转速相同的实验条件下,研究萃取时间对100 mg·L−1的不同酚类模拟废水COD去除率的影响,结果如图4(b)所示。随着萃取时间的增大COD去除率先增大后减小,这与萃取时间对脱酚率的影响规律一致,当萃取时间为5 min时,COD去除率最大,达到73.71%。
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,内相浓度0.2 mol·L−1,油内比为1∶1,乳外比1∶3,搅拌转速500 r·min−1,萃取时间5 min,研究该乳化液膜体系对不同浓度的模拟苯酚废水去除率的影响,结果如图5所示。在初始苯酚质量浓度小于1 000 mg·L−1的情况下,苯酚浓度的变化对脱酚率的影响不大,在初始苯酚质量浓度达到300 mg·L−1时脱酚率最高,达到99.53%。当初始苯酚质量浓度大于1 000 mg·L−1时,随着苯酚浓度的增大,脱酚率有所下降,但在初始苯酚浓度为4 000 mg·L−1时,脱酚率仍达90.51%,说明该乳化液膜体系在处理高浓度含酚废水方面具有一定优势。苯酚浓度的提高可以增加传质推动力,从而使得脱酚率增大,但当苯酚浓度提高到一定值后,由于液膜中NaOH的量一定,液膜能脱除的酚有限,从而使得脱酚率下降。
以棕榈油和煤油的混合物为膜溶剂,4%的T-155为表面活性剂,0.4%的正辛醇为载体,内相浓度0.2 mol·L−1,油内比为1∶1,乳外比1∶3,搅拌转速500 r·min−1,萃取时间5 min,研究该乳化液膜体系对不同酚类模拟废水去除率的影响,结果如图6所示。该乳化液膜体系对于邻甲酚、邻氯苯酚和邻氨基苯酚这3种酚类去除率均较高,去除率均接近99%,说明该乳化液膜体系对于与苯酚化学性质相似的酚类的脱除效果较好。
-
本实验进行了通过加热破乳来回收乳化液膜中的酚研究。在70 ℃的恒温水浴锅中,将液膜提取分离后的乳状液(乳液相)加热120 min,即可实现破乳。将破乳后的水相分离出来,测定水相中的酚浓度,计算苯酚富集倍数。对于相同的乳化液膜,改变乳外比,分析其对苯酚富集倍数的影响,结果如图7中所示。由图7以看出,随着乳外比的增加,苯酚富集倍数增大,从1∶3处理比的5.73倍到1∶10处理比的16.47倍富集。
-
1)当表面活性剂T-155浓度为4%、载体正辛醇浓度为0.4%、内相试剂NaOH溶液浓度为0.1 mol·L−1、油内比1∶1、在1 300 r·min−1的转速下进行5 min高速剪切制乳是制备乳化液膜的最佳条件。
2)当表面活性剂T-155浓度为4%、载体正辛醇浓度为0.4%、内相试剂NaOH溶液浓度为0.2 mol·L−1、油内比1∶1、乳外比为1∶3,在500 r·min−1的转速下萃取5 min除酚率可达99.45%,COD去除率可达73.71%,并且该乳化液膜体系对于邻甲酚、邻氯苯酚和邻氨基苯酚这3种酚类去除率均接近99%,当初始酚质量浓度达到4 000 mg·L−1时,脱酚率仍然接近90%。
3)该乳化液膜对苯酚的富集倍数随乳外比的增大而增大,在乳外比为1∶10时富集倍数可达16.47。
乳化液膜法对废水中酚的高效去除与富集
Efficient removal and enrichment of phenol from wastewater via emulsion liquid membrane method
-
摘要: 采用绿色高效的乳化液膜法(GELM)去除与富集废水中的酚类污染物,建立了以棕榈油和煤油混合物(7:3)为膜溶剂、聚异丁烯多丁二酰亚胺(T-155)为表面活性剂、正辛醇为载体的乳化液膜体系,提高了GELM法分离酚的能力,并研究了各因素对液膜稳定性及对废水中苯酚的分离富集效果的影响。乳化液稳定性和分离酚的实验结果表明,在最优条件下,乳液稳定性好,且该乳化液膜对废水中苯酚和COD去除率分别为99.5%和74%,对邻甲酚、邻氯苯酚、邻氨基苯酚等酚类污染物的除酚率均达~99%,在初始酚浓度4000 mg·L−1时,除酚率仍然达~90%,说明该体系可实现对酚的高效去除。此外乳化液膜对苯酚的富集倍数随乳外比的增大而增大,在乳外比为1∶10时苯酚富集约16倍,说明该体系实现了对苯酚的有效富集。研究结果可为废水中酚类污染物的去除与资源化回收提供绿色、高效、低成本解决方法。Abstract: A green and high-efficient emulsion liquid membrane (GELM) method was developed to remove and enrich phenol pollutants from phenol contaminated wastewater. The emulsion liquid membrane was established with a mixture of palm oil and kerosene (7∶3) as membrane solvent, polyisobutylene polysuccinimide (T-155) as surfactant, and n-octanol as carrier, which improved phenol removal ability by GELM. The effects of various factors on the stability of emulsion liquid membrane and the separation and enrichment effect of phenol in wastewater were studied. The results of emulsion liquid stability and phenol separation experiments showed that under the optimal conditions, the emulsion was stable, and the removal rates of phenol and COD were 99.5% and 74%, respectively. The removal rates of o-cresol, o-chlorophenol and o-aminophenol reached 99%. When the initial phenol concentration was 4000 mg·L−1, the removal rate of phenol was still close to 90%, indicating the system can remove phenol efficiently. In addition, the enrichment ratio of phenol increased with the emulsion ratio. When the emulsion ratio was 1∶10, the enrichment of phenol was about 16 times, indicating the proposed scheme could effectively enrich phenol. This research provided a green, efficient, and low-cost solution for the removal and recycling of phenol pollutants in wastewater.
