-
氟是一种人体必须的微量元素,适量的氟有利于预防骨质疏松和龋齿,但过量的摄入会导致骨髓畸形和脑损伤等疾病。在自然界中氟元素会在风化作用下进入地下水,人类活动如煤矿、玻璃陶瓷、半导体制造和电镀等工业,也会在生产制造过程中排出大量高浓度的含氟废水,之后与人类活动产生的有机污染物混合后,会形成较难处理的氟离子和有机物混合废水。针对此类废水,常用的处理方法有混凝法[1-2]、吸附法[3-4]、离子交换法[5-6]、电渗析法、反渗透膜法[7]和电絮凝法[8]等。吸附法具有反应速率快和工艺简单的优势,但仅在污染物浓度较低时有效,而且吸附剂的处理和再生成本较高[9]。离子交换法可以针对性地去除水中的氟离子,但无法去除有机物,且存在树脂再生困难和出现2次污染问题[10];膜处理法可以有效去除水中的氟离子和有机物,但其由于对设备要求高、滤膜易堵塞以及2次浓水处理困难等问题,在实际应用中会受到限制[11]。
以氯化铝(AlCl3)为代表的传统铝系混凝剂凭借着处理效果稳定和价格低廉的优点[12],广泛应用于中小型水处理措施中。但其存在絮体体积小且结构疏松、低温下混凝效果差、药剂投入量大和余铝不可控等问题,极少应用在大规模工程中[13]。高聚十三铝(Al13)是一种纳米级尺寸和高正电荷密度的溶胶大分子新型混凝剂,有极佳的混凝水解形态[14-16]。相比于传统的铝盐混凝剂,Al13经过预水解生成的产物更倾向于保持其化学特性,因此有较高的水解稳定性,并且其高正电荷密度的特点,更有利于接近和吸附污染物。此外,氢键和离子交换机制也进一步保证了高效的混凝效果。腐殖酸(HA)是自然界中最常见的有机质[17-18],由动植物遗骸经过微生物的分解和转化形成,其分子质量分布在800~6 000 Da,通常作为模型物质替代天然有机物开展研究。研究表明,AlCl3和Al13作为铝系混凝剂对水中的氟离子具有高效的混凝去除能力[19]。并且借助电中和、网捕卷扫等机理铝系混凝剂也具有一定的去除有机物的能力[20]。然而,不同铝系混凝剂在处理氟离子和有机物混合废水时,均会面临混凝剂性能下降,氟离子去除效率明显下降的问题。
为揭示不同铝系混凝剂在处理氟离子和有机物混合废水时的作用机理,解释混凝剂在处理氟离子和有机物混合废水时,氟离子去除效率下降的现象,本研究制备不同HA浓度的含氟废水作为实验水体进行实验[21-22],通过对比不同形态铝混凝剂对混合废水中氟离子的去除效果,探讨其内在的作用机理,以期对氟离子与有机物混合废水处理或供水厂工艺选择提供参考。
AlCl3与Al13对不同HA浓度含氟废水的处理效果及作用机理
Treatment effect and mechanism of treatment of fluorine-containing wastewater with different HA concentrations by AlCl3 and Al13
-
摘要: 混凝是一种重要的除氟工艺。以不同腐殖质(HA)浓度的含氟废水为研究对象,对比高正电性分子[AlO4Al12(OH)24(H2O)12]7+(Al13)和氯化铝(AlCl3)2种不同形态混凝剂的除氟效果。结果表明,在纯氟水中,增加混凝剂投加量,除氟率均为先升高后下降,而在HA存在的条件时,混凝剂的除氟效果是氟和有机物的竞争作用与三元络合促进作用在动态平衡下的结果。氟离子和有机物混合废水中的氟离子能够促使有机质中酚羟基与Al13的络合。Al13在混凝过程中会形成三元络合物,促使氟离子脱离水相,因此,除氟效果更好。当溶解性有机碳质量浓度为5 mg·L−1时,Al13的最高除氟率可达88.8%。Abstract: Coagulation is an important fluoride removal process. In this study, fluorine-containing wastewater with different HA concentrations was taken as the research object, and the fluoride removal effects by high positive molecular [AlO4Al12(OH)24(H2O)12]7+ (Al13) and aluminum chloride (AlCl3) were compared. The results showed that in pure fluorine water, with the increase of coagulant dosage, the fluoride removal rate increased at first and then decreased; while in the presence of HA, the fluoride removal effect of coagulants was the result of the competition between fluorine and organic matter and the promotion of ternary complexation under dynamic equilibrium. The fluoride ion in the mixed wastewater of fluoride ion and organic matter could promote the complexation of phenolic hydroxyl groups in organic matter with Al13. In the process of coagulation, Al13 could form a ternary complex to promote the separation of fluoride from the aqueous phase, so it had a better fluoride removal effect. When the mass concentration of dissolved organic carbon was 5 mg·L-1, the highest fluoride removal rate of Al13 reached 88.8%.
