-
对农业废水中有机砷的去除是近年来的研究热点之一[1]。阿散酸p-ASA(p-arsanilic acid),作为最常见的畜禽有机砷添加剂之一,常用于促进肉鸡肉鸭生长和抑制禽体内寄生虫病。然而,诸如p-ASA此类苯胂酸在动物食用后并非停留在其体内,大部分会经过动物的排泻行为释放到环境中,在外界环境的生物和化学作用下,p-ASA会转化为强毒性和强流动性的无机砷(As(V)和As(III))[2],从而导致一系列砷污染的环境问题。其中,p-ASA通过直接排放或是淋溶作用进入附近地表水和地下水中,造成水体环境介质被破坏,且由于苯胂酸类物质具有微生物毒性,不易在水环境中自然降解,就会进一步因食物链富集作用进入人体造成更大的危害。
为解决砷污染的源头问题,亟待探索高效去除有机砷的方法。目前,解决有机砷污染主流的2种方法是吸附及氧化降解[3],尽管氧化法对有机砷具有高去除率的特点,然而存在无法妥善解决降解产物,即无机砷的释放问题[4],而吸附法兼具使用成本低、可重复利用性好、生产方便高效、工艺简单、中间产物向环境释放风险低等优点,是一种应用前景较好的有机砷去除技术[5]。有机砷的吸附剂主要包括铁基材料、高分子吸附剂、碳材料以及金属有机框架(MOFs)[6]等材料。其中,已有较多研究表明,铁基材料(如MIL-100(Fe)和MIL-101(Fe)等铁基MOFs)对有机砷化合物具有良好的吸附性能[7-8]。GAO等[5]考察了苯胂酸在铁基金属-有机骨架(MIL-88A)上的吸附行为及机理,发现配位(Fe-O-As)和氢键在吸附过程中起了主要作用。而锆基材料作为一种阴离子污染物吸附剂,也被加以探究[9]。WANG等[10]率先采用UiO-66对As(V)进行吸附,发现Zr—O键与目标阴离子发生配位作用的过程是UiO-66吸附容量大的主要原因。此外,赵娜等[11]发现当Zn2+被引入Fe3O4水溶液体系时,Zn2+与As(V)发生络合反应并形成金属-配体络合物,其与Fe3O4的结合力增强,对As(V)的去除产生协同作用,去除率从66%增强至高达99%。综上所述,若能将3种金属有机结合,或能进一步促进MOFs对有机砷的吸附作用。
因此,本研究选择铁、锌、锆3种吸附性能优良的金属为原料,通过水热法制备得到多元金属氧化物吸附剂(ZnFeZrOx),采用FT-IR、XRD、XPS等分析手段对ZnFeZrOx的结构和面貌进行表征,拟研究其对有机砷中的典型代表—阿散酸(p-ASA)的吸附去除效率,并探究相关的吸附机理,本研究以期为有机砷废水的处理提供参考。
多元金属氧化物对水中苯胂酸类污染物的吸附性能及机理
Adsorption performance and mechanism of phenylarsonic acid in water onto multi-component metal oxides
-
摘要: 砷污染一直是全球关注的环境问题。以典型苯胂酸—阿散酸(p-ASA)为目标污染物,通过水热法制备了锌-铁-锆复合金属氧化物(ZnFeZrOx)吸附剂,探究了ZnFeZrOx对p-ASA的吸附行为和吸附机理。结果表明:在pH=4,吸附温度为60 ℃,ZnFeZrOx投加量为2.2 g·L−1,p-ASA初始质量浓度为50 mg·L−1时,ZnFeZrOx对p-ASA的去除率可达95.15%。该吸附过程符合Freundlich等温吸附模型和准二级动力学模型,最大吸附容量为595.23 mg·g−1。而在吸附实际废水的实验中,ZnFeZrOx对牲畜养殖废水中p-ASA的去除率仍保持在较高的水平(84.92%)。表征结果表明,ZnFeZrOx在吸附过程中具有良好的化学稳定性,Fe-OH为主要吸附活性位点,Zn-O和Zr-O起到一定作用。ZnFeZrOx具有良好的再生性能,重复使用3次后,对p-ASA的去除率仍能达到70%以上。Abstract: Arsenic contamination has been a global environmental issue. In this study, the typical phenylarsonic acid, named p-ASA, was selected as the target pollutant to investigated the adsorption behaviour and mechanism of zinc-iron-zirconium metallic oxide (ZnFeZrOx) prepared by hydrothermal method. The results indicated that 95.15% of p-ASA was absorbed on the ZnFeZrOx under the optimal conditions: pH4, 60 ℃, ZnFeZrOx dosage of 2.2 g·L−1, and initial p-ASA concentration of 50 mg·L−1. The adsorption process was in accordance with the Freundlich isothermal adsorption model and quasi-secondary kinetic model, and the maximum adsorption capacity was 595.23 mg·g−1. In the experiment of adsorption of livestock breeding wastewater, the removal rate maintained at a high level (84.92%). In addition, ZnFeZrOx showed a good chemical stability during p-ASA adsorption, Fe-OH was the main adsorption active site, and Zn-O and Zr-O played a certain role. After three times of recycle, the removal efficiency of p-ASA still reached higher than 70%, manifesting that ZnFeZrOx had a good regeneration performance.