-
Key words:
- green emulsion liquid membrane /
- stability /
- removal rate of phenol /
- enrichment
-
污水处理行业的臭气主要产生于污水处理厂和污水收集管网泵站等环节,相关治理技术主要有吸收法、吸附法、燃烧法和生物法等[1]。其中,生物除臭技术因其环保、高效、低成本等优点在污水处理厂臭气处理领域得以应用[2]。生物滤柱与生物洗涤塔、生物滤池和生物滴滤塔等生物除臭技术相比,具有占地面积小、运行费用低、处理效率高和管理方便等特点[3-5],但在冬季低温条件下微生物代谢活性受到抑制,极易出现处理效果差、运行不稳定等问题。通过填料投加以增大滤柱有效生物量来提高处理效果是生物滤柱研究中较为重要的强化策略之一[6]。
生物除臭技术中的填料通常具备较好的持水性、良好的透气性和优异的比表面积,有利于微生物膜的形成和微生物的新陈代谢[7]。屈艳芬等[8]采用混合肥料、聚苯乙烯胶球体、活性炭、沸石为混合填料进行除臭实验,取得了良好的处理效果。端艳等[9]采用陶粒作为生物滤池中的填料,发现其对COD和氨氮有良好的去除效果。肖作义等[10]将树皮、活性炭和多孔空心球按照6:2:1的比例混合填充,对NH3和H2S的去除效果较好。刘桂臣等[11]考察了沸石-无烟煤双层滤料生物滤池处理污水的效果,结果表明,可获得良好的出水水质。单一填料生物除臭工艺的运行时间较长时会出现堵塞、透气性变差等问题[12],因此,开发高效、稳定的复合填料以提高生物滤柱的微生物量,成为强化低温环境下滤柱除臭运行效能的重要方式。
本研究通过搭建模拟喷淋-生物滤柱臭气处理工艺,以蜂窝煤渣、活性炭、蜂窝沸石和陶粒构建复合填料强化生物滤柱处理效能,选择污水处理厂主要恶臭气体硫化氢(H2S)和氨气(NH3)作为目标污染物,分析闽南地区(以厦门为例)冬季低温条件下混合填料生物滤柱对2种恶臭气体的去除效果,探究系统成功运行后,复合填料表面生物膜微生物的群落结构变化,并进行物料衡算以综合评估复合填料-生物滤柱的臭气处理效能,为冬季气候条件下闽南地区污水处理厂的臭气高效快速处理提供技术参考。
1. 材料与方法
1.1 实验原料及其特征
1)接种污泥。实验采用厦门某污水处理厂曝气池活性污泥。接种污泥的TSS为12.29 g·L−1,VSS为7.68 g·L−1,pH为7.68。
2) H2S气体。在密闭瓶中加入硫化亚铁固体,再将一定含量的10%稀硫酸溶液通过蠕动泵以一定流速通入瓶中,使之发生化学反应产生H2S;通过调节蠕动泵控制产气量,使产生的气体质量浓度保持在(5.0 ± 0.6) mg·L−1。
3) NH3气体。通过投加25%氨水模拟NH3的产生,通过流量计调节投加氨水的量,使生物滤柱反应器进水中氨氮质量浓度保持在(35.0 ± 1.5) mg·L−1。
4)喷淋水。以模拟生活污水作为喷淋水源,其组分及质量浓度如下。氯化铵,14.28 mg·L−1;磷酸二氢钾,28.15 mg·L−1;尿素,19.20 mg·L−1;无水氯化钙,8.31 mg·L−1;硫酸镁,33.91 mg·L−1;无水乙酸钠,21.11 mg·L−1;葡萄糖,192.00 mg·L−1;(NH4)6Mo7O2,0.18 mg·L−1;FeSO4·7H2O,1.50 mg·L−1;ZnSO4·7H2O:0.12 mg·L−1;MnCl2·2H2O:0.12 mg·L−1;CoCl2·6H2O:0.15 mg·L−1;CuSO4·5H2O:0.03 mg·L−1。
5)复合填料。该实验选用的复合填料是蜂窝煤渣、活性炭、蜂窝沸石和陶粒。参考已报道文献[10, 12-13],将生物滤柱复合填料的体积投配比设置为4∶4∶1∶1,混合后构建复合填料。蜂窝煤渣取用学校食堂废弃的蜂窝煤渣,干燥、粉碎,过80目标准筛;活性炭的粒径为2~4 mm,蜂窝沸石的粒径为2~4 mm,陶粒粒径为4~6 mm。
1.2 实验装置与步骤
1.2.1 实验装置
本次实验地点位于华侨大学厦门校区,实验装置如图1所示。环境温度维持在8~14 ℃。取用厦门某污水处理厂曝气池的活性污泥为生物滤柱提供所需微生物。为准确判断混合填料挂膜情况,每3 d检测1次生物滤池反应器出水COD,确定微生物对营养物质的吸收与利用情况[14]。实验装置主要由H2S发生装置、喷淋装置和生物滤柱组成。生物滤柱为圆柱形,尺寸为φ70 mm×1 700 mm,滤柱有效容积为6.50 L。复合填料置入生物滤柱中,填料区填充高度约为700 mm,体积填充比为0.4。生物滤柱底部连接微曝气装置,反应器启动时开始进行曝气。
1.2.2 实验步骤
阶段1是驯化挂膜阶段,运行时间为15 d。本实验采用直接驯化挂膜法[15-16],往生物滤柱中填入活性污泥直至将填料区完全浸没,48 h后再将泥浆排出,然后将模拟生活污水通入反应器中,此过程不通入臭气。每隔3 d在反应器的进水、出水口取样以测定COD含量。
阶段2是H2S气体处理阶段(运行路径①),运行时间为30 d。H2S气体从H2S发生装置由空气泵抽至喷淋装置底部的进气口,再经喷淋后输送至生物滤柱底部的进水口;经过填料区后,残余气体由顶部出气口排出。其中,H2S进气量由空气流量计调节控制;在此阶段中,每隔3 d测定1次进出H2S质量浓度和进出水中SO42−的质量浓度。
阶段3是H2S和NH3混合臭气处理阶段,运行时间为30 d。在第2阶段的基础上,开启氨水释放装置(路径①与路径②同时开启),NH3经喷淋后进入生物滤柱,每隔3 d测定1次进出H2S质量浓度和进出水中NH3-N质量浓度。
1.3 分析方法
采用重铬酸钾法测定COD[17];采用纳氏试剂分光光度法测定氨氮(NH3-N)质量浓度[18];采用硫化氢气体检测仪测定H2S质量浓度;采用铬酸钡分光光度法测定SO42−的质量浓度[19]。