-
Key words:
- AlCl3 /
- Al13 /
- mixed wastewater /
- coagulation /
- defluorination
-
表 1 混凝剂的Al形态分布
Table 1. Al species of the coagulants used in this study
Al形态 Ala/% Alb/% Alc/% AlCl3 95.59 3.87 0.54 Al13 3.11 94.32 2.57 表 2 不同DOC值下除氟率与DOC去除率与各水质参数相关分析
Table 2. Correlation analysis of fluoride removal rate and DOC removal rate with water quality parameters at different DOC values
DOC /(mg·L−1) 种类 Al13投加量 Zeta电位 余铝 铝消耗量 0 除氟率 0.869* 0.863* 0.674 0.891** DOC去除率 — — — — 5 除氟率 0.987** 0.947** 0.229 0.966** DOC去除率 -0.038 0.297 0.842 -0.147 10 除氟率 0.993** 0.875** 0.933** 0.993** DOC去除率 0.607 0.384 0.819* 0.598 20 除氟率 0.997** 0.858* 0.624 0.998** DOC去除率 0.811* 0.623 0.639 0.805* 35 除氟率 0.979** 0.820* 0.666 0.984** DOC去除率 0.892** 0.654 0.709 0.891** 50 除氟率 0.985** 0.773* 0.701 0.989** DOC去除率 0.924** 0.635 0.709 0.925** 注:*相关性在0.05水平显著,**相关性在0.1水平显著。 -
[1] ABTAHI M, KOOLIVAND A, DOBARADARAN S, et al. Defluoridation of synthetic and natural waters by polyaluminum chloride-chitosan (PACl-ch) composite coagulant[J]. Water Science and Technology:Water Supply, 2018, 18(1): 259-269. doi: 10.2166/ws.2017.085 [2] CHO D W, HAN Y S, LEE J, et al. Water defluorination using granular composite synthesiZed via hydrothermal treatment of polyaluminum chloride (PAC) sludge[J]. Chemosphere, 2020, 247: 125899. doi: 10.1016/j.chemosphere.2020.125899 [3] ISLAM M, PATEL R K. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime[J]. Journal of Hazardous Materials, 2007, 143(1/2): 303-310. doi: 10.1016/j.jhazmat.2006.09.030 [4] EL-SAID G F, EL-SADAAWY M M, ALY-ELDEEN M A. Adsorption isotherms and kinetic studies for the defluoridation from aqueous solution using eco-friendly raw marine green algae, Ulva lactuca[J]. Environmental Monitoring and Assessment, 2017, 190(1): 14. [5] ALKAN E, KR E, OKSUZ L. Plasma modification of the anion-exchange membrane and its influence on fluoride removal from water[J]. Separation & Purification Technology, 2008, 61(3): 455-460. [6] HE Y, HUANG L, SONG B, et al. Defluorination by ion exchange of SO42- on alumina surface: Adsorption mechanism and kinetics[J]. Chemosphere, 2021, 273: 129678. doi: 10.1016/j.chemosphere.2021.129678 [7] 张威, 杨胜科, 费晓华. 反渗透技术去除地下水中氟的方法[J]. 长安大学学报:自然科学版, 2002, 22(6): 3. [8] GUZMAN A, NAVA J, CORENO O, et al. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor[J]. Chemosphere, 2016, 144: 2113-2120. doi: 10.1016/j.chemosphere.2015.10.108 [9] MEDELLIN-CASTILLO N A, LEYVA-RAMOS R, PADILLA-ORTEGA E, et al. Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(6): 4014-4021. [10] 刘锐平. 饮用水氟污染控制原理与技术[J]. 应用生态学报, 2019, 30(1): 30-36. doi: 10.13287/j.1001-9332.201901.005 [11] FENG Q, LI T, QIAN B, et al. Chemical characteristics and utilization of coal mine drainage in China[J]. Mine Water and the Environment, 2014, 33(3): 276-286. doi: 10.1007/s10230-014-0271-y [12] 高宝玉, 岳钦艳, 黄红杉. 水处理无机混凝剂的研究进展[J]. 油气田环境保护, 1998, 8(2): 3. [13] 李为兵, 金雪中, 张红春, 等. 处理低温低浊水的混凝剂优选[J]. 