-
Key words:
- adsorption /
- p-arsanilic acid /
- ZnFeZrOx
-
表 1 ZnFeZrOx吸附p-ASA的Langmuir吸附等温式
Table 1. The Langmuir adsorption isotherm equations for p-ASA onto ZnFeZrOx
温度/K Qm/(mg·g−1) KL/(L·mg−1) Langmuir吸附等温式 R2 298 558.66 0.001 87 Ce/Qe=0.001 8 Ce+0.959 5 0.459 308 595.23 0.001 80 Ce/Qe=0.001 7 Ce+0.935 5 0.496 318 578.03 0.001 82 Ce/Qe=0.001 7 Ce+0.949 6 0.565 表 2 ZnFeZrOx吸附p-ASA的Freundlich吸附等温式
Table 2. The Freundlich adsorption isotherm equations for p-ASA onto ZnFeZrOx
温度/K KF n Freundlich吸附等温式 R2 298 1.24 1.079 lnQe=0.926 6 lnCe+0.212 4 0.982 308 1.29 1.083 lnQe=0.923 3 lnCe+0.256 3 0.985 318 1.28 1.086 lnQe=0.921 2 lnCe+0.248 3 0.987 表 3 ZnFeZrOx吸附p-ASA的动力学参数
Table 3. Adsorption kinetic parameters of p-ASA onto ZnFeZrOx
动力学方程 K1/min−1 K2/(g·(mg·min)−1) Qe'/(mg·g−1) R2 准一级 0.00292 — 9.250 0.947 准二级 — 0.00121 20.088 0.997 -
[1] MANGALGIRI KP, ADAK A, BLANEY L. Organoarsenicals in poultry litter: Detection, fate, and toxicity[J]. Environment International, 2015, 75: 68-80. doi: 10.1016/j.envint.2014.10.022 [2] SU S, CAO C, ZHAO Y, et al. Efficient transformation and elimination of roxarsone and its metabolites by a new alpha-FeOOH@GCA activating persulfate system under UV irradiation with subsequent As(V) recovery[J]. Applied Catalysis B:Environmental, 2019, 245: 207-219. doi: 10.1016/j.apcatb.2018.12.050 [3] LIANG L, XI F, TAN W, et al. Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J]. Biochar, 2021, 3: 255-281. doi: 10.1007/s42773-021-00101-6 [4] YE C, DENG J, HUAI L, CAI A, et al. Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: performance and surface-bound radical mechanism[J]. Science of the Total Environment, 2022, 806: 150379. doi: 10.1016/j.scitotenv.2021.150379 [5] GAO MW, LI B, LIU J, et al. Adsorption behavior and mechanism of p-arsanilic acid on a Fe-based metal–organic framework[J]. Journal of Colloid and Interface Science, 2023, 629: 616-627. doi: 10.1016/j.jcis.2022.08.133 [6] WANG Z, FANG Y, YANG Y, et al. Synthesis of ε-MnO2@MIL-100(Fe) composite for p-arsanilic acid removal[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107876. doi: 10.1016/j.jece.2022.107876 [7] FURUKAWA H, CORDOVA KE, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444. doi: 10.1126/science.1230444 [8] LI Z, LIU X, JIN W, et al. Adsorption behavior of arsenicals on MIL101(Fe): The role of arsenic chemical structures[J]. Journal of Colloid and Interface Science, 2019, 554: 692-704. doi: 10.1016/j.jcis.2019.07.046 [9] LAKSHMANAN D, CLIFFORD D, SAMANTA G. Arsenic removal by coagulation with aluminum, iron, titanium, and zirconium[J]. American Water Works Association Journal, 2008, 100(2): 76-89. doi: 10.1002/j.1551-8833.2008.tb08144.x [10] WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66[J]. Scientific Reports, 2015, 5: 16613. doi: 10.1038/srep16613 [11] 赵娜, 王瑜, 杨卫春, 等. Zn2+和HCO3-对纳米磁性铁去除水中砷的影响[J]. 中国有色金属学报, 2011, 21(9): 2285-2290. [12] 彭云. 铁氧化物对有机胂类药物的吸附行为研究[D]. 南京: 南京师范大学, 2016. [13] 郭家骏. 