1.4 微生物群落分析
为探究处理臭气对复合填料生物膜上微生物群落组成多样性和变化情况的影响,分别取接种污泥、运行阶段1、运行阶段2、运行阶段3结束运行后的复合填料上生物膜污泥样品进行分析。每个样品平行取样3次,混合均匀后分别标记为In0、Bio1、Bio2、Bio3。从生物滤柱中取得复合填料层的填料,从其表层提取生物膜污泥样品,在10 000 r·min−1下离心10 min,使得污泥固液分离。然后,使用快速DNA试剂盒(MoBio Laboratories)从污泥沉积物中提取基因组DNA,操作步骤按照试剂盒中提供的使用说明书进行。利用Qubit3.0 DNA检测试剂盒对基因组DNA精确定量,以确定聚合酶链反应(PCR)应加入的DNA量。使用引物(515F和806R)对污泥细菌16S DNA的V3-V4区域进行PCR扩增。利用Gene Tools Analysis Software (Version4.03.05.0, SynGene)对PCR产物进行浓度对比后,按照等质量原则计算各样品所需体积,将各PCR产物进行混合。使用E.Z.N.A.®GelExtractionKit凝胶回收试剂盒回收PCR混合产物,TE缓冲液洗脱回收目标DNA片段。后续建库按照NEBNext®UltraTM DNA Library Prep Kit for Illumina®标准流程进行建库操作,完成后在高通量测序平台Hiseq或Miseq进行上机测序,并通过广东美格基因科技有限公司分析平台(www.magichand.online)对扩增产物进行高通量测序分析。根据MiSeq测序结果检测到的OTU,使用RDP数据库(http://rdp.cme.msu.edu/misc/resources.jsp)进行微生物分类分析,包括科和属级别。每个样本的微生物多样性由Mothur软件计算(http://www.mothur. org/wiki/Schloss_SOP#Alpha_diversity),包括Chao1指数,richness指数;通过Matlab软件实现PCA主成分分析。最后,通过STAMP软件评估微生物群落相对丰度(科、属级别的比较分析)。
2. 结果与讨论
2.1 复合填料-生物滤柱的运行效能
2.1.1 驯化挂膜阶段
进出水中溶解性有机物(COD)的变化有助于明确微生物对反应器中有机物质的吸收和降解特性[20]。复合填料-生物滤柱在启动运行阶段(阶段1)15 d的COD变化见表1。在启动运行的前9 d内,生物滤柱对COD的去除率较低(57%~64%);从第12天开始,生物滤柱对COD的去除率逐渐稳定在80%以上,说明生物滤柱内微生物可充分利用进水营养液中的碳源作为自身营养物质。在生物膜上微生物代谢达到平衡后,挂膜成功。这与现有报道[20]情况相符。
表 1 运行阶段1(启动阶段)复合填料-生物滤柱对COD去除效率的变化Table 1. Change of COD removal efficiency of composite packing biological filter column in operation stage 1 (start-up stage)运行天数/d 进水COD/(mg·L−1) 出水COD/(mg·L−1) COD去除率/% 3 160 68 57.50 6 168 60 64.29 9 180 64 64.44 12 250 28 88.80 15 228 28 87.72 2.1.2 单一H2S处理阶段
复合填料-生物滤柱反应器对H2S的降解效果如图2所示(运行阶段2)。图2(a)为复合填料-生物滤柱反应器对H2S气体的去除效果。在运行6 d后,H2S的进气质量浓度为4.42~5.51 mg·L−1,出气质量浓度降至0.99~1.66 mg·L−1。在此过程中,H2S的去除率仅为约40%。从第9天开始,H2S的去除率逐渐升高至70%以上,并保持稳定,最大去除率可达91.77%。图2(b)为运行阶段2进出水中SO42−的质量浓度变化(已扣除进水组分中SO42−的质量浓度)。其中,出水SO42−的质量浓度达到21.44~49.44 mg·L−1,远高于进水SO42−的质量浓度,这说明复合填料-生物滤柱硫氧化菌(sulfur-oxidizing bacteria,SOB)得到富集,将H2S转化为SO42−[21]。SO42−的质量浓度可间接反映去除H2S功能菌的富集程度,即随着运行时间的增长,硫氧化菌的富集程度提高,这是H2S对硫氧化菌培养驯化的结果。
2.1.3 H2S与NH3混合臭气处理阶段
运行阶段3是复合填料-生物滤柱同步去除H2S和NH3的运行阶段。在阶段2的基础上向生物滤柱通入氨水模拟NH3的进入,运行时间为30 d。图3(a)为此运行阶段生物滤柱反应器进出H2S质量浓度的变化及其去除率。在阶段3运行的30 d里,H2S的去除率一直稳定在70%以上,说明生物滤柱对H2S的去除效果良好且运行稳定。图3(b)为进出水NH3-N质量浓度及其去除率。在前15 d内,NH3-N的去除率逐步上升。从第15 d开始,去除率一直稳定在70%以上,其中最大去除率达到82.53%。这与殷峻等[22]研究结果相符,说明生物滤柱可实现对H2S和NH3-N的同步去除,且去除效果良好、运行稳定。
2.2 组合填料微生物组成及多样性分析
2.2.1 微生物群落组成多样性分析
图4(a)为4个样本的稀释曲线。随着样本量的增加,样本稀释曲线趋于平缓,即说明本次实验取样合理,样本测序数据量能反应污泥样品中的总体微生物[23]。