中国给水排水, 2006, 22(13): 4. doi: 10.3321/j.issn:1000-4602.2006.13.013 [14] PARTHASARATHY N, BUFFLE J. Study of polymeric aluminium(III) hydroxide solutions for application in waste water treatment. Properties of the polymer and optimal conditions of preparation[J]. Water Research, 1985, 19(1): 25-36. doi: 10.1016/0043-1354(85)90319-7 [15] TANG H, LUAN Z. Features and mechanism for coagulation - flocculation processes of polyaluminum chloride[J]. Journal of Environmental Sciences, 1995, 15(2): 204-211. [16] KIMBERLY A G, YAO C H, CHARLES R O. Inorganic metal polymers: Preparation and characteriZation[J]. Journal of the American Chemical Society, 1995(4): 36-46. [17] KRAMER R W, KUJAWINSKI E B, HATCHER P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2004, 38: 3387-3395. [18] STOJANOVIC B J. Humic substances in the environment[J]. Journal of Environment Quality, 1974. [19] WANG X, XU H, WANG D. Mechanism of fluoride removal by AlCl3 and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020: 398. [20] SONG J, JIN P, JIN X, et al. Synergistic effects of various in situ hydrolyZed aluminum species for the removal of humic acid[J]. Water Research, 2019, 148: 106-114. doi: 10.1016/j.watres.2018.10.039 [21] 王亚军, 王进喜. 响应面法优化腐殖酸去除水中重金属铬的吸附条件及热力学研究[J]. 环境化学, 2013, 32(12): 2282-2289. doi: 10.7524/j.issn.0254-6108.2013.12.009 [22] RADIAN A, MISHAEL Y. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon[J]. Environmental Science & Technology, 2012, 46(11): 6228-6235. [23] SHI B, LI G, WANG D, et al. Separation of Al13 from polyaluminum chloride by sulfate precipitation and nitrate metathesis[J]. Separation and Purification Technology, 2007, 54(1): 88-95. doi: 10.1016/j.seppur.2006.08.011 [24] WANG D, SUN W, XU Y, et al. Speciation stability of inorganic polymer flocculant–PACl[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2004, 243(1-3): 1-10. doi: 10.1016/j.colsurfa.2004.04.073 [25] 王霄. 基于羟基铝的混凝吸附除氟材料及机理研究[D]. 北京: 中国科学院大学, 2017. [26] PERNITSKY D J, EDZWALD J K. Solubility of polyaluminum coagulants[J]. Water Supply:Research and Technology-AQUA, 2003, 52(6): 395-406. doi: 10.2166/aqua.2003.0036 [27] WANG X, XU H, WANG D S. Mechanism of fluoride removal by AlCl3 and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020, 398: 122987. doi: 10.1016/j.jhazmat.2020.122987 [28] 刘艳静, 徐慧, 朱利军, 等. 不同有机物对混凝过程和余铝的影响[J]. 环境工程学报, 2015, 9(6): 2660-2666. doi: 10.12030/j.cjee.20150620 [29] SCHULTEN H R, LEINWEBER P. New insights into organic-mineral particles: Composition, properties and models of molecular structure[J]. Biology & Fertility of Soils, 2000, 30(5/6): 399-432. [30] SCHULTEN H R, SCHNITZER M. A state of the art structural concept for humic substances[J], 1993, 80(1): 29-30. [31] 孙鹏, 童庆, 象豫, 等. 水中腐殖酸对Al13混凝除氟的影响[J]. 环境工程学报, 2022, 16(1): 143-153. doi: 10.12030/j.cjee.202109152 [32] KAZPARD V, LARTIGES B S, FROCHOT C, et al. Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with All3 polycations[J]. Water Research, 2006, 40(10): 1965-1974. doi: 10.1016/j.watres.2006.03.014 [33] 胡磊鑫. 含铁氧化物活化过硫酸盐氧化降解典型有机污染物的研究[D]. 济南: 济南大学, 2021. [34] WEI J, GAO B, YUE Q, et al. Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution[J]. Water Research, 2009, 43(3): 724-32. doi: 10.1016/j.watres.2008.11.004