污泥基生物炭的制备及其改性材料对水体中有机砷的吸附性能研究[D]. 长沙: 湖南农业大学, 2019. [14] LI B, ZHU X, HU K, et al. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J]. Journal of hazardous materials, 2016, 302: 57-64. doi: 10.1016/j.jhazmat.2015.09.040 [15] ZHU X, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67[J]. ACS applied materials and interfaces, 2014, 7(1): 223-231. [16] DEPALMA S, COWEN S, HOANG T, et al. Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr) oxides: in-situ ATR-FTIR studies[J]. Environmental Science and Technology, 2008, 42(6): 1922-1927. doi: 10.1021/es071752x [17] PENG Y, WEI W, ZHOU H, et al. Iron humate as a novel adsorbent for p-arsanilic acid removal from aqueous solution[J]. Journal of Dispersion Science and Technology, 2016, 37(11): 1590-1598. doi: 10.1080/01932691.2015.1120219 [18] HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere, 2017, 181: 328-336. doi: 10.1016/j.chemosphere.2017.04.049 [19] CHEN W R, HUANG C H. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides[J]. Journal of Hazardous Materials, 2012, 227: 378-385. [20] 朱瑾. 铁锰氧化物/石墨烯复合材料对水中砷的吸附性能及机理研究[D]. 杭州: 浙江大学, 2016. [21] MOHAPATRA D, MISHRA D, CHAUDHURY G R, et al. Arsenic adsorption mechanism on clay minerals and its dependence on temperature[J]. Korean Journal of Chemical Engineering, 2007, 24(3): 426-430. doi: 10.1007/s11814-007-0073-z [22] 范芳. 铁锰铈三元复合氧化物的合成及重金属砷的吸附性能研究[D]. 西安: 西安工程大学, 2017. [23] ZHENG Y M, LIM S F, CHEN J P. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. Journal of Colloid and Interface Science, 2009, 338(1): 22-29. doi: 10.1016/j.jcis.2009.06.021 [24] 叶树芯. 铁锰复合氧化物新型固定化及其除砷特性研究[D]. 武汉: 华中农业大学, 2016. [25] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification[J]. Chemistry-A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658 [26] 赵丹丹. 纳米锆颗粒吸附砷的应用基础研究[D]. 武汉: 华中科技大学, 2012. [27] 侯栋科, 彭兵, 柴立元, 等. 铁酸锌选择性还原的反应机理[J]. 中国有色金属学报, 2014, 24(10): 2634-2641. doi: 10.19476/j.ysxb.1004.0609.2014.10.027 [28] SARKER M, SONG J Y, JHUNG S H, et al. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks[J]. Journal of Hazardous Materials, 2017, 335: 162-169. doi: 10.1016/j.jhazmat.2017.04.044 [29] 唐秋莎, 张东生, 顾宁, 等. 聚乙烯亚胺在锰锌铁氧体纳米粒子表面定量吸附[J]. 东南大学学报(自然科学版), 2007, 37(5): 867-872. [30] WU Q, YE X, LV Y, et al. Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms[J]. Chemosphere, 2020, 258: 127276. doi: 10.1016/j.chemosphere.2020.127276 [31] 张艳素. 铁锆复合氧化物去除砷氟的性能研究及机制探讨[D]. 北京: 北京林业大学, 2012. [32] WANG Y, JIANG B, WANG L L, et al. Hierarchically structured two-dimensional magnetic microporous biochar derived from hazelnut shell toward effective removal of p-arsanilic acid[J]. Applied Surface Science, 2020, 540: 148372. [33] 何兴羽. 锆基MOFs吸附去除水中砷, 锑离子和汞离子检测性能研究[D]. 南昌: 南昌航空大学, 2016. [34] TIAN C, ZHAO J, OU X W, et al. Enhanced adsorption of p-Arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations[J]. Environmental Science and Technology, 2018, 52(6): 3466-3475. doi: 10.1021/acs.est.7b05761