复合填料-生物滤柱内生物膜的微生物群落组成多样性指数如图4(b)所示。样本的物种丰富度随运行天数的增加整体呈下降趋势。这可能是由于驯化与挂膜培养过程中微生物生存环境和营养源的改变所致。样本Bio2的物种丰富度与样本Bio1相差不大,说明通入H2S对微生物物种丰富度的影响较小;而样本Bio3的物种丰富度小于样本Bio2,这可能由于高负荷H2S和NH3环境会对微生物群落产生抑制作用,降低了微生物丰富度[24]。
主成分分析(principal component analysis,PCA)主要用于考察样本间最主要的差异特征,样本在坐标系中的距离远近可最大程度地还原样本间的实际差异。图4(c)为4个样本的PCA分析图,可观察到接种污泥样本In0与其他3个样本在坐标系中距离较远,微生物物种差异性较大。这说明通入臭气后,生物滤柱反应器中的微生物种群有较大变化,即臭气(H2S、NH3)的进入对复合填料生物膜菌群结构起到重要的重塑作用,进而改变微生物群落功能,使之具备脱硫除氮能力。而样本Bio1和样本Bio2在坐标系中距离相近,样本Bio3相比较下较远,说明通入H2S并运行30 d后的反应器内微生物种群变化不明显。在进入氨气后,反应器内微生物种群变化较为明显,说明单一臭气(H2S)对复合载体生物膜菌群结构的影响小于混合臭气,加入氨气后反应器内微生物种群的变化更为明显。这表明混合臭气(H2S+NH3)对微生物菌群具有更显著的筛选与驯化作用。这也是Bio3样品丰富度降低(图2)的主因,亦与前述报道[24]相符。
2.2.2 微生物群落组成分析
对4个样本在科水平的微生物群落组成(相对丰度>0.01%)进行了分析,其结果见图5(a)。由图5(a)可见,4个样本的物种组成相似,但相对丰度占比存在明显区别。Ignavibacteriales的相对丰度在通入H2S后呈现明显下降趋势,Ignavibacteriales科属于绿硫细菌 (green sulfur bacteria,GSB),但是没有硫氧化能力[22],故通入H2S后,其丰度下降,并逐渐被具有硫氧化能力的硫氧化菌及其他硫氧化菌取代。而Rhizobiales、Thiotrichaceae和Chiitinophagaceae在通入H2S后相对丰度上升,是除H2S优势功能菌和有机物降解菌。通入H2S运行30 d后,Burkholderiaceae和Rhodanobacteraceae的相对丰度升高,为除H2S优势功能菌。加入NH3进入反应器至运行结束,Rhodocyclaceae、Weeksellaceae和Enterobacteriaceae的相对丰度上升,而Xanthomonadceae、Thiotrichaceae和Rhodanobacteraceae的相对丰度下降。NH3的加入,使脱氮优势菌丰度上升,与除H2S优势菌竞争营养物质,从而导致部分除H2S优势菌的丰度下降,NH3的存在会对部分脱硫微生物产生抑制作用,亦是污泥样品Bio3与Bio2产生菌群差异性的主因(图4(c))。综上所述,Rhodocyclaceae、Weeksellaceae和Enterobac是H2S与NH3混合臭气处理阶段的优势微生物。
图5(b)为4个样本在属水平的微生物群落组成(相对丰度>0.01%)。接种污泥样本In0中Ignavibacteriales(88.90%)的相对丰度最高,通入臭气后呈现明显下降趋势。这说明H2S对Ignavibacteriales
有抑制作用,通入H2S会导致其丰度下降,逐渐被其他除臭优势菌取代,这与图5(a)呈现的分析结果一致。在通入H2S后,Thiothrix的相对丰度从0.38%上升至23.22%,Ferruginibacter的相对丰度从0.40%上升至19.16%,菌属Thiothrix和Ferruginibacter与H2S降解相关[25-26]。在通入H2S运行30 d后,Burkholderiaceae、Tahibacter相对丰度从1.57%、8.38%分别上升至13.75%和26.61%,这说明Burkholderiaceae、Tahibacter对H2S的生物降解/转化有积极的贡献作用,与已有报道[27-28]结果一致。从加入NH3至反应器运行结束,Dinghuibacter、Cloacibacterium和Kosakonia的相对丰度显著上升,分别从0.61%、0.48%和0.32%上升至7.65%、12.8%和33.42%,而Burkholderiaceae、Tahibacter和Ferruginibacter的相对丰度显著下降。这说明Dinghuibacter、Cloacibacterium和Kosakonia为氨氮去除相关功能菌[29-31]。 2.3 微生物除臭机理分析
复合填料表层生物膜内除臭微生物群落中的核心菌属成员及其对H2S、NH3的转化作用见图6。Thiothrix是硫化物氧化丝状菌属,以H2S为能源,可将H2S氧化为硫粒积累在菌体内,在缺乏营养时又将硫粒氧化为SO42−,从而获得能量。Rhodocyclaceae属于紫色非硫细菌 (purple nonsulfur bacteria,PNSB),可将硫化物氧化成SO42−。H2S喷淋后生成氢硫酸(H2S),扩散进入生物膜后被Thiothrix[26]和Rhodocyclaceae[32]氧化为SO42−,从而将H2S从水中去除。Thiothrix在Bio1的相对丰度(图5(b))为23.22%(高于In0中的0.38%),这可能是由于H2S的存在造成Thiothrix在生物膜中的富集,从而加快去除H2S。而Bio3中Rhodocyclaceae的相对丰度从接种污泥的0.50%上升至8.30%,是运行阶段3中去除H2S的优势功能菌。水中的有机物质被有机物降解菌Zoogloea、Sphaerotilus和Ferruginibacter降解为CO2和H2O。Zoogloea和Sphaerotilus属在接种污泥In0中的相对丰度仅为0.31%和1.75%,在Bio3中上升到5.36%和8.38%,对COD的降解具有积极贡献[33-34]。Ferruginibacter属的相对丰度从In0的0.40%上升至19.16%,这与COD降解密切相关[25]。生物膜中的Rhizobium[35]和Kosakonia[31]是具有固氮作用的菌属;Cloacibacterium[29]可促进硝酸盐还原酶和亚硝酸盐还原酶的产生,并将水中的氨氮转化为硝酸盐和亚硝酸盐,再通过Tahibacter在有氧条件下将硝酸盐和亚硝酸盐还原为N2[28],从而达到脱氮的效果。Cloacibacterium在In0中的相对丰度为0.40%,在Bio3中因NH3的加入而上升至12.81%;Kosakonia的相对丰度从0.48%上升至33.43%,是运行阶段3中去除氨氮的重要贡献者。
填料的选择与复合填料-生物滤柱的除臭效能密切相关。蜂窝煤渣含有Ca、Al、Fe、Mg等多种成分,结构疏松、微孔多、比表面积大,因而具有较好的吸附性能,同时对磷和氨氮也有一定的去除效果[36-37]。活性炭对有机物的吸附能力强、过滤速度快,同时具有较大的比表面积,有利于生物膜的生长[38-39]。沸石具有发达的孔隙结构、巨大的比表面积及稳定的物理和化学性质,是优良的吸附剂和生物载体,同时还兼具较强的氨氮吸附能力,可强化对氨氮的去除效果[39-40]。陶粒具有生物附着性强、挂膜性能良好、水流流态佳、大孔隙结构发达、表面粗糙等优点,微生物不仅可在其表面生长,还可在其孔隙内附着生长,为自养和异养菌提供良好的生长环境,是较好的生物挂膜载体[41-42]。
复合填料-生物滤柱反应器中的硫和氮物料衡算分析见图7。在硫素转化方面,90.77%的H2S被转化为SO42−,表明生物滤柱中S转化功能菌的富集对H2S的去除具有重要作用;在氮素转化方面,72.53 %的NH3-N被转化为硝酸盐和亚硝酸盐,,表明此时复合填料生物膜兼具N素去除的重要功能。
与已报道相似文献对比,方媛媛等[13]采用陶粒、火山岩、沸石和轮胎颗粒4种材料以体积比1∶1∶1∶1混合的填料,在23℃下对氨氮的去除率可达到92.6%;聂中林等[43]以沸石-陶粒为填料在曝气生物滤池中对氨氮的去除率达到94.6%;肖作义等[10]在实验温度为21~35 ℃时,发现以树皮、活性炭和多孔空心球(体积比为6∶2∶1)为填料的生物滤池对H2S和NH3的最大去除率为99.24%和97.53%。本研究采用蜂窝煤渣、活性炭、蜂窝沸石和陶粒体积比为4∶4∶1∶1的组合填料-生物滤柱,在实验温度为8 ℃~14 ℃时,对H2S和NH3的最大去除率可达91.77%和82.53%。相比于其他研究,本研究中组合填料-生物滤柱的去除效果可能稍显不足,鉴于低温条件下微生物活性受到抑制,本研究已达到预期处理效果。
3. 结论
1)在厦门市冬季低温条件下,通过蜂窝煤渣、活性炭、蜂窝沸石和陶粒4种填料构建了复合填料-生物滤柱生物除臭工艺,运行15 d即可实现成功挂膜,且对H2S和NH3的最大去除率为91.77%和82.53%,工艺运行高效稳定。
2)在低温条件下,复合填料生物膜中菌属Thiothrix、Rhodocyclaceae、Zoogloea、Sphaerotilus、Ferruginibacter、Rhizobium、Cloacibacterium、Kosakonia、Tahibacter对物质降解协作密切,是生物除臭的优势功能微生物。其中,Thiothrix和Rhodocyclaceae属与H2S去除相关;Rhizobium、Cloacibacterium、Kosakonia与Tahibacter属对NH3的去除与转化具有重要贡献作用;有机物降解菌Zoogloea、Sphaerotilus和Ferruginibacter是水相溶解态COD去除的主要贡献者。
-
[1] 李亚峰, 张策, 单连斌, 等. 三维电极电Fenton法对苯酚废水处理效果实验研究[J]. 环境工程, 2020, 38(9): 1-5. [2] MALAKOOTIAN M, HEIDARI M R. Removal of phenol from steel wastewater by combined electrocoagulation with photo-Fenton[J]. Water Science and Technology, 2018, 78(6): 1260-1267. doi: 10.2166/wst.2018.376 [3] 史胜利, 冯佳, 谢树莲, 等. 生物质材料去除酚类污染物的研究进展[J]. 辽宁化工, 2022, 51(12): 1744-1747. doi: 10.3969/j.issn.1004-0935.2022.12.022 [4] CHEN G F, GAO M L. Experimental study on extraction and dephenolization of MK comeplex extractant[J]. Coal Chemical Industry, 2018, 46(2): 49-57. [5] GALDINO A L, OLIVEIRA J, MAGALHAES M L, et al. Prediction of the phenol removal capacity from water by adsorption on activated carbon[J]. Water Science and Technology, 2021, 84(1): 135-143. doi: 10.2166/wst.2021.196 [6] LIU H, KIM G E, HONG C O, et al. Treatment of phenol wastewater using nitrogen-doped magnetic mesoporous hollow carbon[J]. Chemosphere, 2021, 271: 129595. doi: 10.1016/j.chemosphere.2021.129595 [7] NIU Z Y, JIA Y T, CHEN Y C, et al. Positive effects of bio-nano Pd(0) toward direct electron transfer in Pseudomona putida and phenol biodegradation - ScienceDirect[J]. Ecotoxicology and Environmental Safety, 2018, 161: 356-363. doi: 10.1016/j.ecoenv.2018.06.011 [8] SELLAMI K, COUVERT A, NASSRALLAH N, et al. Bio-based and cost-effective method for phenolic compounds removal using cross-linked enzyme aggregates[J]. Journal of Hazardous Materials, 2020, 403: 124021. [9] YOU Y Y, HE Z. Phenol degradation in iron-based advanced oxidation processes through ferric reduction assisted by molybdenum disulfide[J]. Chemosphere, 2022, 312: 137278. [10] DWINANDHA D, ZHANG B, FUJII M. Prediction of reaction mechanism for OH radical-mediated phenol oxidation using quantum chemical calculation[J]. Chemosphere, 2021, 291: 132763. [11] 齐亚兵, 杨清翠. 煤化工废水脱酚技术研究进展[J]. 应用化工, 2021, 50(5): 1414-1419. [12] ZHU G P, WANG Y T, HUANG Q L, et al. Emulsion liquid membrane for simultaneous extraction and separation of copper from nickel in ammoniacal solutions[J]. Minerals Engineering, 2022, 188: 107849. doi: 10.1016/j.mineng.2022.107849 [13] BANERJEE S, SIVAMANI S. Estimation of model parameters in the extraction of Cr(VI) from wastewater by an emulsion liquid membrane[J]. Chemical Engineering and Technology, 2022, 45(6): 1141-1147. doi: 10.1002/ceat.202200043 [14] RAVAL A R, KOHLI H P, MAHADWAD O K. Application of emulsion liquid membrane for removal of malachite green dye from aqueous solution: Extraction and stability studies[J]. Chemical Engineering Journal Advances, 2022, 12: 100398. doi: 10.1016/j.ceja.2022.100398 [15] INYANG V, LOKHAT D. Propionic acid recovery from dilute aqueous solution by emulsion liquid membrane (ELM) technique: optimization using response surface methodology (RSM) and artificial neural network (ANN) experimental design[J]. Separation Science and Technology, 2022, 57(2): 284-300. doi: 10.1080/01496395.2021.1890774 [16] GASSER M S, KADRY H F, HELAL A S, et al. Optimization and modeling of Uranium recovery from acidic aqueous solutions using liquid membrane with Lix-622 as Phenolic-oxime carrier[J]. Chemical Engineering Research and Design, 2022, 180: 25-37. doi: 10.1016/j.cherd.2022.02.002 [17] SHOKRI A, DARAEI P, ZERESHKI S. Water decolorization using waste cooking oil: An optimized green emulsion liquid membrane by RSM[J]. Journal of Water Process Engineering, 2020, 33: 101021. doi: 10.1016/j.jwpe.2019.101021 [18] OTHMAN N, SULAIMAN R N R, RAHMAN H A, et al. Simultaneous extraction and enrichment of reactive dye using green emulsion liquid membrane system[J]. Environmental Technology, 2019, 40(11): 1476-1484. doi: 10.1080/09593330.2018.1424258 [19] ROSLY M B, JUSOH N, OTHMAN N, et al. Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal[J]. Chemical Engineering and Processing- Process Intensification, 2020, 148: 107790. doi: 10.1016/j.cep.2019.107790 [20] JUSOH N, OTHMAN N, SULAIMAN R N R, et al. Optimization of synergistic green emulsion liquid membrane stability for enhancement of silver recovery from aqueous solution[J]. Korean Journal of Chemical Engineering, 2022, 39(2): 423-430. doi: 10.1007/s11814-021-0921-2 [21] FATIHA M, NORELA J, NORASIKIN O, et al. Development of stable green emulsion liquid membrane process via liquid–liquid extraction to treat real chromium from rinse electroplating wastewater[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 231-241. doi: 10.1016/j.jiec.2018.05.034 [22] OTHMAN N, NOAH N, SHU L Y, et al. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process[J]. Chinese Journal of Chemical Engineering, 2016, 25(1): 45-52. [23] 庞敏. 乳化液膜法脱酚的研究[D]. 大庆: 大庆石油学院, 2010. [24] AHMAD A L, SHAFIE Z M H M, ZAULKIFLEE N D, et al. Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase[J]. Membranes, 2019, 9(10): 133. doi: 10.3390/membranes9100133 [25] AHMAD A L, ZAULKIFLEE N D, KUSUMASTUTI A, et al. Removal of acetaminophen from aqueous solution by emulsion liquid membrane: Emulsion Stability Study[J]. Industrial and Engineering Chemistry Research, 2018, 58(2): 713-719. [26] ZERESHKI S, DARAEI P, SHOKRI A. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane[J]. Journal of Hazardous Materials, 2018, 356: 1-8. doi: 10.1016/j.jhazmat.2018.05.037 [27] ZERESHKI S, SHOKRI A, KARIMI A. Application of a green emulsion liquid membrane for removing copper from contaminated aqueous solution: Extraction, stability, and breakage study using response surface methodology[J]. Journal of Molecular Liquids, 2020, 325: 115251. [28] KUMAR A, THAKUR A, PANESAR P S. Extraction of hexavalent chromium by environmentally benign green emulsion liquid membrane using tridodecyamine as an extractant[J]. Journal of Industrial and Engineering Chemistry, 2018, 70: 394-401. [29] 焦潇帅, 王力, 颜冰川, 等. 乳化液膜去除焦化废水中苯酚的初步研究[J]. 膜科学与技术, 2020, 40(4): 119-125. [30] KUMAR A, THAKUR A, PANESAR P S. Stability analysis of environmentally benign green emulsion liquid membrane[J]. Journal of Dispersion Science and Technology, 2018, 39(10): 1510-1517. doi: 10.1080/01932691.2017.1421079 [31] AKKAR S, MOHAMMED S. The feasibility of emulsion liquid membrane for the extraction of organic acids from wastewater[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1076(1): 012021. doi: 10.1088/1757-899X/1076/1/012021 [32] 张海燕, 庞敏, 吴韦等. 正辛醇为载体的乳化液膜法脱酚[J]. 化工进展, 2010, 29(12): 2400-2404. [33] NASAB D P, KELISHAMI R A, et al. Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX (R) 572[J]. Minerals Engineering, 2018, 117: 63-73. doi: 10.1016/j.mineng.2017.11.008 [34] ZAULKIFLEE N, AHMAD A, SUGUMARAN J, et al. Stability study of emulsion liquid membrane via emulsion size and membrane breakage on acetaminophen removal from aqueous solution using TOA[J]. ACS omega, 2020, 5(37): 23892-23897. doi: 10.1021/acsomega.0c03142 [35] HAO M, KÖKKıLıÇ O, MARION C M, et al. The extraction of nickel by emulsion liquid membranes using Cyanex 301 as extractant[J]. The Canadian Journal of Chemical Engineering, 2018, 96(7): 1585-1596. doi: 10.1002/cjce.23100 [36] ROUHANI S H R, DAVARKHAH R, ZAHERI P, et al. Separation of molybdenum from spent HDS catalysts using emulsion liquid membrane system[J]. Chemical Engineering and Processing - Process Intensification, 2020, 153: 107958. doi: 10.1016/j.cep.2020.107958 [37] SUJATHA S, RAJASIMMAN M. Development of a green emulsion liquid membrane using waste cooking oil as diluent for the extraction of arsenic from aqueous solution - Screening, optimization, kinetics and thermodynamics studies[J]. Journal of Water Process Engineering, 2021, 41: 102055. doi: 10.1016/j.jwpe.2021.102055 [38] KUMAR A, THAKUR A, PANESAR P S. A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(1): 153-182. doi: 10.1007/s11157-019-09492-2 [39] HUSSEIN M A, MOHAMMED A A, Atiya M A. Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: An overview[J]. Environmental Science and Pollution Research, 2019, 26(36): 36184-36204. doi: 10.1007/s11356-019-06652-3 [40] JUSOH N, OTHMAN N, ROSLY M B. Extraction and recovery of organic compounds from aqueous solution using emulsion liquid membrane process[J]. Materials Today:Proceedings, 2021, 47(P6): 1301-1306. -